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The two-body effects for a Mott-Wannier exciton in a magnetic field are investigated. For excitons
with nonvanishing pseudomomentum there exists an outer potential well which contains a class of weak-

ly bound and delocalized quantum states. The spectrum and eigenfunctions in this potential we11 are cal-
culated in a harmonic approximation.

The behavior of matter in strong magnetic fields be-
came in the past two decades a subject of great interest.
The numerous investigations in different branches of
physics like, for example, atomic, molecular, and solid-
state physics, have shown that the properties of matter in
strong external fields are very different from those of the
field-free case and we, therefore, encounter a variety of
new phenomena due to the presence of the strong field.
The term "strong field" has no absolute meaning but
rather indicates that the forces due to the field are com-
parable to or even larger than the interaction forces of
the system. This can happen for different states of the
same physical system on different scales of the absolute
field strength. In particular, it is possible to investigate
the strong field regime of, for example, the hydrogen
atom by studying its highly excited Rydberg states at lab-
oratory magnetic-field strengths. ' In solid-state physics,
the analog of such a "simple" system like the hydrogen
atom would be an elementary excitation like, for exam-
ple, an exciton. Let us assume that the distance of the
particle and hole is much larger than the lattice spacing,
i.e., we consider a Mott-Wannier exciton. For this kind
of exciton all effects due to the presence of the lattice can
be included in a simple way in the excitonic Hamiltonian
model. ' This Hamiltonian model is a phenomenological
approach which neglects many residual interactions.
However, it represents under certain circumstances a
good zeroth-order approximation to the exact excitonic
Hamiltonian.

Excitons, excitonic molecules, as well as excitonic
matter, have been studied extensively in the literature.
They are common phenomena occuring in insulator and
semiconductor physics. Since the dielectricity constant
can become large and since the effective masses of the
particle and hole are very often small compared to the
proton and electron mass, the corresponding excitonic
Rydberg (binding energy of the exciton) can be much
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where @=[m mh/(mh —m )] (we assume mh )m ). mh
and m are the mass of the hole and particle, respective-
ly. p = (m~m& /M), M, 8, and e are the reduced and total
mass, magnetic field vector, and dielectricity constant, re-

smaller than the hydrogenic one. This has drastic conse-
quences if we turn on a magnetic field: the strong-Geld
regime occurs for the ground or first few excited states of
certain excitons already at laboratory magnetic-field
strengths. They are, therefore, ideal objects in order to
study strong-field effects in the laboratory (see, for exam-
ple, Refs. 2, 3, or 6—8). For an interacting two-body sys-
tem, like an exciton, in a homogeneous magnetic field it is
not possible to perform a complete separation of the
center-of-mass (CM) motion in the corresponding Hamil-
tonian. In other words, it is not possible to completely
decouple the center-of-mass and internal motion. Since
the masses of the particle and hole are, in general, of
comparable order of magnitude, all two-body effects are
of particular importance and should be treated exactly in
the underlying excitonic Hamiltonian. A study of these
two-body effects is precisely the subject of the present pa-
per. (We remark that both the coupling of the collective
to the relative motion as well as the two-body effects for
the internal relative motion have been investigated very
recently ' for the case of the hydrogen atom in a mag-
netic field. )

Our starting point is the nonrelativistic Hamiltonian
for the neutral exciton in a uniform magnetic field. We
assume that the pseudoseparation of the center-of-mass
motion has been performed (for the details of this well-
known transformation we refer the reader to the litera-
ture' ' ). The resulting Hamiltonian takes on the fol-
lowing appearance:
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spectively. K is the pseudomomentum. A is the vector
potential which is in the following chosen to be in the
symmetric gauge A(r)=(1/2)BXr. r is the relative
coordinate of the particle and hole and p its canonical
conjugated momentum. The model Hamiltonian (1) for
the excitation is based on two approximations: the
effective-mass approximation and the dielectric continu-
um model for Coulomb screening. These approximations
can hold only if the radius of the exciton is much larger
than the lattice spacings of the solid. The canonical con-
jugated coordinate belonging to the pseudomomentum K
is the center-of-mass coordinate R. Since K is a constant
of motion, the center-of-mass coordinate is a cyclic coor-
dinate and does not appear in the transformed Hamil-
tonian (1). However, this does not mean that the center-
of-mass motion decouples from the internal motion.
Indeed the equation of motion for the center of mass re-
sulting from the Hamiltonian (1) reads as follows:

