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Jahn-Teller distortion in the lowest excited singlet state of C60
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Several properties of the lowest excited singlet state of the C60 molecule are investigated with
reference to the Jahn-Teller distortion. We find that the symmetry of the molecular structure in
the relaxed excited state is approximately the C2h symmetry, though the strict symmetry is that
of the inversion group C, Also it is found that the most remarkable contribution to the Jahn-
Teller distortion is given by the hg mode of the lowest frequency and the next by the h, ~ mode of
the fourth-lowest frequency. Furthermore, we calculate the frequencies of the normal modes in the
relaxed excited state. It is shown that the frequency splittings of the h~ modes of the lowest and
the fourth-lowest frequency reach several tens of cm . Also it is pointed out that the two h~ modes
are the radial and the tangential mode described by the second-order vector spherical harmonics.

I. INTRODUCTION

The optical response of the fullerene C60 is one of
the most appealing subjects of this new material with
re ference to applications to optical devices utilizing
photoconduction, ' optical nonlinearity, ' etc. Since
the properties of electronically excited states are im-
portant to explain optical phenomena, the nature of
the excited states of C60 is being intensely studied,
also especially by means of the measurements of optical
absorption and photoluminescence spectra.

The absorption spectra show a weak and broad band
in the visible region and several strong bands in the ul-
traviolet region. The general appearance of the spectra
is well explained by the results of the quantum chemi-
cal calculations; the weak and broad band extend-
ing from 1.9 to 2.8 eV is composed of orbitally forbidden
transitions from the Ag ground state to the low-lying ex-
cited states, T&g& T2g& and Gg, while the strong bands
observed above 3 eV are assigned to the allowed transi-
tions to certain Tq„states.

Recently, a well-resolved fluorescence spectrum has
been observed from C60 in methylcyclohexane. More-
over, almost the same spectrum from a thin Glm of C60
is observed; both of the fluorescence bands with a peak
at 1.7 eV show broad widths and extend from the ab-
sorption edge (1.9 eV) to the infrared region, accom-
panied by a shoulder at 1.5 eV. This band is assigned
to an orbitally forbidden transition from the lowest ex-
cited singlet state to the ground state. The absorption
and the fluorescence spectra, however, exhibit compli-
cated vibrational structures. In particular, this is re-
markable for the broad bands relating to the low-lying
excited states. Such vibrational structures imply the sig-
nificance of the electron-phonon interaction in the low-

lying excited states. Although several interpretations of
such vibrational structures are proposed, a decent expla-
nation has not been established.

Furthermore, it is suggested that the fluorescence spec-
trum observed from the film of C60 originates from self-
trapped polaron excitons. The self-trapping also indi-
cates substantial coupling of the electronically excited

states with the deformation of the C60 molecule. Actu-
ally, it is most likely that the low-lying excited states are
extensively subjected to the Jahn-Teller distortion be-
cause these states are almost degenerate within the en-
ergy interval of 0.1 eV. Also, it is well known that
the relaxation of the excited state usually aKects the op-
tical spectra considerably. Therefore, it is important to
elucidate the properties of the lowest excited. state with
respect to the Jahn-Teller distortion in order to explain
the characteristics of the optical spectra. Nevertheless,
there are few studies on the Jahn-Teller distortion in the
low-lying excited states.

The purpose of the present paper is to investigate the
properties of the lowest excited singlet state of C60 with
reference to the Jahn-Teller distortion. By using a model
Hamiltonian that describes the interaction between the
low-lying excited states and the intramolecular vibra-
tions, we elucidate the vibrational modes significantly
contributing to the Jahn-Teller distortion. Furthermore,
we calculate the eigenfrequencies of the intramolecular
vibrations in the relaxed excited state. In Sec. II, the
method of calculations is described. Section III is de-
voted to results and discussion. Conclusions are given in
Sec. IV.

