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Local approximation to the spinless Falicov-Kimball model
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The local approximation is applied to the spinless Falicov-Kimball model in one and two dimensions.
The local approximation may be viewed as a zeroth-order expansion in 1/d that is exact in the weak-
coupling limit. The local approximation rapidly becomes inaccurate as a function of interaction strength
in one dimension, but is accurate in two dimensions. This result indicates that the 1/d expansion con-
verges rapidly for the Falicov-Kimball model in d ~ 2 and that exact solutions of many-body problems in
infinite dimensions are quantitatively relevant for physical dimensions.

where c, (c ) is the creation (destruction) operator for a
spinless electron located at site j, and 8 is a classical
variable that assumes the value l (0) if site j is occupied
by an ion of type A (B). The diff'erence in on-site ener-
gies between the A ion and the 8 ion is denoted U, and
the chemical potentials for electrons and 2 ions are
represented by ALt and ( E), respec—tively. The electrons
hop between nearest neighbors on a hypercubic lattice of
dimension d with t* being the rescaled hopping integral
(all energies are measured in units of t*). The thermo-
dynamic limit is taken where the number of lattice sites
approaches infinity (X~ oo ) but the electron concentra-
tion (p, =g+

&
(c&.. cj )/X) and the A-ion concentration

(p; =gj =
& W~ /N) remain constant. The symmetric

50%-50% binary-alloy problem (p, =
—,') is the only case

considered in this contribution.
The spinless Falicov-Kimball model displays numerous

ordered phases including both commensurate and incom-
mensurate order and segregation. At half-filling (p, = —,

' ),
the system always orders in a chessboard phase at a low
enough temperature"' where the 2 ions occupy one of
the two sublattices of the bipartite lattice and the 8 ions
occupy the other sublattice. When the electron density is
low, or the interaction strength is large, the system segre-
gates' ' so that all of the 3 ions and 8 ions cluster
among themselves, separating into two pure phases. In
between these two extreme cases there is a rich phase dia-
gram that contains commensurate and incommensurate
ordered phases that change both continuously and
discontinuously with electron concentration.

In Sec. II the formalism of the local approximation is
described and is applied to the spinless Falicov-Kimball
model in one and two dimensions. Section III presents
the conclusions.

I. INTRODUCTION

Mathematical models that describe strong electron-
electron correlations are dificult to solve exactly. Ap-
proximation methods based upon weak- or strong-
coupling expansions tend to have limited regions of valid-
ity. It is therefore important to study approximation
techniques that are valid over the entire range of parame-
ter space. One such approximation is the so-called local
approximation. ' In the local approximation, both the
self-energy and the irreducible vertex functions are ap-
proximated by time-dependent functionals that are local
in space (have no momentum dependence). The local ap-
proximation becomes exact as the number of spatial di-
mensions becomes infinite and can be viewed as the
zeroth term in an expansion in powers of 1/d. The spa-
tial dimensionality enters in both the noninteracting den-
sity of states and in the noninteracting (momentum-
dependent) susceptibilities (see below), which guarantees
that the local approximation will become exact in the
weak-coupling limit. Here the local approximation is ap-
plied to the simplest many-body problem, the spinless
Falicov-Kimball madel.

The spinless Falicov-Kimball model has received a lot
of interest recently because it can be solved exactly in the
infinite-dimensional limit ' and rigorous results can be
proven in special cases. " ' The spinless Falicov-
Kimball model describes the order-disorder transitions of
an annealed binary alloy in which itinerant electrons in-
teract locally with static ions. Its Hamiltonian is

H= — — g (cjck+ckc~ )+U g c c W. .

(j,k) j=l
N X—p g ctc.+E g W, (l)

i=&
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II. FORMALISM OF THE LOCAL APPROXIMATION

=g [co+p, —e(k) —X(k, co)]
k

(2)

Here e(k) = —gjd, cos(k )/&d is the band structure of
a hypercubic lattice in d dimensions and the momentum
summation extends over the entire Brillouin zone. The
local approximation replaces the momentum-dependent
self-energy X(k, co) by a momentum-independent self-
energy X"'(co).

