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A general expression for the energy-loss probability in scanning transmission electron microscopy val-

id for complex microstructures is presented in the framework of classical dielectric theory. Calculations
are carried out for small particles half embedded in a planar interface. We used experimental data for
the dielectric functions that characterize the media and we take into account the coupling among
different multipolar terms. Resonances, present neither in the planar-interface nor in the isolated-sphere
energy-loss spectra, are found. The results agree with many experimental results reported in the litera-
ture of the last few years. A different behavior between conducting and insulator supports is found. The
effect of an oxide coating around the spherical particle is also discussed.

I. INTRODUCTION

In the last decade, electron-energy-loss spectroscopy
(EELS) in scanning transmission electron microscopy
(STEM) has become a useful tool in the study of micros-
tructural systems such as catalysts or semiconductor de-
vices. The first EELS experiments with small particles
(of 10—100 nm) using an extended electron beam were
performed by Fujimoto and Komaki. ' With the devel-
opment of the STEM microscope it has been possible to
use focused beams of around 0.5-nm width and 100-KeV
energy. With these conditions, Batson ' performed ex-
periments varying the probe impact parameter across
small particles. The classical dielectric theory has been
proved to describe successfully those experiments. ' Fer-
rell and Echenique obtained an expression of the
energy-loss probability that contains many multipolar
terms and allows use of the experimental dielectric func-
tions to characterize the sphere and the surrounding
medium. Echenique, Bausells, and Rivacoba used a
self-energy treatment to obtain the energy-loss probabili-
ty in small spheres, including also the case of penetrating
trajectories. In most experimental situations, the small
metallic particles appear covered with an oxide layer of a
few nanometers. The inhuence of an oxide layer has been
extensively studied in the literature; ' it causes a dis-
placement of the surface plasmon excitation toward
lower energies as the oxide thickness increases. The
model has been extended to consider nonlocal dielectric
functions to characterize the different media of the tar-
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In the aforementioned works, small particles have been
considered as isolated spheres immersed in an infinite
medium. Nevertheless, this approximation seems to be
insufficient to describe some experiments in which the
particles appear in clusters or partially embedded in a
matrix of another material. Batson' ' ' observed anoma-

ious peaks in the region of 2 —5 eV in the energy-loss
spectrum of fast electrons in 10—50-nm oxide-coated Al
spheres that he attributed to the interaction of two neigh-
boring spheres. Ugarte and co-workers also report-
ed a 3—4-eV excitation surface mode in Si-oxidized parti-
cles, not predicted by the one-layer, oxide-coated, sphere
model, that they interpreted with the introduction of a
second ultrathin (of around 0.5 nm) conducting layer. As
has been reported in the literature, small Al particles can
be obtained by irradiating A1F3 films with the STEM mi-
croscope. Howie and Walsh have studied systems of
Al small particles in a matrix of A1F3, and studied them
in terms of dielectric excitation theory for a two-phase
medium. They find that even the most sophisticated
effective-medium theories available ' are not quite suc-
cessful in explaining their energy-loss spectra. They ob-
tain a better fit to their observations by considering an
effective loss function that is an average over different
parts of typical trajectories in the complex medium. As
they state, the development of that theory would allow its
applicability to a wide range of microstructural problems.
Wang and Cowley have reported an extended exper-
imental study on the effect of different supports on the
energy-loss spectra in Al particles.

Different attempts have been done in the literature to
extend the theoretical models to those situations of mixed
geometries such as, for example, systems of two
spheres, ' " two cylinders, or a sphere-plane sys-
tem. ' In many of those works the surface modes in
such kind of systems have been studied avoiding the cou-
pling between different multipolar terms. ' ' Never-
theless, that approach is not valid when the different
components of the system are very close or inter-
penetrate. Wang and Cowley studied the sphere-plane
system when the sphere is half embedded in the support,
but their theoretical approach is unsatisfactory insofar as
they mix time and frequency in solving the Poisson equa-
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tion. From their derivation of the energy-loss probabili-
ty, they are not able to recover the single-surface limits.