II. METHOD OF CALCULATION

A. Low-lying excited states

The full symmetry of the C60 molecule is that of the
icosahedral point group Ih, so that the irreducible repre-
sentations of Ig are available for the classification of the
molecular orbitals and the normal modes. The highest
occupied molecular orbitals (HOMO) and the lowest un-
occupied molecular orbitals (LUMO), of the Ceo molecule
are fivefold-degenerate 6 and threefold-degenerate ti
orbitals, respectively. Consequently, by transferring an
electron from HOMO to LUMO, there arise 15 excited
singlet states of even parity. The singlet state where
an electron is removed from HOMO a and is added to
LUMO m is denoted by ~ma):
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V(r) =—Zc 1
(7)

where m = 1, 2, 3 and a = 1, 2, 3, 4, 5. Also P" and P
are the creation operator for the 0-spin electron in LUMO
m and the annihilation operator for that in HOMO a,
respectively. In the present study, we restrict ourselves
to the description of the low-lying excited states in terms
of the linear combinations of the 15 states ~ma).

Furthermore, the excited states, T&g T2g Gg and
Hg, are derived from ~ma), i.e. , h„x ti„——Tig + T2g +

Gg + Hg; in fact, the energy levels of these states split
due to the electron correlation. In the present study,
we use the states, T&g T2g& Gg and Hg, as the new
basis; the Ith state belonging to the I' level is denoted by
~I'I) where I' is a label for Tig, T2g, Gg, or Hg. The trans-
formation of the basis from ~ma) to ~I'I) is performed by
using the projection operators of the Ih group. It should
be noted that ~I'I) are uniquely determined by the projec-
tion operators without normalization constants because
each I' appears only once in h„x tq„. The projection
operator that extracts ~I'I) is given by

p(r) "r ) D(r) (G)*GI 120 ~ II'
G

(2)

~I'I) = ) C ~ma),

where

0 ).DII'(G)*D' "(G)D.'. '(G)* (4)

Here we choose C so as to normalize ~1 I). In the
derivation of the above results, we use the following:

and

GP~ ~P g~ Ag) = GP~ ~GtGQ gGt~'Ag), (5)

m'

GP gGf =) (5 gD, " (G)*.
a'

(6)

In Eq. (5), we adopt the fact that the Ag state is sym-
inetrical under all group operations, i.e. , G~ Ag) =

~
Ag).

We also use the relations corresponding to Eqs. (5) and

(6) for the term P" &P ~~ Ag) in Eq. (1).

B. Electron-phonon interaction

Individual electrons are subjected to the screened at-
tractive potential due to the sixty carbon nuclei. We
write this in the following form:

where DII, (G) is the I, I'th element of the I' representa-
tion of the group element G and dp is the dimension of
1. Then ~I'I) is obtained by operating Pl on a certain
state ~ma). Finally, one finds

where Z(= 6) is the atomic number of carbon and e is
the dielectric constant. It is natural to consider that the
dielectric constant e is that of the far infrared frequency,
because the order of the period of the nuclear motion
is 10 s. It is appropriate, however, to exploit the
static dielectric constant because of the nonpolarity of
C60, we assume e = 6 in the present study, referring to
the dielectric constant of diamond (e = 5.93).

By expanding V(r) with respect to the displacement
uk of the kth carbon atom from its equilibrium position
R& (Rg = R& + uy), one finds the electron-phonon in-
teraction, V' (r, u), where we denote the whole of the
displacements (uq ~k = 1, . . . , 60j by u:

V(r) = — ) + V'~(r, u) .
Zc 1

Here

V'~(r, u) =—Ze ~. uA, (r —Ro)
Rk=1 k

(9)

Therefore, the one-electron matrix elements between the
molecular orbitals are given by

V", (u) = dr &*(r)'V"(r u)&~(r) (10)

where &P;(r) and P~(r) are the one-electron wave func-
tion of the molecular orbital i and that of the molecular
orbital j, respectively.

Furthermore, the matrix element of the electron-
phonon interaction between ~ma) and ~m'a') is given by

HrI, r I (u) = ) *C .H'~, , ( )u. (12)
ma, m'a'

In order to obtain HP& r, I, (u), it is necessary to cal-
culate V,'~(u) defined in Eq. (10). For this purpose, we
carry out the first-principle calculation of the electronic
ground state of C6o, adopting the same method employed
by Disch and Schulman, i.e., the self-consistent calcula-
tion by the Hartree-Fock method with the minimal basis
set; the calculation is performed by using the observed
values of the single-bond length (1.46 A) and the double-
bond length (1.40 A).22 Then the resultant one-electron
wave functions, P;(r) and P~(r), are exploited to calcu-
late V,.',~(u).