The local problem retains a time dependence that mim-
ics the hopping of an electron onto the local site at a time
~ and off' the local site at a time ~'. The time-dependent
problem can be solved to find the self-energy as a func-
tional of the Green's function. The result is

X"'[G]=—— [I++I+U G ]2 2G„ n

for the S0%-SO%%ug binary alloy, where the n subscript
denotes evaluation of the Green's function or self-energy
at the nth Matsubara frequency [co=ice„=i (2n +—1)irT]
The self-consistency relation for the Green's function (2)

The Falicov-Kimball model is analyzed by determining
the local Green's function, which may be represented in
terms of a momentum- and frequency-dependent self-
energy X(k, co ),

G (co)=g G (k, co)
k

then becomes
G„=F„(ico„+p —X"'[G]) (4)

in the local approximation, where Fz(z) is the Hilbert
transform of the noninteracting density of states in d di-
mensions, Fd(z): J—dy pd(y)/(z y)—with

v'2
&(&1—y'/2), (S)

m2
p&(y) =—,p&(y) =1 1

ir Ql —y2'

X f dr(T, ct(r)c (r)ck(0)c&(0)),
0

at each ordering wave vector q. After some tedious alge-
bra, one finds that the transition temperature (in the lo-
cal approximation) T, (q) satisfies

in one and two dimensions. Here K (z) is the complete el-
liptic integral of the first kind.

At high temperatures the ions are uniformly distribut-
ed throughout the lattice and there is no long-range or-
der. As the temperature is lowered, a second-order phase
transition to a state with a modulated charge-density dis-
tribution occurs when the susceptibility (at the relevant
ordering wave vector) diverges. The static charge-
density-wave susceptibility is defined by a density-density
correlation function

x(q, T)=———
& R.-Rj k

i)„(q)oo

1=
4 U2

(i co„+p,
*—I,„) — [(iso„+p* —

A,„)I I +2G„i)„(q)]
—i)„(q)]

where p* =p —U/2,
6„

i)„(q)—= —~x.(q)
~n ='~n+p Gn

n

=1"X(q) =—g cosq, . (10)

y„(q)—:——g G„(k+q)G„(k)1
(9)

g

is the "bare" susceptibility.
The local approximation becomes exact in the weak-

coupling limit because it employs the full momentum
dependence of the noninteracting susceptibility y„(q). If
the loca1 approximation also becomes exact in the
strong-coupling limit (U~ ~), then one might expect
the local approximation to be a quantitatively accurate
approximation for all values of U. In fact, this appears to
be true for the spinless Falicov-Kimball model in d ~2
(see below).

The ordering wave vector q can be described by a
"direction" in reciprocal space and a "magnitude"

This parametrization is useful because in the infinite-
dimensional limit, all wave-vector dependence is con-
tained in the scalar X. For example, the chessboard
phase corresponds to X = —1 and the segregated phase
to X =1.

The zero-temperature phase diagram for d + 2 is ex-
pected to separate into two distinct regions In the
weak-coupling regime, the system lies in the segregated
phase for a range of electron concentrations from zero up
to some finite concentration p," ( U) that is a function of
the interaction strength. As the electron concentration is
increased above this critical concentration, the system or-
ders in various long-period (commensurate and incom-
mensurate) phases until the electron concentration is in-
creased to an upper critical concentration p',"( U) where
the system orders into the chessboard phase. The critical
concentration for segregation p", ( U) remains finite in the
limit as U —+0. In the strong-coupling regime the lower
and upper critical concentrations are equal
[p", s( U) =p', ( U) ] and the system changes directly from
the segregated phase to the chessboard phase without any
long-period phases intervening. The system also tends to-
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ward segregation in the strong-coupling limit
[p", s( U~ oo )~—,

' ]. The one-dimensional phase diagram
is a singular limit of the phase diagram for higher dimen-
sions. ' ' It always lies in the weak-coupling regime
with p',"(U)=—,

' for all U. The system segregates as
U —+ oo but not as U~O [p,"s( U~ ~ )—+ —,',

p", s( U~0) ~0].
The phase diagram may be found in the local approxi-

mation by determining the critical electron concentra-
tions where the transition temperature T, (q) is no longer
a maximum at X(q)=+1. The sign of the directional
derivative of T, (q) in the direction e satisfies

sgne V' T (q)=sgn
(iso„+p' —l,„le Vqg„(q)