In this work, a general formalism to calculate the
energy-loss probability valid for a wide range of experi-
mental STEM situations is presented first. The expres-
sion so obtained is applied to the problem of a small par-
ticle coupled to a planar interface (half embedded in it).
Experimental optical data for the complex dielectric
functions e(co) are used to characterize the different
media, in order to obtain good fitting with the experimen-
tal results available. Special emphasis is placed on the
corrections introduced in the loss probability spectrum
by the presence of the support. From our expressions,
the energy-loss probability of the isolated sphere is ob-
tained as the particular case which occurs when the
dielectric functions of the two media around the particle
become the same. Different cases of particular experi-
mental interest are considered, as aluminum or silicon
particles in different supporting media. The effect of the
oxide coating around the particle on the energy-loss
probability is studied, as well.

II. GENERAL DIELECTRIC FORMALISM

In this section we introduce a general formalism to cal-
culate the energy-loss probability of a moving point
charge in the framework of dielectric theory. The target
is described by a set of local dielectric functions e;(co).
An advantage of the following formalism is that the ex-
pressions obtained are available for any local dielectric
response function, so that experimental data can be used
in the computations. Nonlocal effects have been found to
be relevant at probe-surface distances smaller than about
1 A. Therefore, our approach is valid for trajectories in
which the electron expends most of the time at distances

I

V W(r, r', co)= — 5(r —r') .
e(~)

The solution of the particular electrostaticlike problem is
obtained by matching the boundary conditions at the
different limiting interfaces, that is the continuity of the
potential and the normal component of the displacement
field.

In most STEM situations the probe electron can be
considered as moving with velocity v parallel to the x
axis. Then its trajectory is given by r=(x =ut, b, b, ),
and the co component of its charge density is

p(r, co)= ——e' " '5(y b)5(z b—, ) . —l coax /U (3)

The magnitude involved in the calculation of the energy
loss of the electron is just the induced part of the total
potential. In terms of the induced part of the screened
interaction, it is obtained as follows:

larger than 1 A from the interface. In the following, all
the equations are expressed in atomic units.

The interaction between the electron and the target is
given by the induced potential, that is the solution of the
Poisson equation where the direct Coulombian term has
been removed. In Fourier co space the total potential is
given by

V' N(r, to) = — p(r, co),4~
e(co )

where p(r, co) is the charge density in the co space. The
problem can also be described in terms of the screened in-
teraction W(r, r', co), i.e., the solution of Eq. (1) for a point
electron at rest at r'. Then that function satisfies the
Green's equation

&yind( t )
+oo +oo

2' U —oo —oo
dX e im(t —x—'Iv) P'ind(r r ~)

traj
(4)

where r' in 8"""is evaluated at the trajectory, i.e., y'=b„
and z'=b, . The total-energy loss can be calculated as the
work developed against the retarding electric field acting
on the electron along the whole trajectory:

8 = Q (P 1IlCi

8x
Bx tray

d q&ind )

traj
dt,

where the derivatives of the potential are evaluated at the
trajectory (t=xlu, y=b, z=b, ). In many cases of in-
terest, Eq. (5) becomes

traj

8x

since when the induced potential is the same at both ends
of the trajectory, i.e., @'"d(x = —no ) =4&'" (x = + oo), the
integration in @'"d in the right-hand side of expression (5)
annulates. Then, if the total energy loss is expressed in

terms of the energy-loss probability P(to) as usual,

W= f den toP(co)
0

and taking into account the properties of parity with
respect to co fulfilled by e(co) and W(r, r', to), the energy-
loss probability is given by the following double integral
along the electron's trajectory:

P(to) = f "dx' f dx Im[ W'" (r, r', co)

—i co(,x —x')/v)

where boih r and r' are evaluated at the trajectory. This
last condition can be incorporated by means of Eq. (3).
Then the meaning of P(to) is more clear when expressed
in terms of the charge o~'sity:

P(co)= —f dr' f drlm[p*(r, co)W'" (r, r', co)

Xp(r', co)),
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where p* means the complex conjugate of p. In this way,
the energy-loss probability can be understood as the aver-
age value of the imaginary part of the screened interac-
tion over the whole trajectory. Furthermore, Eq. (9) has
a wider range of applicability, ' it is not just restricted to
the special trajectory considered in our problem, as it is
the case of Eq. (8).