C. Normal modes in the ground state

We now describe the method to represent the in-
tramolecular vibrations of C6o. In the present study, it

H', , (u) = V'~, (u)8 —V'~, (u)8

where the negative sign of the second term in the right-
hand side of Eq. (11) is due to the removal of an electron
from HOMO. As a result, we obtain the matrix element of
the electron-phonon interaction between ~I'I) and ~I"I'):
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TABLE I. The force constants of the stretching springs
(Ks7,,), in eV/A, and of the bending springs (Kb,„~), in
eV/rad .

k, g

k, 2

k.„

Value

12.03
24.26
4.58
6.71

~bend

kbs
kb6

Value

5.07
11.08

180
]Eelastic(u) =
2 ) unk7spup .

cx,@=1

is assumed that the vibrational properties are described
by the force-constant model. That is, the elastic energy,
E,i,&;,(u), due to the deformation of the molecule is as-
sumed as

and those in the hexagons; the force constant of the for-
mer is denoted by k, 11 and that of the latter by k, 12.

Also the bending springs are assumed between the
nearest-neighbor bonds; the bending springs describe the
recovery forces arising from the deviations from the equi-
librium angles between the bonds. We use two kinds
of bending springs; one corresponds to the springs be-
tween the nearest-neighbor bonds in the pentagons and
the other to those in the hexagons. We denote the force
constant of the former and that of the latter by kb5 and
kb6, respectively.

In Table I, we list the values of the force constants de-
termined so as to reproduce the frequencies of the normal
modes observed in the Raman scattering spectroscopy
(two ag and eight hg modes) and those observed in the
infrared absorption spectroscopy2 (four tq„modes). The
observed and the calculated frequencies are given in Ta-
ble II; the average error is found to be 4%%uo.

Here u and up are the components of the displacements
of the sixty carbon nuclei from their equilibrium posi-
tions and k p represent the elements of the force-constant
matrix. Then one can obtain the eigenfrequency of the
p mode, w~, by diagonalizing the force-constant matrix
k p. That is,

D. Model Hamiltonian

In the present study, we investigate the Jahn-Teller
distortion in the lowest excited state by applying the fol-
lowing Hamiltonian:

Eelastic(u) =
2 ) m~ Q (14) ): II'I) [Er~ri, r I + IIr1,r I (u)1(l"I'I

+E,i,t,, (u) .
where m is the mass of a carbon atom and Q~; is the ith
normal coordinate of the p mode. In the present study,
we employ the stretching and the bending springs ex-
plained below in order to obtain the specific expressions
ofk p.

The stretching springs between the carbon atoms cause
the recovery forces acting on them, i.e. , the forces come
from the deviations from the equilibrium distances be-
tween two atoms connected by the springs. In our model,
we employ the springs which describe the stretching mo-
tions of the single bonds in the pentagons and the double
bonds in the hexagons; the force constant of the single-
bond springs is denoted by k, 1 and that of the double-
bond springs by k, 2. Furthermore, we use the springs be-
tween the next nearest-neighbor atoms in the pentagons

Here we adopt the adiabatic approximation, i.e. , the ki-
netic energies of the carbon nuclei are ignored. Also Ez is
the energy of the I' level measured from the energy of the
~Ag ground state and II&1 &,I, (u) are the matrix elements
of the electron-phonon interaction explained in Sec. II B.
Furthermore, the last term represents the elastic energy
due to the deformation of the C60 molecule expressed by
the force-constant model described in Sec. IIC.

We use Ep which have been estimated by the quantum
chemical calculations taking account of a configuration
interaction; Ez are calculated by using various methods,
e.g. , the intermediate neglect of differential overlap for

spectroscopy, the complete neglect of differential overlap
for spectroscopy, and so on. The results of the cal-

TABLE II. The observed and the calculated frequencies of Raman active and infrared active
modes, expressed in cm

Raman active

as(1)
as(2)
I7,9 (1)
hs(2)
hg(3)
I, (4)
h,, (5)
hg (6)
hg (7)
1,(8)

Observed

496
14?0
273
437
710
774
1099
1250
1428
1575

Calculated

521
1374
282
413
598
795
1117
1246
1442
1627

Infrared active Observed

528
577
1183
1429

Calculated

542
614
1161
1376

Reference 23.
Reference 24.
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culations generally show that the levels, T&g, T2g, and
G~, are nearly degenerate within the energy interval of
0.1 eV, while the Hz level settles over the others about

0.3 eV. However, the orderings of the energies of the lev-
els, T]g T2g and Gg are altered depending on the
methods of calculations. Therefore, we use two sets of
Ez in order to examine the dependence of our results on
Ez", one is calculated by Bendale, Baker, Zerner and
the other by Negri, Orlandi, and Zerbetta. The values
of Ep are listed in Table III.

