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Simplified microscopic model for electron —optical-phonon interactions in Quantum wells
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A simplified microscopic model of optical phonons in dimensionally confined structures is formulated
and applied to calculate electron —optical-phonon scattering rates in GaAs/AlAs quantum wells. For
this simplified model which circumvents performing a complicated ab initio calculation of the force con-
stants at the interface, it is demonstrated that the resulting dispersion relation and scattering rates for
electron —optical-phonon interactions agree very well with those obtained from detailed ab initio studies.
It is also shown that for GaAs/AlAs structures, the macroscopic dielectric continuum model provides a
good approximation to the scattering rate predicted by the microscopic models.

The electronic and optical properties of semiconductor
superlattices (SL's) and quantum wells (QW's) have been
investigated extensively. A principal advantage of using
such heterostructures results from the ability to tailor the
electronic and optical properties of the structures for
realizing a potentially vast array of high-performance
electronic and optoelectronic devices. To fully under-
stand and utilize the properties of these nanometer-scale
heterostructures, it is necessary to develop formalisms for
studying confinement effects as well as picosecond and
subpicosecond processes. It has been known for many
years that the scattering by polar —optical-phonon modes
is an important energy-loss mechanism for electrons in a
wide variety of III-V semiconductor devices. However,
effects of confinement on these phonon modes have been
investigated extensively only in the past several years.

In recent years, a number of models has been put for-
ward to explain electron —optical-phonon interactions in
reduced dimensional systems. They can be broadly
classified in two categories: macroscopic' and micro-
scopic. ' ' Macroscopic models ignore the effect of in-
dividual layers of atoms but they have the considerable
advantage of making the interaction calculation very sim-
ple. Among these macroscopic models are the dielectric
continuum model' (slab model, which uses purely elec-
trostatic boundary conditions), hydrodynamic model,
hybrid model, and a recent dispersive continuum treat-
ment of Nash. In some parameter regimes, these models
are fairly accurate and provide good estimates of energy-
loss rates. However, scaling of the electron —optical-
phonon interaction with diminishing device length
presents a serious challenge to the accurate use of such
models. As a result, there has recently been an increasing
need for more rigorous analysis and detailed knowledge
of electron —optical-phonon interactions in reduced di-
mensional systems. This has been the main motivation
for the emergence of ab initio microscopic models. '

Though such models provide the most accurate analysis

of the structure, they have not been used extensively.
This can be attributed to the fact that the ab initio micro-
scopic analysis involves very arduous and time consum-
ing first-principle calculations of lattice dynamics' '
rather than employing adjustable parameters. '

Precise ab initio calculations of force constants at the
interface may not be essential for most of the heterostruc-
tures except those involving extremely thin layers. It is
well known that even a simple linear-chain model with
nearest-neighbor force constants can predict the zone-
center LO-phonon frequencies in a SL with a reasonable
accuracy except in the cases where layers are single
monolayer thick. Such an approximate model is based on
the assumption that atomic-force constants at heterojunc-
tion interfaces are identical to those of the bulk or of uni-
form pseudomorphic layers. In a qualitative analysis of
the effect of varying force constants at the heterojunction
interfaces of a strained layer, short-period, G-aAs/GaP
SL with two monolayers per SL layer, it was also found
that frequencies of the confined phonon modes are only
weakly dependent on the variations in the interfacial
force constants. ' The variation in interfacial force con-
stants by values as extreme as 10% results in less than
about a 2% change in the frequencies of confined phonon
modes. It should be noted that as a practical matter,
changes in the frequencies of the confined LO-phonon
modes will be considerably less than 2%, since in most
SL's and QW's the ratio of the number of bonds at the in-
terfaces to the number of bonds one or more monolayers
away from the interfaces is less than that for the case
where each layer is two monolayers thick.

Based on the results of Ref. 18, as well as on support-
ing observations from other investigators, ' we have for-
mulated a simplified microscopic model which facilitates
the accurate modeling of confined and interface phonons
without ab initio calculations of force constants. The
valence-shell model developed by Kunc and Nielson for
bulk has been extended for the SL/QW structures. In-
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terpolation of the force constants at the heterointerfaces
and a periodic-boundary condition have been applied as
suggested by Yip and Chang. ' The calculated phonon
dispersion and atomic displacernents have been used
to derive the interaction Hamiltonian and the
electron —optical-phonon scattering rates in SL/QW het-
erostructures. As will be demonstrated below, this
simplified model provides an excellent approximation to
the fully microscopic model. As a specific example in
this study, we consider GaAs/A1As SL/QW structures
grown in the (001) direction.