Note that the validity of both Eqs. (8) and (9) is re-
stricted to those situations which occur when the previ-
ously mentioned condition for the induced potential is
applicable. That condition can be better understood in
the framework of the time-dependent perturbation
theory. In this way, one avoids the elastic contributions
to the energy loss, which vanish when considering the
whole trajectory. That is trivially fulfilled in the case of
Gnite targets, since the potential then annulates at both
extremes of the trajectory. The condition holds for
infinite targets as well whenever the initial and final
probe-target state is the same. For instance, in the case
of a planar interface, the previous expressions remain val-
id for trajectories parallel to the plane (or for the case of
specular reAection), but they are not applicable to
penetrating trajectories. The known expressions for films
in normal incidence and for isolated particles are
recovered from ours, as is to be expected. This allows the
application of expression (8) for calculating the energy-
loss probability in complex structures such as small parti-
cles supported in a large planar interface (as is discussed
in Sec. IIA). On the other hand, it should be noticed
that, for finite targets, the model allows calculation of the
energy loss due to the whole trajectory (which is just the
magnitude measured in the EELS analyzer), and does not
give the stopping power at different trajectory points.
Nevertheless, in the case of an electron moving parallel to
a planar or cylindrical interface (where the condition is
fulfilled at any point of the trajectory) the well-known ex-
pressions of the stopping power are straightforward-
ly obtained. In the self-energy formalism, considering
well-focused beams and neglecting the recoil of the probe,
the same expression (8) is obtained. In that treat-
ment ' the energy-loss probability is related to the
energy-loss rate y experienced by the particle, which in
turn is given in terms of the imaginary part of the in-
cident electron self-energy Xo by y= —2 Im(X&). There,
the self-energy is written in terms of the Green's function
and the screened interaction W'(r, r', co), and the electron
is described by a wave packet. The connection between
classical and quantal models was first pointed out by
Ritchie and Ritchie and Bowie.

FICs. 1. Electron traveling near a half-embedded sphere. The
trajectory is defined by x =Ut, y =b~ and z =b, . The spherical
coordinates r, P, and p=cos8 used to solve the problem are also
indicated. The different media are characterized by the local
dielectric functions c&(co), c2(co), and c3(~).

To illustrate the application of the models, we examine
below the case of a spherical particle coupled to a planar
interface.

A. Small particle coupled to a planar interface:
Half-embedded particle

The previous treatment is general, allowing application
to different geometries, but now we restrict the analysis
to the particular geometry sketched in Fig. 1. This
geometry represents the common experimental situation
in which the particle is supported by a large surface. The
dielectric response functions of the particle and the sur-
rounding media are E3(co), E, (co), and E2(co), respectively.
The applicability of Eq. (8) to this case is ensured since
the electron trajectory is parallel to the interface, and the
initial and final electron-plane system states remain in-
variant, as explained above. We consider trajectories in
the upper medium parallel to the interface and external
to the particle. The problem of trajectories penetrating
the particle also can be studied by this method. To solve
the electrostaticlike problem, we write first the screened
interaction functions W(r, r', co) at the three media. In
the region external to the small particle, we write the
solution as one part corresponding to the planar interface
(image charges), plus the appropriate multipolar expan-
sion to yield the effect of the small particle:"

oo a'+ g g At, , Pi (p)e™~~) r~a, 0~0~—

(10)

oo I

~3( r ~) g g CI i+i I (P)e
l —pm — I a

r'=(r', O', P') denotes the electron position in spherical coordinates, r"=(r', rr O', P') that of its image with —respect to
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the plane, and p=cosO. The advantage of this procedure is that now the boundary conditions on the plane must be
matched only with the multipolar series, as the image charge fulfill them trivially. After doing so, the following relation
is obtained between the coe%cients:

+1m Ilm ~1m

with

I, l+m even

c. /cl, I+m odd .

When matching the boundary conditions on the spherical surface r =a, for 0~ +/2 and 0~ m/2, a set of systems of
linear equations (one for each value of m 0) is obtained for the coefficients A&

I+I
[(e,I —E3J')g, +( —1)'+'(lE2 —jE3)]Mi

1 2 1

( —1)'+'. E,(I+1)+E3J'+ [((+1)ez+jE3] -Mp~, (12)
I 91m

for j and l =m, . . . , ~. Here

~1m = (I —m )!
(l +m)!

The elements of matrix M1. are the following integrals of Legendre functions products:
1

MP,
= f PJ (V)P) (p)dp.