2

(i co„+p" —
A,„)~ — [(ico„+p' —k„)j 1+26„g„(q) }

—g„(q) ]

at each ordering wave vector q. In one dimension, it is
easy to calculate both the upper and lower critical con-
centrations and the contours where the value of X
remains constant as a function of p, and U. In two di-
mensions, the upper and lower critical concentrations are
also easily determined, but the contours of constant X re-
quire complicated two-dimensional momentum summa-
tions and have not been calculated here. In the strong-
coupling regime, the critical electron concentration is
found by determining where the transition temperatures
for the chessboard phase and the segregated phase are
equal [r,(X =1)=T,(X = —1)). This latter phase line
can be compared with the exact solution at T =0 deter-
mined by calculating the ground-state energies of the
chessboard and segregated phases as a function of elec-
tron concentration.

The schematic "phase diagram" for the one-
dimensiona1 spinless Falicov-Kimball model in the local
approximation is depicted in Fig. 1. The electron con-
centration is determined at the relevant critical tempera-
ture, which can be viewed as an approximation' for the
electron concentration at T =0, and therefore the "phase
diagram" calculated in this manner is an approximation
to the zero-temperature phase diagram. The "phase dia-
gram" has qualitatively incorrect features in the large U
limit. The chessboard phase becomes unstable at half-
61ling for U~1.35 and the segregated phase is never
stable. Only the contour with L =0 displays the correct
qualitative behavior. Clearly, the local approximation is
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FIG. 1. Schematic "phase diagram" for the local approxirna-
tion to the spinless Falicov-Kimball model in one dimension.
The horizontal axis plots the interaction strength U/(U+t*)
and the vertical axis plots the electron concentration at T, . The
contours displaying the constant values of X(q) are depicted by
solid lines. Note that the chessboard phase becomes unstable
(at half-filling) at U =1.35t* and that the segregated phase is
not present.

FIG. 2. Schematic "phase diagram" for the local approxima-
tion to the spinless Falicov-Kimball model in two dimensions.
The bold right cross-hatched region is the region where the
chessboard phase (X = —1) is stable, the light left cross-hatched
region is the region where the segregated phase (X = 1) is stable,
and the white region is the region where the ground state
possesses incommensurate long-range order ( —1(X(1).The
exact solution (at T =0) for the transition from the chessboard
phase to the segregated phase is depicted by the dashed line.
Note that the local approximation has the qualitatively correct
features as U —+0 and U~ ~ and produces agreement with the
exact solution at about the 10% level.
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poor for the one-dimensional system.
The schematic "phase diagram" for the two-

dimensional spinless Falicov-Kimball model in the local
approximation is depicted in Fig. 2. The "phase dia-
gram" is very close to the infinite-dimensional phase dia-
gram' with the exception that the segregated phase is
less stable, as expected. Comparison with the exact solu-
tion in the strong-coupling regime (dashed line) shows
quantitative agreement at about the 10% level. Because
the local approximation is qualitatively correct in the
limit U —+ ~ in two dimensions, one expects the disagree-
ment with the exact solution to be greatest at intermedi-
ate coupling strengths ( U= t*). It appears that the local
approximation is quite accurate in two dimensions, indi-
cating that a 1/d expansion should converge rapidly for
d ~ 2 for the Falicov-Kimball model.

III. CONCLUSION

In conclusion, the local approximation to the spinless
Falicov-Kimball model has qualitatively incorrect
features in one dimension, but is both qualitatively and
quantitatively accurate in two dimensions. This implies
that infinite-dimensional solutions are relevant for the

physical dimensions of d =2 and d =3, and a 1/d expan-
sion will converge rapidly for d ~ 2. What is expected for
other many-body problems? The local approximation is a
time-dependent mean-field theory that will, in general,
display finite transition temperatures. The spinless
Falicov-Kimball model also has finite transition tempera-
tures for d ~ 2 which provides a possible explanation for
the accuracy of the local approximation in d ~ 2. We are
therefore left with the conjecture that the 1ocal approxi-
mation will be qualitatively accurate for any many-body
theory that possesses finite transition temperatures (such
as the three-dimensional Hubbard model). It would be
interesting to test this conjecture against exact solutions
found with quantum Monte Carlo simulations. Further-
more, for the same reason, we conjecture that the local
approximation will always be inaccurate in one dimen-
sion.
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