R= K— BXr,
M M

(2)

i.e., the center-of-mass velocity is, apart from a constant,
completely determined by the internal relative coordi-
nate. From Eq. (2) it is clear that the center of mass is,
even for the case of vanishing pseudomomentum, inti-
mately coupled to the internal motion. Let us investigate
the classical CM motion of' the exciton for the special
case of vanishing pseudomomentum K=O and for vary-
ing total energy E. The Hamiltonian (1) possesses for
K=O an additional internal rotational symmetry around
the magnetic-field axis (which is assumed to be oriented
along the z axis) and the projection i., of the internal an-

gular momentum onto the magnetic-field axis is, there-
fore, a conserved quantity. For simplicity we consider
the case I., =O. The resulting Hamiltonian Ho shows,
with increasing energy, a transition from regularity to
chaos for the internal motion [r(t), p(t)]. It is now in-

teresting to ask the following: what does happen with the
CM motion of the exciton if its internal motion passes
from regularity to chaos?

For regular internal motion the CM trajectories per-
form in the plane perpendicular to the magnetic field

(note: the CM motion parallel to the field axis is free)
quasiperiodic oscillations with small amplitude which are
confined to a bounded range of coordinate space. If we
increase the total energy, chaotic trajectories for the
internal motion appear and take over more and more of
phase space. Eventually, complete phase space becomes
chaotic. For chaotic internal motion, the CM motion is
no longer restricted to some bounded volume of phase
space but experiences with increasing time an increasing
volume of the two-dimensional coordinate space. A
second important observation is that the CM motion
closely resembles a random motion which has its origin in
the intrinsic chaotic force —e(BXr) [see Eq. (2)].
characteristic feature of a random motion is its diffusion
law, i.e., the time dependency of the traveled mean-
square distance. In order to investigate this property for
our case of the excitonic CM motion (for the case of
chaotic integral motion) we have calculated the mean-
square distance (X + Y ) as a function of time for an
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FIG. 1. The mean-square distance (X2+ Y2) of an ensemble
of 500 center-of-mass trajectories in the fully chaotic regime as
a function of time. The parameter values are m~=0. 2m„
mz =5m„@=5, B=2.35 T, and a total energy of E= —0. '75

meV.

ensemble of 500 CM trajectories. The result is presented
in Fig. 1. Within statistical accuracy, the plot shows a
linear dependency (X + Y ) =Dt. D is the diff'usion
constant for the spreading of the ensemble of CM trajec-
tories and has, in our case, an approximate value of

0D=5.75X10 A /ns. To summarize, we have shown
that the classical transition from regularity to chaos in
the internal relative degrees of freedom is accompanied
by a transition from localized bounded quasiperiodic to
delocalized unbounded randomlike motion in the center
of mass of the exciton. The randomlike CM motion of
the exciton has diffusive properties in the sense that it
obeys a linear diffusion law for the spreading in a plane
perpendicular to the magnetic field. This might have im-
plications on those properties of solids which have a con-
tribution from excitonic processes like, for example, the
electro(optical) properties of semiconductors in a magnet-
ic field. However, there are two points which should be
kept in mind and which deserve further investigation.
The first point is the fact that we have studied the classi-
cal CM motion of the exciton and it is not obviously what
will happen if we quantize both the internal as well as the
CM motion. Does the CM diffusion survive or does
quantum localization take place? The second point is
that we have chosen a zeroth-order model Hamiltonian
for the Mott-Wannier exciton in a magnetic field which
neglects many residual interactions and one may ask how
these interactions perturb and modify the excitonic
motion in the magnetic field. Answers to these questions
would help to clarify the role of the excitonic CM motion
for the properties of solids. However, they go beyond the
scope of this paper and are left to future investigations.