0

(13)

Numerical values of those integrals can be found in the literature, ' ' for l +j even. Then they become
M&J =[5.&/(21+1)][(1+m)!/(I—m)!], where 5

&
is the Kronecker delta. For 1+j odd, the integrals must be numeri-

cally computed. A fast way of computing these integrals by using the recurrence relations among the Legendre func-
tions has been reported.

As it is deduced from expression (12), the collective modes of the sphere-support system involve all the multipolar
terms; they cannot be associated to one particular multipolar term, i.e., to an integer index, as in the case of an isolated
sphere.

The energy-loss probability makes two contributions: one corresponding to the second term on the right-hand side of
8'& in Eq. (10) (leading to the known expression of the stopping power of a particle moving near a planar interface ),
and another related to the third term (with coefficients A& ) that contains the contribution of the small particle to the
potential. In the following, we concentrate on the second contribution to the energy-loss probability (derived from the

terms). Then the energy-loss probability along the whole trajectory due to the embedded particle is expressed as

P(co)= g g f dx f dx'(2 —6 o)Im(A& ) cos[m(P —P')]cos —(x —x')
1=0m =0 U

1

+cos[m(P+P')]cos —(x+x') .
&+, Pi (p),

U
1+1 (15)

where the coefficients A& are solutions of system (12), and the integrals are performed along the electron's trajectory,
given by the spherical coordinates

b, Xr(x)=+x +b~+b„cos8=p(x)=, P(x)=arctan
Qx +b +b

(16)

To write expression (15), the parity of coefficients A& and variables (16) with respect to x has been taken into account,
allowing reduction of the integration interval to one half of the trajectory.

The energy-lass probability for an isolated sphere is recovered from expression (15) if c.i =E2 in the set of equations
(12) that must fulfill the coefficients A& . When doing so, only the terms l =j contribute to the summation, and func-
tions W& ( r, r', co) and W2 ( r, r', co) in expression (10) become equal.

B. Coated half-embedded particle

In some experimental situations the small particles present an external coating. A more realistic model is then to
consider the case shown in Fig. 7. This problem can be solved in the manner of the Sec. II A. The coating layer intro-
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duced is characterized by a dielectric function denoted by s4(co). In this case the loss probability is formally given by
the same expression (15) as for the clean sphere. The coefficients A& are now the solution of the following set of linear
equations:

qadi

Il(1+aj )I ei'gi +( —1)'+ E2] c4lj —(j+1)a~][rI& +( —1) +J] ]M@~
C, +@2

I+j= g Ai I(I+1)(1+aj)} E, +( —1)'+~ +E4[j—(j+1)a ] 1+
I Ilm

Mi. , (17)

where

J(s4
CXj-

jE3+(j+1)F4 a2

2j+1
(18)

and a
&

and a2 are the coating internal and external radii,
respectively.

Note that when E3=c4 in the previous expressions,
a =0 and Eqs. (17) become the same as (12), recovering
thereby the expression of the loss probability for the sin-
gle half embedded sphere. On the other hand, if c, =c,2,
the expression of the loss probability for an isolated oxi-
dized sphere '" ' is recovered.

terms in (10), has been taken into account. That explains
why the spectrum becomes negative around co, =co~/&2
(i.e., 10.7 eV for aluminum), which is the surface plasmon
energy in the planar interface. Furthermore, as it can be
noticed in Fig. 2(a), the intensity of the negative peak cor-
responds just to a trajectory length of 2a (the particle di-
ameter) near an infinite planar interface. This suggests

0 9 I I I I
I

I I 1 I
I

I I I I
I

I I I I
I

I I I 1
I

I 1 I 1
I

r I I I

P(~) A

(arb. units)
0.7

III. NUMERICAL RESULTS
AND COMPARISON WITH EXPERIMENTS

To evaluate the energy-loss probability P(co) given by
(15), the first step is to calculate the A& coefficients given
by the solution of system (12), for each value of I and m
and at each point of the electron's trajectory. In the fol-
lowing computations we have considered the contribu-
tion of the first 20 l terms in probability (15), but when
solving the systems of Eqs. (12) or (17) to compute the

coe%cients we have considered the first 100 terms to
ensure the convergence of the Inultipolar expansion. It is
known in the case of the isolated particle that the number
of terms necessary to ensure the convergence depends on
the relative probe-target position. When the electron is
closer to the interface, especially in the planar case, more
terms have to be included. The electron energy con-
sidered in all the calculations is 100 KeV.