The dispersion relation can be obtained from the
dynamical matrix constructed using our modified shell
model. Three types of interactions are included: the
core-to-core (@ ) potential, the shell-to-core (4 ) poten-
tial, and the shell-to-shell (N ) potential. The corre-
sponding dynamical matrices are

(J j q) g g&T (l l J J )eiq [z[ij) z(l j—)]', '

1 —1'
(3)

+o p5 ).[IC +T (j,j,O). —S (j,j,O)],

where E represents the internal core-shell spring. The
equation of motion can be found using the following ma-
trix equations:

co Mu=(R ZBZ)u+—(T ZBY)w, — (5)

0=( T+ —YBZ)u+(4 —YBY)w,

where M, Z, Y, and B are matrices of masses, ionic
charges, shell charges, and the real part of Coulomb in-
teraction, respectively, as specified in Ref. 20. Here u
and w stand for the amplitudes u(q) and w(q) of the core
and relative-shell displacement, respectively, which may
given as

(lj)=ti (j,q)exp[ ice (q)t+iq z(—lj)], .

where j (j') denotes the atom in the cell and its type, l
(1') represents the unit cell, z(l, j) [z(l', j') ] is the position
of the jth (j'th) atom in the lth (l'th) cell, and a,p
denote the direction. Along with these matrices, we also
need to use "effective" shell-shell interactions as,

TABLE I. Converted parameters used in this study for the
three types of interaction [i.e., R, S, and T in Eqs. (1)—(3)]. A, B,
Cl, Dl, El, Fl, C2, D2, E2, and F2 are as defined in Ref. 19
and determined by fitting the bulk GaAs and AlAs phonon-
dispersion relations.

Converted parameters
GaAs

S T R
AlAs

S

C(q) =M ' [(R Z—BZ) (—T Z—BY)

X(b, —YBY)

X ( T —YBZ) ]M ' . (10)
In a bulk zinc-blende structure, this equation results in

six eigenvalues, m, and six eigenvectors, e, for a given q.
The corresponding phonon-dispersion relations and dis-
placements are obtained directly from the expressions
given above. The results are essentially the same as those
calculated in a simple linear-chain model with nearest-
neighbor force constants. The long-range Coulomb in-
teraction turns out to be less important because its force
range is effectively reduced and its effect is only to slight-
ly modify the nearest-neighbor and next-nearest-neighbor
force constants. ' The parameters used in this study for
three types of interaction [i.e., R, S, and T in Eqs. (1)—(3)]
are as listed in Table I; these parameters yield an exce1-
lent description of bulk-phonon characteristics for both
G-aAs and A1As. All the other required parameters can
be found in the literature. &i, is, i6, 2O Extension of this ap-
proach to a SL is rather straightforward. In a SL grown
in the (001) direction, the symmetry consideration along
the x-y plane is maintained, while the translational period
in the z direction needs to be modified. We define a SL
unit cell L along the z direction which consists of n unit
cells of each material and a SL wave vector q, . Hence,
along z direction all summations need to be performed
over all unit cells of the SL cell. Interactions up to the
second nearest neighbors are taken into account. As
mentioned before, the bulk parameters are used in each
layer except at the heterointerfaces where the interpolat-
ed force constants are adopted. The resulting dynamical
matrices provide all of the SL eigenfrequencies and eigen-
vectors for phonon modes.

Figure 1 shows the phonon-dispersion relation for a
(001) oriented (GaAs)2o/(A1As)2o SL along the in-plane
(100) direction and also as a function of angle 0 between
the direction of wave vector q and the in-plane direction
for vanishingly small q; 0 ranges from 0 to ~/2. Two
clearly defined GaAs-like and A1As-like frequency ranges
are apparent in Fig. 1. Along with LO and TO modes, it

and

w (lj)=w (j,q)exp[ ice (q)t+iq—z(lj)],
where v represents the phonon mode index. From Eqs.
(5) and (6), it is clear that the eigenvalue problem reduces
to

[C(q) co I]e=O, —

with

B
Cl
Dl
El
F1
C2
D2
E2
F2

—19.67
—4.44

0.817
—0.736
—0.550

1.942
0.817
0.736
0.550
1.942

—24.92
3.31
1.034
0.933

—0.697
2.461
1.034

—0.933
—0.697

2.461

—19.67
—0.847

0.817
—0.736
—0.550

1.942
0.817

—0.736
—0.550

1.942

—20.13
—4.31

0.799
—0.801
—0.610

2.42
—0.799

0.801
0.610
2.42

—23.87
3.39
1.011
0.933

—0.701
3.643
1.011

—0.933
—0.701

3.643

—20.13
—0.892

0.799
0.801

—0.610
2.42
0.799

—0.801
—0.610

2.42
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where e„* is effective charge (2.07Ie for
e or s, n ranges all the Xo lattice points in the

normalization volume and 0
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an
II

is t e area of two-
dimensional unit cell. Based on th Fon e ermi golden rule, the
scattering rate for the electron —o tical-on —op ica -p"onon interac-

'
n can eo taine as

(13)I (i,j)=(2wlfi) I ~ f

IHIP'

) I's(Ef E; ),
where 1 and f denote the initial and final states of the
crystal, respectively, and H is the interaction H

the elec
y

—e, w ere e is the electron charge d
ctrostatic potential associated with the lattice vi-

bration as given above. Accordingly,

r (e=o.) r (e=90 )

FIG. 1.
(GaAs

Phonon dispersion of a (001)-
a s)2p/(A1AS)2p SL along the in-plane direction and as a

