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We compute by numerical transfer-matrix methods the surface free energy 7 (T), the surface
stifFness coefficient K(T), and the step free energy s(T) for Ising ferromagnets with (oo x I ) square-
lattice and (oo x L x M) cubic-lattice geometries, into which an interface is introduced by imposing
antiperiodic or plus/minus boundary conditions in one transverse direction. These quantities occur
in expansions of the angle-dependent surface tension for either rough or smooth interfaces. The finite-
size scaling behavior of the interfacial correlation length provides the means of investigating r(T),
K(T), and s(T). The resulting transfer-matrix estimates are fully consistent with previous series and
Monte Carlo studies, although current computational technology does not permit transfer-matrix
studies of sufBciently large systems to show quantitative improvement over the previous estimates.

I. INTR.ODUCTION

Many phenomena of interest in condensed-mat ter
physics, materials science, and high-energy physics oc-
cur in systems in which two or more thermodynamic
phases coexist below some critical temperature T . These
phenomena are strongly influenced by the behavior of
interfaces between the phases. Examples of interfa-
cial phenomena from condensed-matter physics include
wetting, nucleation and growth, and crystal faceting.
An example from high-energy physics is spatially non-
uniform symmetry-breaking in the early universe. A
number of these systems also have a roughening tran-
sition at a temperature TR (known as the roughening
temperature), at which the interface changes from mi-
croscopically Bat to microscopically rugged. ' For the
three-dimensional (3D) cubic-lattice Ising model, a re-
cent Monte Carlo study yields T~ = 2.45459(5) J/kgb.
This is consistent with an earlier Monte Carlo esti-
mate T~ = 0.542(5)T, = 2.45(2)J/k~, where a Monte
Carlo renormalization-group estimate for the critical
temperature, s T = 4.5115767(2)J/kii, has been used.
The roughening transition of one exactly solvable solid-
on-solid (SOS) model has been shown to belong to
the Kosterlitz-Thouless (KT) universality class, ' and
roughening transitions in related SOS models and in the
3D Ising model are generally believed to belong to this
universality class as well. On the other hand, for the
two-dimensional (2D) square-lattice Ising model TIt = 0;
that is, the interface is always rough.

An aspect of interfaces that is of great importance in
determining interface profiles and dynamics is the sur-
face tension, which is the amount by which each unit
area of interface increases the total free energy of the
system in the thermodynamic limit. A great deal of
analytical work, including low-temperature series
expansions, has been done to study interfaces and
their associated surface tensions. The surface tensions in
a P field theory and in the q-state Potts model
have been studied by Monte Carlo simulations. Of par-
ticular interest has been the dependence of the surface
tension in the, 2D and 3D Ising models on the orienta-
tion of the interface relative to the underlying lattice (see
Fig. 1); this has been studied both analytically and
through Monte Carlo simulations. '

The analytical treatments of the 3D Ising model rely
on approximations which are perturbative in nature,
whereas the nonperturbative Monte Carlo method suf-
fers from critical slowing-down and the possibility of
becoming trapped in metastable or long-lived unstable
states. Furthermore, free energies and correlation lengths
are cumbersome to calculate in Monte Carlo simula-
tions. Although sophisticated techniques, such as clus-
ter algorithms ' and the multicanonical ensemble,
have been developed to circumvent most of these diKcul-
ties (particularly for simple models like the Ising model),
a simple alternative method, which has been successful
in the study of phase transitions, particularly in 2D sys-
tems, is that of numerical transfer-matrix (TM) calcula-
tions combined with finite-size-scaling (FSS) analysis.
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FIG. 1. A 3D system illustrating the axes and dimensions
of the system, and the orientation of the interface, which sep-
arates the region of positive magnetization from the region of
negative magnetization. In this figure boundary conditions
are used to tilt the interface by a Axed angle 0 with respect to
the z direction. Although the boundary conditions discussed
in the text do not produce such a tilt, they can be used to
predict the change a tilt would produce in the surface tension.

The numerical TM FSS method does not encounter the
aforementioned diKculties: (i) It is nonperturbative and
does not require foreknowledge of special temperatures
(such as T~ and T ) or of critical exponents; (ii) it has
no dynamics, so that critical slowing down does not oc-
cur and the equilibrium state is readily found; (iii) the
free energy corresponds to the largest eigenvalue of the
TM, and so is readily found; (iv) the calculations are ac-
tually easier if the length of the system in one direction
is infinite; and (v) the correlation length in this direction
is simple to find since only the two largest eigenvalues
of the TM are required. For these reasons, there has
recently been renewed interest in calculating interfacial
properties by TM techniques.

Nevertheless, because the order of the TM increases
exponentially with the number of sites in a transverse
layer (discussed quantitatively in Sec. II), the size of sys-
tems which can be investigated through the numerical
diagonalization of a TM is greatly limited. As a result,
FSS analysis is even more important for TM calcula-
tions than for Monte Carlo simulations. The order of
the TM has also limited most previous attempts at cal-
culating the surface-tension anisotropy by TM techniques
to capillary-wave and SOS approximations. ' Specif-
ically, in Refs. 21 and 22 Privman and Svrakic derived
FSS relations for the correlation length of the Ising model
in two and three dimensions by using capillary-wave and
SOS approximations; these scaling relations involve the
surface-tension anisotropy. The scaling relations for the
3D model were derived through comparison with the 2D
Ising model, which has been solved. exactly for the
boundary conditions used in Refs. 21 and 22 to generate
an interface. In the rough phase, a longitudinal cross-
section perpendicular to the interface was compared with
a 2D system, whereas in the smooth phase the interface
itself was compared with a 2D system.

In this article we present a large-scale numerical TM
FSS study of surface-tension anisotropy in 2D and 3D

Ising models. The analytic scaling relations of Privman
and Svrakic ' are applied to analyze free energies and
correlation lengths obtained by numerical diagonaliza-
tion of transfer matrices describing Ising models on both
oo x I square lattices and oo x L x M cubic lattices
into which an interface along the longitudinal (x) direc-
tion can be introduced by applying appropriate bound-
ary conditions (discussed in Sec. II) in the y direction.
The purpose of this study is threefold: (i) to test the
analytically obtained scaling relations and possibly iden-
tify extensions or corrections, (ii) to investigate whether
the limits on system size imposed by the present gener-
ation of parallel and vector supercomputers and diago-
nalization algorithms allow us to reach the asymptotic
scaling regime in which FSS relations can yield informa-
tion about interfacial properties in the thermodynamic
limit, (iii) to compare the resulting estimates of inter-
facial properties with estimates previously obtained by
other analytical and numerical methods. Throughout
this study we use the full Ising model, which includes
contributions from microstates with bubbles and over-
hangs as well as SOS microstates.