Furthermore, we define the interaction energy, E,.„~,
of the p mode in the following way. First, we con-
sider a simple model whose Hamiltonian is given by
~ex)(E,„—cQ)(ex~ + mw Q2/2 where Q is a mode inter-
acting with an excited state, ~ex), and E,„is the energy of
~ex). Then one easily finds that the energy of the excited
state is lowered &om E,„by —c /2m' in the relaxed
configuration, Q* = c/mw . That is, the energy gain
due to the relaxation is given by c /2mtu . This implies
that the magnitude of the energy gain is that of the elas-
tic energy itself. Therefore, it is natural to define E;„t
by its contribution to the elastic energy in the relaxed
configuration, u*. That is, the elastic energy E,i,t;, (u*)
are decomposed into E;„t from each normal mode:

where

III. RESULTS AND DISCUSSION

We start with a group theoretical consideration. The
molecular structure of C60 in the relaxed excited state
divers from that in the ground state when there exists a
nonvanishing H&1 &, 1, (u) in the Hamiltonian. This oc-
curs unless V'~, and V'~ in Eq. (11) are all zero, whereV', and V', are the one-electron matrix elements of
the electron-phonon interaction between I UMO (ti„), m
and m', and those between HOMO (h„), a and a', respec-
tively. Then the excited states couple with the normal
mode whose representation appears in the symmetric rep-
resentations, [ti„x ti„] and/or [h x h„]. Consequently,
one finds that only ag, gz, and hg modes are coupled
with the excited states, i.e. , [ti„x ti„] = ag + hg and
[h„x 6„] = as + gg + 2hg. In particular, it is expected
that the hg modes significantly contribute to the Jahn-
Teller distortion.

In order to confirm the above consideration, we carry
out the numerical calculations as explained in the last
of Sec. IID. First, we elucidate the structure of the
molecule in the relaxed excited state. At least, it is ap-
parent that the structure is symmetrical under the space
inversion because only even-parity modes can couple with
the excited states. Actually, it is found that the symme-
try of the relaxed structure is approximately C2h, though
the exact symmetry is t;. In Fig. 1(a), we show the side
view of the molecule in the relaxed excited state by illus-

(17)

Here Q*, represents the displacement of the ith coordi-
nate of the p mode in the relaxed configuration.

Now we sketch the outline of the numerical calcula-
tions. The results are presented in the next section. Un-
der a given atomic configuration u, the Hamiltonian (15)
is diagonalized and then the lowest eigenvalue, Ei „t(u),
is determined, which represents the adiabatic potential of
the lowest excited state. By minimizing E~ „t(u) with
respect to u, one finds the equilibrium configuration u*
and the energy of the relaxed excited state, E~ „t(u*).
Furthermore, by using E,„t defined in E.q. (17), we elu-
cidate the vibrational modes enormously contributing to
the Jahn-Teller distortion. Finally, the frequencies of the
normal modes in the relaxed excited state are calculated
by diagonalizing the Hessian, 8 E&, „t(u)/cpu Buy ~„

(b)

TABLE III. The energies of the low-lying excited states
derived from the quantum chemical calculations, expressed in
eV.

Energy level

Tlg
T2g

Gg
Rg

Reference 18.
Reference 19.

Bendale, Baker
and Zerner

2.11
2.17
2.23
2.52

Orlandi, Negri,
and Zerbetto

2.33
2.29
2.34
2.65

FIG. 1. (a) Side view and (b) top view of the Cso molecule
in the relaxed excited state. The distortion is illustrated ten
times the size of the actual one. The pseudotwofold axis pen-
etrates the molecule vertically in (a) and is perpendicular to
the figure in (b).
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TABLE IV. The energy of the lowest excited state
E&owest(u*), the elastic energy E,&,t;, (u*), and the relaxation
energy E„& „(u') in the relaxed configuration, expressed in
eV.