Next let us investigate the inAuence of the two-body
character on the behavior and properties of the exciton
with nonvanishing pseudomomentum. Our starting point
is again the Hamiltonian (1) for KAO. The first quadra-
tic term of this Hamiltonian represents the kinetic energy
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of the CM motion (M/2)R [see Eq. (2)] whereas the
second quadratic term is the internal kinetic energy
(p/2)r . The important observation is now that each
term of the quadratic kinetic energy of the center of mass
(1/2M)(K —eBXr) is gauge inuariant and acts as a po-
tential energy for the internal relative motion (see Ref. 12
for an explanation). From the point of view of the inter-
nal motion the Hamiltonian (1) can, therefore, be divided
in a unique way in kinetic (T) and potential ( V) energy
terms, i.e., H =T+ Vwhere

2

T= p —— BXr1 e Ll

2p 2 p
(3a)

and

V= (K—eBXr)—1

2M

2

(3b)

M

In the following, we discuss the properties of the po-
tential V and the resulting consequences for the excitonic
dynamics. Apart from the constant K /2M, the poten-
tial Vis a combination of a diamagnetic (e /2M )(BXr),
a Stark (e/M)(BXK)r, and a Coulomb potential term
(
—e /e~r~). With the choices B=(O,O, B) and

K=(O, K, O) (K )0) the electric field points along the neg-
ative x direction. Figure 2 shows an intersection of the
potential V along the direction of the electric field

(y =z =0). Close to the origin, i.e., for small absolute
values of the x coordinate, the Coulomb potential dom-
inates. With increasing absolute values of the x coordi-
nate, the Stark term gains in significance and eventually
becomes comparable with the strength of the Coulomb
potential. The diamagnetic term provides in this coordi-
nate region only a small correction to the Coulomb and
Stark terms. As a consequence of the competition of the
latter two terms, a saddle point arises which is, in Fig. 2,
located at approximately x = —807 A. For even larger
absolute values of the x coordinate the Coulomb potential
becomes smaller and the shape of the potential is more

and more determined by the quadratic potential term
(e /2M)B x . Due to the competition of the Stark and
diamagnetic terms the potential V now develops a
minimum which is, in Fig. 2, located at approximately
x = —3004 A. Not only the quantitative appearance of
the potential V depends, of course, on the values of
M, e,K,B but also the existence of both the saddle point as
well as the minimum. Quantitative conditions for their
existence will be given below.

The discussed properties of our potential V have im-
portant implications on the dynamical behavior of the ex-
citon. One observation is that the ionization of the exci-
ton, i.e., the infinite separation of the particle and hole
can take place only in the direction parallel to the mag-
netic field: in the direction perpendicular to the magnetic
field, the diamagnetic potential term is dominating for
large distances and causes a confining behavior of the po-
tential V. Another important observation is the fact that
the minimum of the potential V leads to a potential well
and, as we shall see below, to a new class of weakly bound
quantum states inside this well. Excitons in these states
are very extended delocalized objects for which the parti-
cle and hole are separated far from each other.

Let us turn now to a quantitative investigation of the
potential V. The outer potential well described above and
illustrated in the intersection of Fig. 2 exists only if the
potential V possesses both a saddle point and a minimum.
In order to obtain a condition for their existence we have
to determine the extrema of the potential V. A simple
calculation shows that the components of the coordinate
vectors Iro] of the extrema obey the equations yo =zo=0
and

xo+(K/B)xo (M/eB —)=0 . (4)

The existence of both the saddle point and the minimum
yield the following condition on the parameter values:

K & "(BM/—e) . (5)

This is a necessary and sufhcient condition which says
that the pseudomomentum must exceed some critical
value in order to form the outer potential well. In the fol-
lowing, we assume that the condition (5) is fulfilled. The
question arises then: does there exist bound states in the
outer potential well and how do they look?