We now define the quantities to be studied in this work.
Given an interface (see Fig. 1) making only a small angle
0 with the zz plane, the surface tension o(0, T), mea-
sured per unit projected area in the xz plane, has a series
expansion for T )TR,

0(B,T)/cos0 = ~(T) + K(T)B + —O(0 ) .

The coefficients in this expansion are the surface free en-
ergy

and the surface stiffness coefFicient

If T (T~, v(T) is infinite, and the system can gain en-
tropy only through microscopic fluctuations (i.e. , fluctua-
tions on a length scale much shorter than the mesoscopic
capillary waves), among which single-step terraces are
dominant. Each single-step terrace contributes a quan-
tity s(T), which is nonzero below TR, to the total free
energy of the system; this quantity is known as the step
free energy. The step free energy is measured per unit
length of the total perimeter of all the terraces. The step
free energy can also be related to the surface tension per
unit projected area by an expansion when T (TR .

cr(0, T)/cos 0 = ~(T) + s(T) ~0~ + O(0 ) . (4)

The anisotropy of the free energy will be discussed in
terms of these three quantities: r(T), r(T), and s(T).

The remainder of this paper is organized as follows.
%le define the model and discuss the appropriate bound. -
ary conditions in Sec. II. In Sec. III we discuss esti-
mates of the surface &ee energy. Section IV contains
estimates of the surface stiffness coefFicient, and Sec. V
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is devoted to the step free energy. In Sec. VI we use the
Roomany-Wyld approximant for the Callan-Symanzik
P function4 ' to study the scaling of the correlation
length, especially near the roughening temperature. Our
results are summarized and discussed in Sec. VII.

II. MODEI AND METHODS

TABLE I. Boundary conditions discussed in the text.

Name

Free
Periodic
Antiperiodic
Plus/plus
Plus/minus

0
J

—J
0
0

0
0
0
J
J

0
0
0
J

—J
We study the ferromagnetic Ising model with square

and cubic lattice geometries. Each site i has a spin
8, = +1, which interacts with the spin at each nearest-
neighbor site j with an interaction constant J, ~ )0 . The
HaIIllltonian for this system ls given by

Z= —) J, ,ss, —) hs;.
(i,j) (i)

Here (i, j) denotes nearest-neighbor pairs on a periodic
lattice, and (i) represents boundary sites. For nearest-
neighbor pairs not on a boundary, J, ~

= J. Throughout
this article the lattice constant is of unit length.

Various boundary conditions are needed to prepare
both systems with interfaces and systems without inter-
faces. A transverse layer in a 2D system consists of a
1D lattice with L sites in the y direction, and in 3D a
layer is a 2D lattice with L sites in the y direction and
M sites in the z direction. The presence or absence of an
interface is determined by conditions on the boundaries

y = 1 and L All sys. tems we study have the following: (i)
a boundary interaction constant J„connecting the site

I

at (2;, y = 1, z) with the site at (x, y = L, z), (ii) a
lower-boundary magnetic field hq applied on the y = 1
plane, and (iii) an upper-boundary magnetic field hl, ap-
plied on the y = L plane. Table I summarizes the five

types of boundary conditions used in this paper.
It should be noted that the "width" of systems with

plus/plus and plus/minus boundary conditions can be
defined by measuring different quantities. These bound-
ary conditions can be imposed by coupling the planes at
y = 1 and at y = L to planes of fixed spins. In this case
there are L+1 couplings in the y direction, and this num-
ber is often used instead of the number L of spin sites as
the measure of system width (for example, in Refs. 21,
22, and 36). In this article width refers to the number of
sites L.

A transfer matrix T can be used to find the free en-

ergy per unit length in the longitudinal direction. In our
case T can be chosen to be symmetric, in which case the
transfer matrix is explicitly the 2 x 2 matrix

(si, . . . , s~(T(si, . . . , s&) = exp(J, ~ [s;s~ + s,' s']/2kisT) . exp(h, [s, + s', ]/2kIsT)
(',2) ('')

exp( Js; s', /k~T), (6)

where the area A of a transverse layer is given by A =I
in 2D and by A = LM in 3D. Here the spins 8; and 8';

are in adjacent layers. The interactions within a layer
are taken into account in the first and second products
of Eq. (6), and (i, j) and (i) denote nearest-neighbor
pairs and boundary sites, respectively, within the given
layer. The third product of Eq. (6) takes into account
nearest-neighbor interactions in the transfer direction.
The largest eigenvalue of T Ap is related to the par-
tition function Z in the limit of infinite longitudinal size
(K-moo) by" 4' 4'

lim Z'/~ = lim (Tr [r~ )'
K—+oo K—+oo

(7)

The longitudinal correlation length is given by the ratio
of the largest and newt-largest eigenvalues of T:

( = 1/InlAo/Ail (9)

Usi.ng the thermodynamics of the canonical ensemble,
Eq. (7) can be used to find quantities such as the free
energy per site,

Other length scales can be de6ned from smaller eigen-
values of T, and scaling Ansatze analogous to those we

use in the next two sections have been proposed ' for
these length scales. Here we consider only the correlation
length defined by Eq. (9), since it is expected that the
other length scales require larger values of L (and in 3D,
M) to scale in the asymptotic fashion.