Energy

Elowest (u )
E,i,g;, (u )
Ere lax (u )

Value

1.70
0.46
-0.41

Value

1s86
0.46
-0.43

Obtained by using Ei- due to Bendale, Baker, and Zerner.
Obtained by using Ez due to Negri, Orlandi, and Zerbetto.

trating the distortion ten times the size of the actual
one. The pseudotwofold axis penetrates the molecule
vertically in Fig. 1(a). Also the top view is shown in
Fig. 1(b) where the pseudotwofold axis is perpendicu-
lar to the figure. It appears that the symmetry of the
relaxed structure is hardly distinguishable from C2p, in
view of Figs. 1(a) and (b).

Next, in Table IV, we list the energy of the relaxed
excited state, Eiowes&(u*), the elastic energy, E,ia,t;, (u*),
and the relaxation energy, E„i„(u*), which is defined
by Eiowest(u*) —Ei „&(0);Eiowest(0) is the lowest of Er.
It should be noted that Ei „t(u*) shows direct depen-
dence on the lowest of Ep. Therefore, the two listed val-
ues of Ei „t(u*) are somewhat different from each other
because the lowest of Ej- calculated by Bendale, Baker,
and Zerner is ET, ——2.11 eV; on the other hand, that
calculated by Negri, Orlandi, and Zerbetto is ET, ——2.29
eV. To the contrary, both E,i,t;, (u*) and E„i „(u*) are
almost independent of the choice of El- because they do
not depend on the absolute values of Ep but only depend
on the splittings between them.

Using the energies listed in Table IV, we estimate the
energy of the absorption edge, E pg„and the peak en-
ergy of the luminescence, Ep, k., the observed values are
E,gg

——1.9 eV and Ep k: 1 7 eV. One should remem-
ber that E ss, is Ei „t(u*) itself (zero-phonon tran-
sition) and Ei„k is given by Ei „&(u*) —E,i,t;, (u*)
(Franck-Condon transition), where we measure the en-
ergy of the excited state from the energy of the ground
state. Then our results yield E dg,

——ls70 or 1.86 eV
and Ep, k

——1.24 or 1.40 eV, according to the choice
of EI- in our calculations. Furthermore, the magni-
tude of the electron-phonon interaction is deduced from
Eepge and Epeak& i.e. , Eepge Epeak which is nothing but
E,i,t,,(u*); this gives the measure of the magnitude of
the electron-phonon interaction, as is explained in the
last of Sec. IID. Therefore, it is found that the calcu-
lated results, E,i,t;, (u*) = 0.46 eV, give the same order
as the observed value, E pg Ep k 0.2 eV.

Furthermore, we elucidate the vibrational modes enor-
mously contributing to the Jahn-Teller distortion by de-
composing the elastic energy E,i,&;,(u*) into the parts
from individual modes; the interaction energy of the p
mode is denoted by E~t which is defined by Eq. (17). In
Table V, we list E,-„t of the ag and the hg modes, while
those of the gg modes are left out because it is found
that all E,-„'~ are less than 0.0001 eV. Consequently, we

TABLE V. The interaction energy, E~„ofthe ag and the
kg modes, in eV.

Mode

ag(1).(2)
hg (1)
hg (2)
hg(3)
hg (4)
hg (5)
hg (6)
hg(7)
hg (8)

0.003
0.003
Os299
0.017
0.004
0.113
0.004
0.013
0.001
0.001

b
int

0.003
0.003
0.300
0.017
0.004
0.113
0.004
0.013
0.001
0.001

Obtained by using Ez due to Bendale, Baker, and Zerner.
Obtained by using Ez- due to Negri, Orlandi, and Zerbetto.

rVYi (r)
Ql(l + 1)

find that the mode most significantly contributing to the
Jahn-Teller distortion is the hg(1) inode (E,„~ = 0.3
eV) and the next is the hg(4) mode (E;„gt = 0.1 eV).
One also finds that E,„t of the other modes are one or
more orders of magnitude less than those of the hg(1)
and the hg(4) mode.

The interaction energies E,„t give important insight
into the interaction between the vibrational modes and
the excited states; however, they themselves are not the
directly observable quantities. Then we present the re-
sults of the calculations on the frequencies of the normal
modes in the relaxed excited state, which -are the ex-
perimentally observable quantities. In Table V|, we list
the calculated frequencies of the hg modes in the ground
state and those of the corresponding modes in the re-
laxed excited state where the frequencies are split due
to the reduction of the symmetry of the molecular struc-
ture from II, to C, . We find that the &equency shifts
of the hg(1) and the hg(4) mode reach several tens of
cm . It is most likely that this indicates the extraor-
dinary contributions of the hg (1) and the hg (4) mode to
the Jahn-Teller distortion. That is, we again conclude
that the hg(1) and the hg(4) mode are very strongly cou-
pled with the low-lying excited states, as is mentioned in
the preceding paragraph. Also, it is found that the shifts
in the frequencies of the other mod~s are all less than 1
cm, so that we omit them from Table VI.