In Fig. 2 we present the contribution to the energy-loss
spectrum of the Al sphere half embedded in a support of
the same material. In this case we have considered the
Drude dielectric function for Al with a small damping
constant (co =15.1 eV and y =0.27 eV). We have calcu-
lated the spectra for diIterent electron trajectories parallel
to the planar interface, one passing over the top of the
particle [Oo=arctan(b /b, )=0], denoted by A [Fig. 2(a)],
and another two [Fig. 2(b)] for 00%0, denoted by 8 and
C, for the same distance to the center of the sphere,
b(b =Qb +b, ). The radius of the spherical particle is
a =10 nm and the impact parameter is b =11 nm. In
Fig. 2(a) we have also plotted the spectra corresponding
to the isolated sphere (dotted line) of the same radius and
the Al-vacuum planar interface for a trajectory length of
2a (dashed line). It must be stressed that the spectra have
been calculated from (15), where only the sphere contri-
bution to the energy-loss probability, as given by the Al
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FIG. 2. (a) Calculated spectra corresponding to an Al sphere
of radius a =10 nm half embedded in an Al-vacuum interface
(continuous line). The electron trajectory (2) shown in the
scheme corresponds to Ho=0 and b=11 nm. Spectra corre-
sponding to the same impact parameter near an isolated sphere
(dotted line} and a planar interface for length 2a (dashed line)
have also been plotted. (b) Calculated energy-loss spectra for an
Al sphere of radius a =10 nm supported in an Al-vacuum inter-
face and impact parameter b =11 nm. The probe trajectory 8
(continuous line) corresponds to Ho=85, and C (dashed line) to
co=60
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that one effect of the particle is to introduce a correction
in the spectrum for a planar interface: a decrease in the
loss probability of an infinite plane due to the presence of
the small particle. In any case, when adding the energy
loss corresponding to the planar interface, which has a
maximum at co, =co&/&2 (i.e., 10.7 eV for aluminum),
this point is resolved, and the total probability becomes
positive in that range. On the other hand, it can be no-
ticed that in the range 8 —10 eV, the spectrum looks like
that of an isolated sphere, except that the intensity of the
dipolar term has been relatively reduced. Thus the struc-
ture of the spectrum can be interpreted as a superposition
of the spectra corresponding to both constituents of the
target (sphere and plane) plus some new resonances due
to the coupling between them. Some are below the exci-
tation energy in the isolated particle, around 6.8 and 7.8
eV, and the others (dimer ones) are above the planar sur-
face plasmon energy. From these resonances, the peak
around 6.8 eV is of special interest. It is almost the same
intensity as the dipolar mode in the isolated sphere (at
co~/&3), which lies around 8.7 eV. The energy of the
new resonance at 6.8 eV does not depend on the sphere
radius or the relative position of the electron and target,
but its intensity is a maximum for the case considered.
The behavior of this peak at 6.8 eV as a function of the
impact parameter (represented in Fig. 3) is similar to that
of the dipolar term in the isolated sphere. We find the ex-
pected impact parameter dependence P(co) —e ', con-
cluding that the spatial resolution of the energy-filtered
images at 6.8 eV is —( v /2').

It should be noticed that, for trajectories very close to
the sphere, the solution of system (12) in the region of
8 —10 eV is not quite stable; some small shifts in the ener-
gy of the peaks are produced, depending on the parity of
the maximum value of I considered when solving system
(12). Nevertheless, around the peaks of 6.8 and 10.7 eV
the solution is quite stable even if only a few terms are

considered. The origin of such instabilities can be attri-
buted to the use of polar coordinates to describe the exci-
tations in the planar interface, as has been done in this
work, and to the use of a Drude dielectric function with
very small damping. Working with experimental dielec-
tric functions, as we do in the following cases, this prob-
lem does not appear. In any case the instabilities are not
physically relevant, and are to be studied in more detail
in a work in progress.

In Fig. 2(b) we have plotted the calculated spectra for
two trajectories, corresponding to 00=60 and 85, denot-
ed by C and B, respectively. Comparing these results
with those of Fig. 2(a) it is seen that the negative correc-
tion around co, is more important as the electron trajecto-
ry is closer to the planar interface. Another point is the
fact that, as the electron trajectory is moved from the top
of the particle toward the edge, the probability distributes
in such a way that the peaks for co(~, =10.7 eV de-
crease in intensity as the probability for co) ~, increases.
For trajectories close to the sphere-plane edge, the spec-
trum is consistent with the modes of a particle traveling
close to one edge.