For the Ising model, exact solutions have been found
for the free energy and correlation length in finite
2D systems with antiperiodic boundary conditions or
plus/minus boundary conditions, ss ss so that systems
with arbitrarily large values of L can be used in FSS.
In 3D, on the other hand, numerical diagonalization of
the large matrix T restricts us to small values of A due
to limited computer memory. We are able to study cross
sections as large as A = 19 on a Cray Y-MP/432 computer
by using the Numerical Algorithms Group (NAG) diago-
nalization routine F02FJE. The largest cross section we
can study is A = 25, for which an eigenvector of T has
33554432 elements. Such large systems were run on a
Thinking Machines Corporation CM2 computer using a
modified power algorithm (for details see Appendix A).
We estimate that about 125 h on the Y-MP and 700 h
on the CM2 were used for the numerical calculations in
this article.
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III. THE SURFACE FREE ENERGY

In order to estimate the surface free energy from finite
systems, we compare the free energy of two similar sys-
tems, one of which has an interface and one of which does
not. We attribute the difference to the interface. Specif-
ically, we estimate r from antiperiodic (a) and periodic
(p) boundary conditions in the y direction byi

~L, ( ) =— (6'( ) —fg"'( )) (10)

The factor L, which is the width of the system perpen-
dicular to the interface, is needed to convert the differ-
ence between the volume densities f into a surface den-
sity. These relations provide just one possible definition
of the surface tension in the 2D Ising model, but it has
been proven that all such definitions are equivalent with
that of Onsager for low temperatures. These estimates

and from plus/minus (+/ —) and plus/plus (+/+) bound-
ary conditions in the y direction by

r(+I ) (7 )
—L(f (+I ) (T) f(+I+)(T))

The effective scaling exponent is thus given by

din[ad~+I )(T) —7.(T)]
dlnI (13)

are valid in any number of dimensions (in 3D the sub-
script L is replaced by L, M).

Figure 2(a) shows the 2D estimates wg (T) defined in
Eq. (10) and the exact solution r(T) in the infinite-lattice
limit. The difFerence between the finite-size estimate
and the infinite limit in this case is inversely proportional
to the correlation length in the periodic system, so that
for T & T„w L(T) converges to r(T) exponentially with
L. Thus the size dependence is noticeable only near T;
in all cases, for 2D it has been shown that the critical-
point behavior is such that u(T) vanishes linearly with
the reduced temperature, t = (T —T)/T .

The 2D estimates r& (T) defined in Eq. (11) are
plotted in Fig. 2(b). In this case, however, we observe
numerically that the estimates from finite-width lattices
converge as a simple power law:
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where the derivative is calculated by multiple-point
finite differences. By holding T = T and calcu-
lating r& (T) for values of L = 2* x 10, i C

(1,2, . . . , 15), we can use Aitken's A2 method4 to find
limL, ~~

I
B(L,T ) —1I & 10, in agreement with the pre-

diction limL, ~ B(L,T, ) = 1. Using the same method
but fixing k~ T = 1.5J, we find that for T & T,
I
limr, ~ B(L,T) —2I & 10 . For T & T, and large

L, the scaling exponent B is observed numerically to be
a function only of the critical scaling variable tL ~ =tL
(Fig. 3).

The estimates rL M (T) for 3D are graphed in Fig. 4(a).
Again the convergence appears to be quite rapid except
near T . Similar rapid convergence is seen in the estimate

(T) for 3D [Fig. 4(b)]. The value of r(T) is exactly
known for 3D only at T = T, (where r = 0) and at T = 0
(where r = 2J), but estimates from series expansions im-
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FIG. 2. The estimates of the surface free energy in two
dimensions. (a) 7r (T), from Eq. (10), and (b) rz+ (T),
from Eq. (11). The solid curve is the limit of rr, (T) for an
infinite lattice (Ref. 33). The solid vertical line gives the 2D
critical temperature.
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the finite-lattice estimate converges to its infinite-lattice
limit in a simple power-law fashion:

Kz (T) —K(T) —aL

As in Sec. III, we use multiple-point numerical diKeren-
tiation to determine an effective scaling exponent

d ln[K~(T) —K(T)]
d ln I

which is displayed in Fig. 6(a). Although b is not mono-
tonic, it shares the most important characteristics of the
scaling exponent B defined in Eq. (13); that is, b varies
from b= 1 for T = T, (in agreement with critical scaling)
to 6=2 for T &&T, and 6 is a function only of the critical
scaling variable tL for large L.

The exact solution for [Q (T)] is a sum in which both
the total number of terms and each individual term de-
pends on L. We avoid the resulting difBculty of exactly
differentiating Kl (T) with respect to L by using numeri-
cal difFerentiation in the evaluation of Eq. (20). However,
it is also possible to define a "reduced correlation length"
((T), obtained from the antiperiodic correlation length

(T) and the periodic correlation length ("(T) by

X (T)] ' = [4(T)] '+ X"(T)] ' (21)

b(tL) = 2
I

!14c(tL) [g(tL) —2c]/ir )
7r2 l

2 (tL) 2g(tL) [g(tL) —2c] )
(22a)

where c = sinh (1) 0.8814 and g(x) is given by

which contains only one explicitly L-dependent term [see
Eq. (B7) in Appendix B]. Replacing Q(T) in Eq. (18)
with Q, (T), we find an estimate, kz, (T), which is a differ-
entiable function of ln(L) if L is treated as a continuous
variable. Except for small systems or T = T„[(&(T)] is
vanishingly small in comparison with [(z(T)] . Thus it
is clear that&, z, (T) will be less than Kl (T) but must con-
verge to the same limit. In fact, for all L, K(T) (Kz, (T) (
rz (T) In th. e limit of large L we find the efFective scaling
exponent
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FIG. 5. The estimates of the surface stifI'ness coefFicient in
two dimensions. (a) r.z(T), from Eq. (18), and (b) zzz+ (T),
from Eq. (24). The solid curve is the limit of rz, (T) for an
infinite lattice (Ref 34). The. solid vertical line is the 2D
critical temperature.

FIG. 6. The efI'ective scaling exponents for the surface
stifFness coefficient in two dimensions. (a) The scaling expo-
nent b(tL), defined in Eq. (20), for ~z, (T). (b) The scaling ex-
ponent b(tL), defined in Eq. (B3), for Kz, (T). The solid curve
is the limit for large L referenced in Eq. (22a) and derived in
Appendix B.
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(22b)

Equation (22a) is derived in Appendix B. As is the case
for B(tL) and b(tL), b(tL) varies from 1 at tL=0 to 2 at
tL =oo, but unlike b(tL), b(tL) is monotonic [Fig. 6(b)].
It is proved in Appendix B that limql, ~ 6(tL) = 2,
and, since limey~ b(tL) = lim&1, ~ b(tL), we also have
limgL, ~ b(tL) = 2.