The simplest way to investigate this question is to ex-
pand the potential V around its minimum position ro up
to second order and to solve the resulting equations of
motion analytically. The Taylor expansion of V around
ro yields the following approximate potential:

V, =C+(p/2)co x +(p/2)co y +(p/2)co, z, (6)

where
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FIG. 2. The potential V along the direction (x axis) of the

motional electric field. The parameter values are the same as in
Fig. 1 and in addition we have K=1.3X10 rn, A/ns.
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C=(&~/2~)+(2/exo) —(B /2M)xo is a constant. V,
is the potential for a three-dimensional anisotropic har-
monic oscillator. The approximate Hamiltonian describ-
ing the motion inside the potential we11 has the form
H, = ( T+ V, ) where T is the kinetic energy for a particle
with charge e(p/p) and mass p in a magnetic field. In
the following we investigate the classical trajectories as
well as the quantum-mechanical spectrum of the Hamil-
tonian H, . To this end we solve the gauge-invariant
Newtonian equations of motion belonging to the Hamil-
tonian H, by the ansatz

x a
exp(imt), z =c exp(ice, t), (7)

which yields the following solutions for the normal
modes in the (x,y) plane:

—I(co +co +co, )+[(co +co +co, )
1

2

4 2 2 )1/2) 1/2
CO~ CO&

where co, =(B/p, ) is the cyclotron frequency. We obtain
two normal frequencies co+ for the oscillatory motion
perpendicular to the magnetic field and one frequency co,
for the harmonic motion parallel to the magnetic field.
The quantum-mechanical spectrum belonging to the
above classical trajectories is a harmonic-oscillator spec-
trum and the binding energies of the corresponding states
read as follows:

E =Co (n + + —,
'

)co—+ (n + —,
'

)co——
( n, + —,

'
)co, ,

where Co =(B/2p) —C and (B/2p) is the zero point en-

ergy of the free particle and hole in a magnetic field, i.e.,
the ionization threshold.

For our example in Fig. 2, the binding energy of the
ground state inside the potential well is approximately
E~ =0.9 meV. The order of magnitude of the spatial ex-

tension of the ground state is roughly 300 A in both the x
and y direction and about 1100 A in the z direction (for
comparison, the corresponding exciton in field-free space
has a binding energy of 105 meV and a Bohr radius of 14
A). The energies associated with the frequencies co+, co

and ~, take on the values E+ =1.36 meV, E =0.053
meV, and E, =0.065 meV. Since the threshold energy is
approximately 0.71 meV we have a large number of
bound states in the potential well. However, only the
ground and first few excited states can, for our example
of the parameter values, be described accurately within
the harmonic approximation. For large amplitudes in-
side the well, i.e., higher excitations, anharmonicity
corrections become important and our harmonic-
oscillator expansion breaks down. The range of validity
of the harmonic-oscillator approach depends sensitively
on the parameter values, i.e., on the masses, dielectricity
constant, and field strength. For certain excitons, anhar-
monicity corrections are important already for the
ground state in the potential well. We remark that the
size of the excitonic states varies strongly for di6'erent pa-
rameter values.

For the delocalized quantum states discussed above,
the particle and hole are always separated far from each
other and are prevented from coming close together by a
potential barrier. In reality, these quantum states possess
a finite lifetime due to the possibility of the tunneling pro-
cess to the Coulomb singularity well. However, in the
bulk the potential barrier might prevent the particle and
hole from recombination and might increase the lifetime
of the exciton. It is now a challenging question to ask
whether the two phenomena described in this paper
might be observable in direct experiments or might con-
tribute to certain properties of solids.

The author thanks D. L. Shepelyansky for fruitful and
illuminating discussions and T. Pacher for a critical
reading of the manuscript.
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