Next we specify the characteristics of the hg(1) and
the hg(4) mode. To this end, we make a very simple
approximation where the C60 molecule is regarded as the
sphere made up of a thin film. Then one needs three
sets of spherical harmonics as the complete system to
describe the vibrational motions of the sphere because
each infinitesimal element of the sphere surface has three
degrees of &eedom; one represents the radial motions and
the other two the tangential ones. They are known as
vector spherical haimonics:

X; (r") = r" Yi (r"),
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TABLE VI. The calculated frequencies of the normal modes in the ground state and those in
the relaxed excited state, expressed in cm

Mode
Calculated frequencies

in the ground state
Calculated frequencies

in the relaxed excited state

I s(j-)
hg(2)
4(8)
iig (4)
h, (5)
h.,(6)
hg (7)
hs (8)

282
413
598
795
1117
1246
1442
1627

208
403
584
756
1112
1229
1431
1624

243
408
589
765
1112
1236
1437
1624

274
413
596
783
1114
1244
1439
1626

274
413
596
790
1115
1245
1441
1626

281
413
598
794
1117
1246
1442
1627

Mode
Calculated frequencies

in the ground state
Calculated frequencies

in the relaxed excited state

hg(1)
hg (2)
hs(8)
h, (4)
hg(5)
h, (6)
hg(7)
hs(8)

282
413
598
795
1117
1246
1442
1627

198
402
583
752
1112
1228
1430
1624

242
407
589
764
1112
1235
1436
1624

273
413
595
782
1114
1244
1439
1626

274
413
596
790
1115
1245
1441
1626

281
413
598
794
1117
1246
1442
1627

Obtained by using Ep due to Bendale, Baker, and Zerner.
Obtained by using Ez due to Negri, Orlandi, and Zerbetto.

and

—ir x V'Yi (r")

Ql(l + 1)

Here Yi (r) is the usual spherical harmonics. X& (r) and
Xi+(r) describe the radial and the tangential motions,
respectively. Then the normal modes of the molecule are
classified by the order of spherical harmonics, l. Also,
it will be shown that the parity of Xi (r), Xi+(r),
and X& (r) are (—1), (—1), and (—1)'+, respectively.
Therefore, there are two even and one odd normal mode
when l is even but one even and two odd normal modes
when / is odd.

In describing the 6 modes (hg and h„) by using the
vector spherical harmonics, it is necessary to use those of
five distinct l because the total number of the h, modes
is 15. Then, by reducing the irreducible representations
of the rotation group to those of Ih, one finds that the
h, representation arises from l = 2, 4, 5, 6, 7 when five l
are picked up from the lowest (l = 2). As a result,
there arise three radial (l = 2, 4, 6) and five tangential
(I = 2, 4, 5, 6, 7) hg modes; the hg modes whose l are odd
(I = 5, 7) are described by Xl (r). On the other hand, it
is well known that the three hg modes of lower frequen-
cies, h~(1), hg(2), and hg(3), are the radial modes, while
the other five hg modes of the higher frequencies are the
tangential ones. Therefore, it is natural to consider that
the radial h~ mode of the lowest frequency, h~(1), is well
described by Xi (r) of I = 2 and the tangential one of
the lowest frequency, hg(4), by Xi+(r) of I = 2. That
is, the h~(1) and the h~(4) mode are the radial and the
tangential h~ mode of l = 2, respectively.

TABLE VII. The average of the squares of the radial dis-
placements, (u, ), and that of the tangential one, (u, ), of the
h, ~ modes.