Another capillary-wave calculation ' indicates that
for plus/minus boundary conditions the correlation
length scales as

(23)

for all T (T„giving the finite-size estimate for the sur-
face stiÃness coefFicient

Eqs. (25) and (26) are valid for either periodic or free
boundary conditions applied in the z direction. In this
article we discuss K(T) only in the case of periodic bound-
ary conditions in the z direction, but we have observed
that little quantitative change occurs when free boundary
conditions are used.

In Fig. 7(a) the reduced correlation length, defined in
3D by analogy with Eq. (21), is used in place of Q M(T)
to estimate K(T) using Eq. (25). As in Sec. IV A, this
produces a reduction in the estimate of r(T) near T,
[where r(T) is zero in an infinite system] but cannot
have any eKect on the estimate of K(T) for T & T, in
the limit of large systems. Also shown in Fig. 7(a) are
estimates of r(T) based on series expansions improved
by Pade approximants and estimates based on Monte
Carlo simulations. In spite of the small systems to
which our study was limited, we find good agreement
between the transfer-matrix estimates in this study and

(+/ —)
(+/ ) „37r (~ (T)

2 (L+ 2)' (24)

B. m in three dimensions

Figure 5(b) shows rl (T). We have observed numer-

ically that for any fixed temperature T & T„KL (T)
converges to K(T) as L
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There are two contributions to the correlation length
along the interface. The first comes from pieces of in-
terface which, due to thermal fluctuations, are normal to
the longitudinal direction, which is the direction in which
the correlation length is measured. This contribution is
related to the surface stifFness v(T). The second contri-
bution comes from the formation of bubbles in the bulk
and is much less important for T« T .

Both of these contributions can be treated approxi-
mately by considering a cross section of the 3D system
parallel to the xy plane. The relationship between corre-
lation length and surface stifFness in such a cross section
should be the same as for a 2D system of the same width
L. Since there are M such cross sections, and since each
contributes on average the same amount of interface nor-
mal to the longitudinal direction, the total effective sur-
face stiB'ness for the 3D system is given by MK(T) and
has the same form as the corresponding 2D systems; that
is, the appropriate estimate for the 3D surface stiffness
coefBcient for antiperiodic boundary conditions is given
from Eq. (18) by
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and for plus/minus boundary conditions from Eq. (24)
by

(+/ —) 37r ~L,M ( )
(+/ —) T

2 (L+2)2M ' (26)

for L = M && 1. These estimates were proposed by
Privman and Svrakic. ~' No part of this argument de-
pends on the boundary conditions in the z direction, so

FIG. 7. The estimates of the surface stiffness coeKcient
in three dimensions. (a) KI„M(T), from Eq. (25), and (b)

(+/' —)Kz ~ (T), from Eq. (26). The solid curve comes from series
expansions improved with Pade approximants (Ref. 50). The
small solid circles (bigger than the error bars) are the results
of Monte Carlo simulations (Ref. 27). The vertical dotted
line indicates the roughening temperature, T~, as determined
from Monte Carlo studies (Ref. 3). The vertical solid line is
the 3D critical temperature (Ref. 5).
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FIG. 8. The fractional difference between the transfer-
matrix roughening temperature, T~™,as determined from
si, ~(T)/knTn = 7r/2, and the roughening temperature
found from Monte Carlo simulations (Ref. 3), Ta . The error
bars (shown only for L=3) result from uncertainty in T~

taneously for s(T), m(T), and p(T). The step free energy
s(T) discussed in this article is the step free energy for
an interface parallel to the xz plane. A low-temperature
expansion for the step free energy of inclined planes can
be found in Ref. 15.

Unfortunately, numerical convergence difFiculties limit
to very small systems our studies of interfaces at very low
temperatures. Furthermore, quantities near TR, where
we can use larger systems, may be expected to be di%cult
to estimate due to the KT transition. Nevertheless, the
estimates of s(T) rapidly converge at low temperatures,
so that the limitation to small systems may not present
difhculties in estimating the step free energy. Also, the
estimates of s(T) are rather insensitive to the values of tU

and p(T), so that problems at low temperatures with the
last two quantities (described below) do not seem to cre-
ate difficulties in the estimates of s(T). This is because
the divergence of the correlation length at low tempera-

the previous estimates ' over a wide range of temper-
atures between TR and T .

In Fig. 7(b) we show the estimate for r(T) that re-
sults from using Eq. (26). Comparison with the series
expansion and Monte Carlo estimates shows that Bnite-
size corrections to Eq. (26) cannot be neglected at any
temperature for the systems we studied.

The surface stiKness coeKcient for the infinite system
shows a characteristic KT discontinuity ' at TR, jump-
ing from K(T) = oo for all T ( TIt to r(T)/k~T = 7r/2
for T=T&. If we use the criterion K(TIt)/k~TR = vr/2
to estimate TR while using antiperiodic boundary con-
ditions, we And that the estimated value of TR depends
most strongly on the value of M (Fig. 8). For the system
(L, M) = (3, 8), we find TIt 2.337J/k~. This repre
sents a deviation of approximately 5/c from the Monte
Carlo estimates, and is comparable with our alterna-
tive estimates of TR discussed in Sec. VI. Although the
convergence in Fig. 8 appears to be roughly power law
in behavior, much slower convergence should be expected
for large systems due to the KT nature of the roughening
transition.
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V. THE STEP FREE ENERGY

For T (TR, a SOS calculation indicates that the corre-
lation length for antiperiodic boundary conditions should
scale as

L1 M1
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Ms(T) . vr

Q, NI(T) —y(T)M exp sin
kgT 2I. (27)

where p, (T) = —exp[tUC(T, L/M)], and C(T, L/M) is a
function possibly of the temperature, boundary condi-
tions, and shape of the layer, but is independent of the
size of the layer. The boundary conditions in the z direc-
tion may be either periodic [Fig. 9(a)] or free [Fig. 9(b)].
By taking three diferent values of M we can solve simul-

FIG. 9. The estimates for the step-free energy using an-
tiperiodic boundary conditions in the y direction. Estimates
using periodic and free boundary conditions in the z direc-
tion are given by (a) s ~(T) and (b) s (T), respectively. By
keeping the temperature constant and taking three different
values of I (and any combination of values of I ), we solve
Eq. (27) simultaneously for s, ui, and p. The solid curve is the
2D surface free energy. The dashed curve shows the estimate
Eq. (29) (Refs. 24 and 61).
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tures is dominated by the exponential factor in Eq. (27),
which contains the step &ee energy.