-oriented

-p ane direction for vanishing small q.
vec or q an A' k

II

2&i

fi k'
+ %co

2fP1

27M&pj(k'(():&Q IG~J'(q)~, v)I (jY'+ —'+—')
I

(14)

p()= g Q„~(g~( )sgn(z z„)

—
(qII I~Xe

with

1

2Q„e„2' co (q„)

1/2

(12)

should be noted that the two "A1As-like"
mo es and two "GaAs-like" principal modes take the
limit of the well known "interface modes" of th d' 1

ontinuum model over a portion of the domain of
Fig. . Another feature of interest is the anticrossing of
the modes in the right-hand pan 1 (' 1

ence). (Sim'!~Similar anticrossing characteristics of the
modes have been observed in R f 8 de s. an 9 as well. )

~ ~

ompared to the results from th be a initso approach, it12

is clear that our simple microscopic model can d 'bcan escri e

the c
c aractenstics of phonon dynamics t 1

e current dimension. As the layer thickness decreases
however the acc
assumptions made for the interface force constants. As
an indication for validity of our model, the LO-

In this comparison, our results match well with the ob-
served LO-phonon frequencies ' f = )2
cm . For thethe

or m =n 2 (within 3
the monolayer case, the agreement between

the experimental data and our microscopic model is not
as good, but it is considerably better than those calculat-
e y using the simple linear-chain model. ' To study

principle calculations using ab initio calculations at the
heterostructure interface. Neve th 1ver e ess, our model
should provide excellent results f thor e great majority of

evice applications since layer thicknesses generally
exceed one monolayer.

The Hamiltonian for the polar electron —optical-
phonon interaction in a single QW c b f d ican e ound from the
potential given as
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FIG. 2. Scatterin rates b~ . g y electron —optical-phonon interac-
tion as a function of electron energy in a GaAs/A1Aa s s s1ngle QW
s ructure with a 20-monolayer GaAs well at 300 K. Thea . e results

a present the intrasubband transition rates of the 1es o e owest sub-
n ~, w i e the data in (b) show the intersubband transi-

tion rates from the second lowest to the lowest subband (2—+1).
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where A'co*=A'co (qll)+(E . E—;) and kll=kll+Ill'
the form factor 6," is given by

G;, (qll, )= Jg,*( )g, ( )P( )d

where g, and gj are the electronic envelope functions for
subbands i and j, respectively. p is the potential associat-
ed with the quantized phonon modes. For intrasubband
(i =j) scattering, G;~ is nonzero only for phonons with
symmetric potentials and modes of opposite parity do not
contribute. For the intersubband scattering, 6; is
nonzero for only the modes having opposite parity.

Figure 2 shows the calculation of the scattering rates
for the polar electron —optical-phonon interaction based
on our method. A GaAs/AlAs single QW structure with
a 20-monolayer GaAs well is considered for the 1~1
(intrasubband) and 2~1 (intersubband) transitions by
phonon emission at 300 K. Electronic envelope functions
are obtained from the solutions of the Schrodinger equa-
tion within the effective-mass approximation. For pur-
poses of comparison, Fig. 2 also depicts the correspond-
ing rates as obtained using the ab initio calculation' and
the dielectric continuum model. It is observed in our cal-
culation that for intrasubband scattering, the lowest-
order and highest frequency, coLo, , confined mode is the
most dominant mode and will dominate over all higher-
order modes; similarly, for the case of intersubband
scattering, ~Lo2 is the mode which provides the max-
imum contribution to the scattering strength. Interface
modes also provide sizable contributions. These observa-
tions and the scattering rates by our microscopic model
are in excellent agreement with the results from the ab in-
itio calculation. It is also evident from the figure that the
dielectric continuum model overestimates the scattering
rate only slightly in this structure (i.e., 20-monolayer
QW), as compared to our model.

In Fig. 3 we have studied the 1~1 and 2~1 scattering
rates for diff'erent QW widths. The general trend in both
intrasubband and intersubband scattering is an increase
in the scattering rate with diminishing well width d; how-
ever, the rate of increase for the intrasubband scattering
case is much higher than that for the intersubband case.
The intersubband scattering rate increases by only 10%
for the whole range of well widths. Surprisingly, the
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macroscopic approach shows an excellent agreement
with the microscopic treatment for well widths as small
as 25 A. As the width of the well is reduced further
beyond the range of validity of continuum approxima-
tions, the agreement suffers slightly, but still it is well
within the acceptable range. We have plotted the inter-
subband scattering rate for well widths as small as 19 A.
For smaller well widths, the well has only one bound
state. There will be a quasibound state outside the well
which will contribute to the scattering rate. Though not
explicitly shown, the intersubband scattering rate will
drop off when the well width becomes smaller than re-
quired to maintain at least two bound states. As shown
in Ref. 8, the intrasubband and intersubband scattering
rates calculated using the hybrid model are also close to
those predicted by the dielectric continuum model.
Hence we expect that the scattering rate calculations
from our microscopic model should form a good agree-
ment with the corresponding results obtained using the
hybrid model.
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Well Width (A)

FIG. 3. 1~1 and 2~1 scattering rates as a function of QW
width at 300 K. The electron energy is fixed at 50 meV.
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