Mode

1,(1)
4(2)
hg (8)
hg (4)
hg(5)
hs(6)
hg (7)
hg (8)

0.746
0.978
0.987
0 ~ 246
0.007
0.012
0.014
0.010

(u')

0.254
0.022
0.013
0.754
0.993
0.988
0.986
0.990

In Table VII, we list the average of the squares of the
radial displacements of the carbon nuclei, (u, ), and that
of the tangential ones, (ut), of the h~ modes. The results
clearly show that three hg modes of lower frequencies are
the radial modes while the five of higher frequencies are
the tangential ones. Moreover, it should be noted that
the h~(1) mode is 75% radial and 25% tangential while
the h~(4) mode is 25% radial and 75% tangential. Such
complementary ratios of the radial and the tangential
components also indicate that the h~(1) and the hg(4)
mode belong to the same l. That is, it is most likely that
the hg (1) and the hg(4) mode are caused by the moderate
mixing of X& (r) and Xi+ (r) of I = 2. Furthermore, we
present more direct evidence of our proposition that both
the h~(1) and the hg(4) mode belong to I = 2. Since the
number of the nodal lines of Yi (r) is equal to I, one can
find the primarily contributing l to an individual mode
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(b)

(d)

for example, the interaction energy E;„t and the split-
tings of the vibrational &equencies in the relaxed excited
state. It should be noted, however, that the magnitude
of such quantities is preserved within the same order as
is obtained in the present study as long as e remains
in the range of 4—8. Next, we note that our results de-
pend on the one-electron wave functions P, (r) in Eq. (10)
which are obtained by using the first-principle method.
Although the exploited basis set is a minimal one, it is
most likely that the qualitative features of our results are
unchanged even if one uses a larger basis set because the
method of the calculations is the same in the sense that
it is the first-principle one. Furthermore, we perform the
present calculations by using two sets of the energies of
the unrelaxed excited states, Er, which are obtained by
the quantum chemical calculations. It is found, however,
that our results are almost independent of the choice of
Er

IV. CONCLUSIONS

(h)

FIG. 2. Vibrational pattern of the radial displacements of
the carbon nuclei. (a) hg(1), (b) hg(2), (c) hg(3), (d) hs(4),
(e) hg(5), (f) hs(6), (g) hs(7), and (h) hg(8). The open and
the closed circles represent the outward and the inward dis-
placements of the carbon nuclei, respectively.

by illustrating the vibrational pattern of the radial dis-
placements. The results are shown in Figs. 2(a)—2(h),
where the open and the closed circles represent the out-
ward and the inward displacements of the carbon nuclei,
respectively; in this figure, we show the patterns of the
modes which have the same symmetry as one of the ba-
sis functions of hg representation, 2z —x —y . It is
found that two nodal lines clearly appear in the patterns
of both the hs(1) and the hg(4) mode, i.e., they belong
to l = 2.

Finally, we refer to the accuracy of the present results.
First, we examine the eKects of the exploited value of the
dielectric constant, e = 6, in Eq. (7). The dielectric con-
stant appears in the denominator of the electron-phonon
interaction HP& &,1, (u) in the Hamiltonian, so that one
will find that E,ia,&;,(u*) are approximately proportional
to e, remembering the simple consideration given in
Sec. IID. Therefore, it is expected that the quantities
related to E,i,t;, (u*) show the same dependence on e,

We study several properties of the lowest excited sin-
glet state of the C6O molecule in connection with the
Jahn-Teller distortion. The model Hamiltonian is em-
ployed in order to describe the electron-phonon interac-
tion between the low-lying excited singlet states and the
deformation of the C60 molecule. In the Hamiltonian, we
exploit the force-constant model to represent the elastic
property of the molecule, which reproduces the observed
frequencies of the normal modes. Also the matrix ele-
ments of the electron-phonon interaction are calculated
by using the one-electron wave functions obtained by the
first-principle method. The relaxed excited state is deter-
mined by minimizing the lowest eigenvalue of the Hamil-
tonian with respect to the atomic configuration. The
results of the calculations show that the symmetry of the
molecular structure in the relaxed excited state is approx-
imately C2p„ though the exact symmetry is 0;. Also we
explore the vibrational modes significantly contributing
to the Dahn-Teller distortion. As a result, it is found that
the hg(l) and the hg(4) modes are the most and the next
most crucial mode, respectively. Furthermore, we calcu-
late the frequencies of the normal modes in the relaxed
excited state and then find that the splittings of the fre-
quencies of the hs(l) and the hs(4) modes reach several
tens of cm . Finally, it is pointed out that the hs(1)
and the hg(4) modes are the radial and the tangential
modes of l = 2, respectively.
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