The estimates of s(T) derived from Eq. (27) are com-
pared in Fig. 9 with approximations valid either near
T =0 or near T = T@. At low temperatures the interface
becomes a series of plateaus separated in height from
their neighbors by one lattice spacing. These plateaus
are equivalent to domains in a 2D system; '2 the equiv-
alence is exact at T = 0. This yields the well-known
approximation

a caution that the asymptotic scaling regime, in which
corrections to Eq. (27) can be expected to be very small,
has not been reached with the current small systems. The
parameter p(T) (not shown) is consistent with iU = 0 at
low temperatures.

For plus/minus boundary conditions, the scaling rela-
tion

s(T) = r (T) . (28)
37r . 7r

2(L+ 2) 2(L+ 2)
We use 7 (T) as an approximation to s(T) for T((T~
for the following reasons: It provides a simple phys-
ical picture, it agrees with the erst several terms of
low-temperature series expansions of s(T); it has been
solved exactly; and the 2D critical temperature is a
rigorous lower bound on T~. At higher temperatures
(T T~), s(T) shows the characteristic KT essential sin-
gularity at T~, and is given by

.(T) / ~ T,—exp
k~T ( 2c TR —T )

(29)

where the nonuniversal parameter c has been found by
Monte Carlo simulations to be e = 1.57+ 0.07. In
Fig. 9 we have calculated the estimate Eq. (29) with c=
vr/2.

The correspondence between a low-temperature inter-
face in 3D and a 2D system ensures ' that for pe-
riodic boundary conditions in the z direction m = 1/2,
whereas for free boundary conditions in the z direction
tu =0. Our estimates, however, have ve =0 for sufficiently
low temperatures for both sets of boundary conditions
(Fig. 10). The incorrect estimate for io in the case of
periodic boundary conditions in the z direction provides

is expected in analogy with Eq. (27) on the basis of an-
other SOS calculation. '22 The analysis for Eq. (30) par-
allels that for Eq. (27), so that at zero temperature we
should find that for periodic boundary conditions in the
z direction to = 1/2, and that for free boundary condi-
tions zU = 0. In this case the values extracted for s(T)
(not shown) for difFerent system sizes are inconsistent
with each other even at low temperatures, and the cor-
responding values of iu (also not shown) show no pattern
whatsoever.

In short, the scaling relation of Eq. (27) yields values
of the step free energy that are consistent with the low-
ternperature approximation 7 (T), whereas Eq. (30)
does not even yield consistent estimates at low tempera-
tures. The parameter m(T) is found to be wrong at low
temperatures when calculated from Eq. (27) with peri-
odic boundary conditions in the z direction, and when
calculated from Eq. (30) it yields inconsistent values. It is
thus apparent that large corrections to scaling are present
for the systems in this study.

VI. THE CALLAN-SYMANZIK P FUNCTION
IN THE ROUGH PHASE
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FIG. 10. The estimates for the exponent m, found by solv-
ing Eq. (27) for s(T), w, and p(T), where the boundary con-
ditions in the y direction are antiperiodic. It is known that
at T = 0 w = 1/2 for periodic boundary conditions (ap) in
the z direction and that m = 0 for free boundary conditions
(af). At low temperatures our transfer-matrix estimates give
that to = 0 for both sets of boundary conditions, indicating
the presence of substantial corrections to scaling.

In Secs. IV B and V we have evaluated terms in the
surface tension from FSS relations for the correlation
length ' in 3D for 0( T(Tc. As discussed in Sec. IVB,
for T~ & T & T each of the M cross-sections parallel
with the xy plane makes a contribution to the correla-
tion length in an oo x I x M system, which is of the
same form as the correlation length in a 2D system of
width L. From this argument we have Eqs. (25) and
(26), which give (I, ~ oc M for either antiperiodic or
plus/minus boundary conditions. Such linear divergence
with system size of the correlation length is characteristic
of a critical point, and indicates that the rough phase
of the interface is a critical phase. A quantity that has
proven particularly useful in locating such extended crit-
ical phases in previous studies (e.g. , Refs. 65 and 66)
of systems with KT behavior is the Roomany-Wyld ap-
proximant to the Callan-Symanzik P function. ' This
approximant is de6.ned by

(d ln[(I. , M /L ])/(d ln M) —1

(din[(I, M/L ])/(dT)

where the derivative with respect to lnM is evaluated
by multiple-point finite differences. [There should be
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FIG. 11. Finite-size estimates for the Callan-Symanzik P

function, given in Eq. (31). Results are shown both for sets
of systems with square cross sections and for extrapolations
based on Eq. (32). The solid curve comes from inserting the
estimate of Eq. (29) (Ref. 61) for 8(T) for T =TR into Eq. (27).
The dashed curve comes from an approximation of the step-
free energy by the 2D surface-free energy in Eq. (27).

no confusion between PL, M (T) and the dimensionless in-
verse temperature, which is called P in the appendixes. ]
Within the region where a "critical interface" exists, one
should have Pl, M(T) = const 0. In this section we apply
the P function to the 3D Ising model with antiperiodic
boundary conditions in order to obtain independent TM
FSS estimates both for T~ and for the (size-dependent)
temperature where the rough-interface phase is destroyed
by critical-point Huctuations in the small systems we are
studying.