Batson' ' ' measured electron energy losses in the
range 3 —4 eV in systems consisting of a small Al (a —10
nm) sphere supported on a larger one, with a resolution
in energy of 1 eV. However, those resonances were not
present in the spectra obtained near an isolated particle.
On the other hand, he observed that particular resonance
for trajectories over the top of the small sphere, but not
when the electron passes near the edge between the small
and large particles. Our results shown in Fig. 2 are in
qualitative agreement with Batson's measurements.

A simple way of studying the effect of an oxide coating
in the target is to consider that the outer medium is
alumina, as proposed by Schmeits and Dambly. In Fig.
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FIG. 3. Intensity of the m=6. 8 eV resonance as a function of
the impact parameter z =b —a for an Al particle on an Al sup-
port (continuous line). The electron trajectory passes over the
top of the particle (HO=0). The probabilities corresponding to
the dipolar peak of the isolated sphere (dashed line) and to the
planar interface (dash-dotted line) have also been plotted for
two metals having their corresponding surface plasmons at 6.8
eV.

co(eV)

FIG. 4. Calculated spectra corresponding to an Al sphere of
radius a =10 nm, half embedded in an Al-A120, interface (con-
tinuous line). The electron trajectory (3) corresponds to impact
parameter b =11 nm. The spectra of an Al sphere in an A1203
(dotted line) infinite medium and Al-Alz03 interface (dashed
line) for length 2a, for the same impact parameters, have also
been plotted.
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4 we have considered the same case as Fig. 2, that is the
Al sphere on an Al support, but now the upper medium
has been filled with aluminum oxide. The spectra corre-
sponding to the isolated sphere in oxide and the corre-
sponding planar interface have also been plotted for com-
parison. The effect of the alumina is to soften the peaks
and to displace them toward lower energies. The first
peak, located below the excitations associated with the
isolated sphere, appears at energies lower than 4 eV.
This result is consistent with the experimental results re-
ported by Batson and mentioned above.

Wang and Cowley obtained EELS spectra with 1-
eV energy resolution near Al particles partially embedded
in A1F3. They observed surface plasmon excitations
around 4 and 7—8 eV. In Fig. 5 we have considered that
problem, i.e., now the support has been replaced by A1F3
instead of Al. To compute the dielectric response func-
tions, experimental optical data have been used in the
case of Al, and data from EELS experiments for A1F3.
Spectra for the same trajectories A and B as in the previ-
ous figures have been calculated and compared with those
for the same impact parameter, but near an isolated
sphere in vacuum and when it is fully introduced in an
AlF3 matrix. The sphere radius is a =10 nm, and the dis-
tance from the incident electron to the sphere center is
b=ll nm. Now the spectra near the half-embedded
sphere are rather a distortion of those corresponding to
isolated spheres. For trajectory 3, the spectrum is very
close to that of the Al sphere in vacuum, but the intensity
at the energy of the dipolar mode (around 8.5 eV) is re-
duced and another excitation appears around 7 eV, the
excitation corresponding to the isolated sphere immersed
in A1F3. For trajectory B, the spectrum looks like that of
the isolated sphere in A1F3, but it is slightly displaced to-
ward higher energies (toward the excitation of the isolat-
ed sphere in vacuum) and presents another maximum
around 10 eV.

Similar experiments with Si particles have been report-

ed by Ugarte, Colliex, and Isaacson, in which they mea-
sured a surface-mode excitation at 3—4 eV. In Fig. 6 we
present the results for a particle of amorphous Si half em-
bedded into a support of the same material for a trajecto-
ry of type A. Now the sphere radius is 12 nm, and the
distance from the electron to the sphere center b =13 nm.
We have plotted the spectra corresponding to the Si iso-
lated sphere and the Si-vacuum interface separately for
the same impact parameter. The Si dielectric response
function has been obtained from optical data available in
the literature. For the infinite planar interface, we have
plotted the energy-loss probability corresponding to a
trajectory interval of 2a length. The main feature to be
underlined in the case of the embedded Si sphere, with
respect to the isolated one, is the decrease in intensity of
the excitations around 9.5 eV, and the emergence of a
broad peak around 7.5 eV. These values are above the
3—4 eV surface excitations measured by Ugarte, Colliex,
and Isaacson in silicon particles. In our model, a dis-
placement of the excitation toward lower energy is ob-
tained by considering the oxide in the upper region.