In Fig. 11 we show various estimates of Pl, M (T) for the
case of antiperiodic boundary conditions in the y direc-
tion and periodic boundary conditions in the z direction.
Finite-size effects were larger for the case of free bound-
ary conditions in the z direction and much larger for the
case of plus/minus boundary conditions in the y direc-
tion, so these results are not shown. The dashed curve
near T = 0 is the value of limL, M~~ PI, M(T), where
&2D(T) is substituted for s(T) in Eq. (27). If the scaling
relations of Eqs. (27) and (30) for T & TR are to join
continuously with the scaling relations of Eqs. (25) and
(26) for T )T~ at T~, then ur(TIt) = 1. The solid curve
for T & TR traces liml. M~~ Pl, M(T) under the assump-
tions that Eq. (27) holds near TR with ui = 1, and that
the step-free energy near TR is given by Eq. (29). The
agreement of the data in Fig. 11 with this portion of the
solid curve is good despite the fact that Eq. (27) is based
on the assumption that the terraces in the interface are
well separated, which is not the case near TR. The solid
horizontal line Pl, ~(T) = 0 for the temperature range
TR & T & T shows liml. ~~ Pi, M(T) assuming that
Eq. (25) holds in this range.

The finite-size estimates for PL, M(T) are of two types.
The first type consists of evaluating (din[(I, M/L ])/
(din M) by a three-point estimate while holding L can-
stant, and then making the empirical extrapolation

PI, (~ + )(T) = Pl. M(T) + a(T) exp[ —b(T)M],

where a(T) and b(T) are unknowns that depend only on
temperature. (The only justification for this extrapola-
tion procedure is that it appears to work nicely for small
systems, although we expect logarithmic convergence for
large systems because roughening is a KT transition. 59)

For L ) 3 this yields results which depend little on
M and show the emergence of a plateau near TR with
PL, M(T) —0.06. Even for L = 5, critical finite-L ef-
fects destroy the plateau for temperatures greater than
about 3.2J/kii. The extrapolated value of Pl, (M~ )(T)
for L = 3 does not show any plateau, but there is a change
in concavity at about 2.41J/k&, where the critical finite-
L effect gives way to the T (TR behavior.

The second type of finite-size estimate is made by us-
ing only systems with square cross sections (L = M) in
the numerical evaluation of (din[(I. M/L ])/(din M) in
Eq. (31). For the largest such pair of systems, this esti-
mate of Pl, M (T) yields a plateau at Pl, M (T) ——0.2.

In either case, the onset of the plateau (which cor-
responds to an estimate of TR) can be defined by a
peak in d Pl, M(T)/dT . This estimate yields TR
2.3J/kii, which is approximately the same as that found
in Sec. IVB. The high-temperature end. of the plateau
seems to correspond to the temperature at which criti-
cal finite-L effects become large in the interface internal
energy (not shown), which is given by

T2 ~(~/T)
BT

VII. DISCUSSION AND CONCLUSION

As a nonperturbative numerical method for study-
ing semi-infinite systems in equilibrium, numerical
transfer-matrix (TM) calculations followed by finite-size
scaling ' (FSS) provide an appealing alternative to the
analytical and Monte Carlo methods which have been
used to study interfaces in the Ising model. Neverthe-
less, the rapid growth of the order of the transfer matrix
with system size has limited most previous studies to
solid-on-solid (SOS) and capillary-wave approximations.

In this paper we have performed large-scale numeri-
cal TM calculations on a Cray Y-MP/432 and a Think-
ing Machines Corporation CM2 to obtain the correla-
tion lengths and free energies of 2D and 3D Ising fer-
romagnets with interfaces, which are related to the sur-
face tension anisotropy through the scaling relations de-
rived in Refs. 21 and 22. In 2D we are able to ana-
lyze the corrections to scaling. In 3D we are only able
to confirm the scaling relations for antiperiodic bound-
ary conditions, and the resulting estimates for 7 (T) and
K(T) agree well with estimates from series expansions im-
proved with Pade approximants and. from Monte Carlo
simulations. For plus/minus boundary conditions the
finite-size effects in our estimates are still large, even for
the largest systems which can be studied using current
supercomputers and algorithms, and the asymptotic scal-
ing regime has not been reached.

We find that although in 2D the surface free energy
converges exponentially for antiperiodic boundary con-
ditions, for plus/minus boundary conditions the conver-
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gence obeys a power law. The effective scaling exponent
for plus/minus boundary conditions is a function only of
the critical scaling variable tL, and varies monotonically
from 1 at tL = 0 to 2 as tL ~ oo. Although the exact
value of r(T) is not known in 3D for arbitrary temper-
atures, our numerical results for L = M agree well with
the estimates of Refs. 27 and 50. In 3D we are not able
to make a quantitative study of the scaling.

In 2D the surface stiffness coeKcient is found from
scaling relations based on capillary-wave studies. ' For
antiperiodic boundary conditions we find that rl (T) at
any Bxed. temperature T & T converges in a power-law
fashion with an effective exponent similar to that found
for r~+~ l(T). Specifically, for large L the exponent is
a function only of the critical scaling variable tL, and
varies from 1 at tL =0 to 2 as tL ~ oo, though not mono-
tonically. By using the "reduced" correlation length, a
monotonic exponent, discussed in Appendix B, can be
calculated in the infinite-lattice limit. For plus/minus

boundary conditions v& (T) converges simply as I/I.
The estimates for K(T) in 3D are based on scaling

relations similar to those in 2D because of the similar-
ity of a cross section in 3D to a 2D system. These
estimates ' in the case of antiperiodic boundary con-
ditions agree well with both series and Monte Carlo
estimates. Plus/minus boundary conditions lead to large
firute-size effects in the estimates of K(T) at all temper-
atures. Estimates for the roughening temperature based
on the KT relation K(T~)/k~T& ——7r/2 (Refs. 7, 8, and
58) depend more strongly on the value of M than on
the value of L. For (L, M) = (3, 8), this estimate yields
TQ ~ 2.3.

Solid-on-solid arguments have yielded scaling relations
for the correlation length) ' which we exploit to find
s(T). In the case of antiperiodic boundary conditions,
the estimates for s(T) agree well with other approxima-
tions at low temperatures. The low-temperature value
of the fitting parameter iii of Eq. (27) for systems with
periodic boundary conditions in the z direction, how-
ever, is in contradiction with known results. ' This
indicates the presence of corrections to scaling for the
correlation length in the small systems of this study.
These corrections are even more pronounced in the case
of plus/minus boundary conditions, where the values of
s(T) estimated from different system sizes are inconsis-
tent even at low temperatures.

The rough phase of the interface, which is a type of crit-
ical phase, displays scaling behavior for the correlation
length, which is similar to that of other critical systems.
Specifically, as a result of Eq. (25), we have ( Ix M. We
used the Roomany-Wyld approximant to search for a
plateau in the Callan-Symanzik P function, 4 4i which
corresponds to this critical temperature range. The on-
set of the plateau agrees roughly with the estimate of T~
from Sec. IV B, while the end of the plateau corresponds
to the onset of large-scale finite-size corrections in the
interface internal energy caused by the disappearance of
the interface at T .

In summary, we have provided transfer-matrix finite-
size scaling estimates of the quantities which charac-
terize the surface-tension anisotropy in two- and three-

dimensional Ising ferromagnets: the surface free energy
7 (T), the surface stiffness coeKcient r(T), and the step
free energy s(T). Our results support the analytically ob-
tained relations of Refs. 21 and 22 and are fully consistent
with existing series and Monte Carlo estimates. ' How-
ever, we Bnd that in the three-dimensional case the lim-
itations of current computer technology and algorithms
do not permit transfer-matrix studies of suKciently large
systems to improve on the numerical accuracy of the pre-
viously existing estimates.
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APPENDIX A: COMPUTATIONAL DETAILS

This appendix contains details about the algorithms
used in the diagonalization and the programming imple-
mentation of these algorithms. In this appendix we take
k~ ——J= 1, so that all quantities are dimensionless.

If each of the identical layers has A spin sites, the
2 x 2 transfer matrix T in Eq. (6) can be decomposed
into the product of two matrices, T = AD. The matrix
D, which can be chosen to be diagonal, takes into ac-
count both interactions between spins in the same layer
and interactions of the spins with a magnetic Beld. The
matrix A takes into account the interaction between one
layer and the next layer in the manner of the third line of
Eq. (6). It is a direct (Kronecker) product of A identical
2 x 2 matrices

where P = I/T. In both of the algorithms used, as de-
scribed below, the core of the algorithm demands that
for any given vector v one can obtain a vector w = Tv.
In order to be able to find even a few of the largest eigen-
values of T with A large, one needs to minimize the com-
puter storage required. This means that only a few (typ-
ically between 2 and 20) vectors of size 2 can be stored,
whereas the entire 2 elements of T cannot be stored.
The matrix D only requires storage of 2 elements, so it
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is computed once for each temperature and stored. All of
the boundary conditions used in this paper are incorpo-
rated into the matrix D. Two slightly di8'erent methods
of computing Ax were used.

Although the size of the matrix T can be reduced by
consideration of the symmetries of the model, the savings
in computer storage are not great in systems into which
an interface, which breaks many symmetries, has been
introduced. Furthermore, the symmetry-reduced matrix
would reduce the speed of the diagonalization program
discussed below on the CM-2 by complicating interpro-
cessor communications. Since very few systems with rea-
sonable aspect ratios could be added by using symmetry
reduction, and because it would be inefFicient to imple-
ment symmetry reduction on the systems now accessible,
we have not pursued this.

For A & 19, the Numerical Algorithms Group (NAG)
routine F02FJE was used on the Florida State University
Cray Y-MP computer, which has 32 M%'ords of memory.
This routine required use of the symmetric transfer ma-
trix D AD . One can write A = A~A~ ~

~ A~,
where each 2 x 2 matrix A; is a direct product of
A —1 identity matrices of size 2 x 2 and the matrix
a in position i. A permutation matrix P can be de-
Gned such that P Ai P Ai+1 with AA+1 Ay In
other words, P permutes the matrices within the Kro-
necker product in a cyclic fashion. 7 For any j, it
follows that A = P ~+ AzP~, and thus one obtains
A = P + Ai(PAi) . Since P is the identity ma-
trix, all one needs to do is to program the multiplication
of a vector by Az and by P and repeat these A times to
obtain the multiplication by A. The matrix A& has only
two nonzero elements in each row and column, so multi-
plication by Az can be eKciently programmed. One way
of doing this is to break the vector to be multiplied into
an upper and a lower part, each having 2 elements.
Then

') i ')
The matrix P acts on a vector as P(" ) = w, with the
ith even element of w given by the ith element of vp and
the ith odd element of vv given by the ith element of v
The multiplication by P can be efFiciently programmed
using scatter-gather routines on a vector computer.

For 14 & A & 25, a double precision program in
FORTRAN/PARIS for a Thinking Machines Corporation
massively parallel CM-2 computer was used for the diag-
onalization. The use of the PARIS programming language
was essential for diagonalization of the large matrices,
since the FORTRAN compiler would have otherwise allo-
cated more than the minimum number of arrays. Pro-
gramming simplicity in the PARIS portion of the program
required that the number of 1-bit processors used be less
than or equal to the size of a single vector. The CM-
2 available has 2 processors, and can be divided into
quarters with 2 processors each, giving the limit 14 & A.
The upper limit was imposed by the computer memory
on the CM-2. To calculate the correlation length, at least
two vectors need to be iterated. This entailed storing
six double-precision (64-bit) vectors: One of these was a

APPENDIX B: THE SCALING EXPONENT
FOR 6, IN 2D

In Eq. (22a) in Sec. IV A we presented the exact result
for an effective scaling exponent b(L, T) such that

rr, (T) —r(T) = oL

In analogy with Eq. (20),

d ln[r L, (T) —r (T)]
din L

L drL (T)
rr, (T) —r(T) dL

(B2)

work vector, one was the vector associated with the diag-
onal matrix D, and two vectors each were for the current
iteration vector and for the next iteration vector. In ad-
dition, A —1 single-bit vectors were used to efhciently
implement the multiplication of a vector by the matri-
ces A;. (Temporary vectors used in the formation of the
bit vectors and of the diagonal matrix were discarded
before the 64-bit iteration vectors were allocated. ) For
A = 25, this required use of 1.7 Gbytes of the available
2 Gbytes of main memory on the CM-2. The implementa-
tion of the multiplication by one of the A matrices A; was
made using the hypercube communication of the CM-2
computer. This was done by using the decomposition
A; = e~I + e ~X, . Here J is the 2 x 2 identity matrix,
and. the permutation matrix X; is a direct product of A—1
identity matrices of size 2 x 2 and the matrix X = (io)
in the ith position. The multiplication by the X, ma-
trices was performed using eKcient communication with
the PARIs command GET&ROM POWER TWO, which
allows hypercube communication to elements a power of
two away.