In practice, the aluminum small particles usually ap-
pear oxidized. %'e have studied the effect of the oxide
coating on the energy-loss spectrum of an Al particle half
embedded in an Al planar interface, by numerically com-
puting expressions (15) and (17). As can be noticed, the
oxide coating reduces the coupling between the metallic
particle and the support. In Fig. 7(a) we have plotted the
energy loss corresponding to a supported particle of ra-
dius 10 nm with a thin oxide coating layer of 1-nm width.
The electron trajectory passes over the top of the sphere,
at a distance from the particle outer surface of b —az =1
nm. In the same plot the spectrum of the same isolated
particle and the same electron trajectory has been shown
for comparison. The coupling sphere support gives rise
to the new resonance at 6.8 eV, and a lowering of the sur-
face excitation corresponding to the isolated oxidized
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FIG. 5. Excitation probabilities corresponding to an electron
traveling near an Al particle half embedded in an A1F3 vacuum
interface (wide line) for trajectories A (continuous line) and 8
(wide dashed line). The probabilities corresponding to an isolat-
ed Al sphere in a vacuum (continuous line), and the A1F3
(dashed line), have also been plotted. The particle radius is
a = 10 nm, and the impact parameter b = 11 nm.

FIG. 6. Excitation probability vs energy m for an electron
traveling near a Si particle half embedded in a Si-vacuum planar
support, along the trajectory marked as 2 (continuous wide
line). The particle radius is a =12 nm, and the electron impact
parameter b =13 nm. The probabilities corresponding to a pla-
nar Si-vacuum interface for length 2a (dashed line) and an iso-
lated Si particle (dotted line) have also been plotted. 50 terms
have been considered in the series.
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sphere at aroun ed 8 V. The correction to the energy loss
e o thein an in ni e p6 't lanar interface due to the presence o t e

partic e gives rise o
'

1 to negative values of the pro a i i y
around 10.7 eV, as in the clean particle case. As the coat-
ing becomes thicker, the peaks move toward lower values

es eciall the peak at 7.5 —8 eV, in such a way
ra of the isolatedh t both peaks mix up and the spectra o e ist a o

article and the supported particle become thepartic e an e
The displacement of those peaks asas a function of the

a )hascoating thickness (the ratio between the radii, az
been plotted in Fig. 7(b).
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18 20 In conclusion, we have obtained an expression of the
r -loss robability useful in most cases of interest in

hen corn lexEELS experiments in STEM, especially w en p
targets are invo ve . e1 d Th expression has been computed
to evaluate t e energyh loss near a spherical particle cou-
pled to a planar interface and half embedded in it. or
metallic Al particles half embedded in Al, the coupling
between the sp ere anh d the support gives rise to di8'erent
resonances below and above the isolated-sphere energy

n 68eV. orexci a ions,t t' ns the most important being aroun . V.
e of A1F or Si, thenone onducting supports, as in the case o 3 or 1,

nl a sli htcoup ing sp e1 h re support is not so important; on y a g
distortion of the isolated sphere spectrum is found due to
the presence of the support. For oxide-coated 10-nm Al
particles the effect of the support (giving rise to a new

d 6 8 eV) would be observable only for aresonance aroun . e
m rovided acoating thickness larger than around 2 nm, provi e a

resolution of 1 eV is available.

FIG. 7. (a) Energy-loss probability for an electron travelj. ng
A (|9 =0 b = 12 nm) over a half-embedded ox-along trajectory

ated articleidized Al particle (continuous line} and an isolated partic e
(dashed line) for the same inner and outer particle radii, a& = 0
nm and a& =11 nm. (b) Dependence of the energy of the isolat-
ed oxidized particle resonance (dashed line) and the lower peak
ener of the supported oxidized particle spectrum (continuousenergy o e
line) with the oxide coating thickness (ratio between
a2/at . e in/ }. Th ner radius a =10nm, as well as t e distance from
the electron to the outer surface, b-b —a = 1 nm, have been kep
constant.
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