The program was written to diagonalize any real ma-
trix with both the largest eigenvalues and corresponding
eigenvectors real. The algorithm used is based on a gener-
alized power method and proceeds as follows. A 2 xR
matrix U is initialized with random elements. Due to
constraints of the PARIs program, R must be an integer
power of 2, and rnernory constraints dictate that R=2 if
A =25. Then the 2 xR matrix V = TU is obtained using
the multiplication procedure d.escribed above for each of
the R vectors in V. Two R x R matrices 8 = U U and
Q = U V are then formed. The eigenvalue equation
8 Qg = g'D is then solved to find the BxB diagonal
matrix of eigenvalues 'V and the RxR orthogonal matrix
of normalized eigenvectors g. The diagonal elements of
D provide the estimates for the eigenvalues of the trans-
fer matrix T for this iteration. The matrix U is then
updated by U +- Vg, and the process is repeated.

Near T typically about 25 iterations were necessary
to obtain convergence of the correlation length to one
part in 10 . However, at lower temperatures many more
iterations were required for convergence. Near T for A =
25, the computer time required for convergence on the 2
processor CM-2 with double-precision Weitek floating-
point accelerators was about 15 min.
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This appendix contains a sketch of a derivation of
Eq. (22a), which is made by rewriting the functions
in Eq. (B3) in terms of the reduced temperature t
(T —T)/T, and the critical scaling variable x = tL, and
then keeping only the O(1) term in t at fixed x. In this
appendix we take k~ ——J = 1 and measure the surface
stiffness coeKcient in units of k~T, so that all quantities
are dimensionless.

First, we define the functions which are to be ex-
panded. These are ' ' the inverse temperature

It is convenient to define

= sinh (1) . (B11)

A little algebra then yields the Taylor expansion

(B12)

With this result, and with L =x/t, it is easy to find that

(7rt ')
cosh'(7r/L) = A —cos ~—

P= 1/T,

the Onsager angles

p (0) = 2p + ln [tanh(p) ]

and

p(7r/L) = cosh [A —cos(7r/L)],

(B4)

(B5a)

(B5b)

= (2+2c t ) — 1 ——
2 x )

= 1+ —g (x)t',
2

where for convenience we have defined

(B13)

where

cosh (2P)
sinh(2P)

(B6)

]2) +(-)' (B14)

the "reduced" mass gap, which is the sum of the mass
gaps for antiperiodic and periodic boundary conditions,

m~(T) = [dr~(T)]—:[Q (T)] + [(~(T)]
= ~( /L) - ~(0),

the reduced surface stiffness coeKcient

Vr2

KL, (T) =
2L 2m'

(B7)

(B8)

and the surface stiffness coefFicient in the limit I —+ oo

r = sinhp(0) .

Now taking cosh of Eq. (B13) gives

, ( 7rt
p(7r/L) = cosh

~

A —cos
)

= g(x)& .

We also expand p(0) in a Taylor series to give

p(0) = 2P + ln (tanh[P])

dt t=ot=o
0+ 2ct

From Eq. (B9) this implies

(B15)

(B16)

d/r, l.(T)
dL

so that

vr —2 1 dms
2L2ms L ms d'L

—2 1 dp(o/L)
)L mg dL

—2 ir dp(vr/L)
L'm~ d(~/L)

1 KL, sin(vr/L)

Q]A —cos]o/1, )]s —1I
(B10b)

S(L, T) =
/rg(T) —K(T)

1 Kl, sin(7r/L)

Q]A —cos(o/I) f* —I)
(B10c)

Note that although L was initially allowed to take only
integer values in Eqs. (B5b)—(B8), we drop this constraint
to find a function Kl, (T), which is smooth and diff'eren-

tiable with respect to L.
Inserting Eqs. (B4)—(B9) into Eq. (B3), we find

2ct. (B17)
Using Eqs. (B7), (B8), (B15), and (B16) provides

K't'
2-'(~ (-/L) —~ (0))

vr't

2x2(g(x) —2c)
'

In order to evaluate b(x) it is also necessary to utilize

dp(7r/L) sin(ir/L)

(B18)

d(7r/L)
[A —cos (ir/L) ]

—12

(~t/x)

[1 + 2 g (x)t2I 1

xg(x)
Then, using Eq. (B10a)

dKI, —2 7r dp(7r/L)
dL L L2m d(n/L)

7r2t —2t 2 „7r+ —k,g (B20)
2x2[g(x) —2c] x 7r xg(x)

Using this and Eq. (B18) we find
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dKL, —2t 2kL,I =I, '*'Ig(*) —'~l »gi*) )
7r2t

2*'Ig(*) —2~) )
7r2

X ]. —
'*'gi*)fg(*) —2~) ) (B21)

Finally we can combine Eqs. (B3), (B17), (Blg), and
(B21) to obtain

L dKI. (T)
rl, (T) —)c(T) dL
i' ~'t/2x' [g (x) —2c]

( (~'&/2x'[g(x) —2c]) —2ct )
r 7r2x! 1—

!»'g(*) [g(*) —2c] )

( 1 —4cx' [g(x) —2c]/7r' )
7r2 lx! 1—

!»'g(*) [g(x) —2c] l
'

b(x) =—

which is correct to O(1) in t. Since we are interested in

b(x) in the limit t ~ 0 (which for fixed x necessarily
means L —+ oo), this is the final answer.

It is instructive to determine b(x) for x = 0 and x ~
oo. Since we can write

xg(x) = Q(2cx)'+ vr',

we immediately Qnd

lim xg(x) = z..
~—+0

Substituting this into Eq. (B22), we find

b(x = 0) = 1,

(B23)

(B25)

lim b(x) = 2.

which agrees with critical scaling. We also note that

7r 2 1 7r
lim T [g(z) —2c] = lim c ( ) i ——

( )
(B26)

s«hat Eq. (B22) yield~
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