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Roughness spectrum and surface width of self-afFine fractal surfaces
via the K-correlation model
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Theoretical expressions for the height-height correlation function of self-azine fractal surfaces are dis-
cussed in comparison with scanning tunneling microscopy, correlation and surface-width data obtained
from rough silver and gold films. Fourier transformations are used to compare with equilibrium phe-
nomena, and lead to a correlation model with an associated roughness spectrum of analytic form.

I. INTRODUCTION

In nature a wide variety of surfaces occurs with rough-
ness well described in terms of self-aKne fractal scaling,
for example, the nanometer-scale topology of vapor-
deposited films, spatial fluctuations of liquid-gas inter-
faces, and the kilometer-scale structure of mountain ter-
rain. ' Physical processes which produce such a kind of
surface morphology include fracture, erosion, molecular-
beam epitaxy, as well as Quid invasion of porous media.

In most of the investigations done so far, a specific
form of the height-height correlation function for self-
a%ne fractal surfaces has been used to model x-ray
reAectivity and scanning tunneling microscopy (STM), as
well as atomic force microscopy (AFM) data, which

(Z g )2H
read as Cs (R ) =o e ' ~~' and describe the real
height-height correlation in many cases suKciently well.
This is the well-known Kohlrausch-Williams-Watts
(KWW) function introduced in 1863 to describe mechani-
cal creep in glassy fibers, and later used by Williams and
Watts to describe dielectric relaxation in polymers, as
we11 as lately to fit miscellaneous experimental data in-
cluding NMR, dynamic light scattering, quasielastic neu-
tron scattering, kinetics reactions, magnetic relaxation,
etc. Currently it is well known that this relaxation law
can be derived from several di6'erent physical or
mathematical models based on distributions of relaxation
times to complex correlated processes.

However, this relaxation law does not address the
question for the height-height correlation in the limit
H ~0 which is related with the existence of a lower frac-
tal bound, and is of fundamental interest in account of
the equilibrium as well as the nonequilibrium roughening
transition; rather it reveals a trivial behavior. Further-
more, the Fourier transform of Cs(R) does not have, in

general, an analytic expression, excluding therefore expli-
cit calculation of other relevant surface properties. In
addition, it is well known that the computation of the
Fourier transform has numerical problems originating
from cutoA' e6'ects which yield undesirable oscillations,
especially when treating real data.

Our purpose in this paper is to investigate the possibili-
ty of a surface height-height correlation being described
by a form, which has similarities with correlations related

to thermal roughening transitions, ' '" capillary waves in
liquids, ' and with nontrivial behavior in the limit
H~0 (logarithmic roughness), as well as with an associ-
ated roughness spectrum of analytic form for the whole
range of values of the roughness exponent H, O~H (1.
The latter favors the analytic calculation of various sur-
face properties with the most important for roughness
measurements taken directly by means of STM, the sur-
face width o.(L), where L represents a linear length scale
on the surface. ' ' Furthermore, the knowledge of ana-
lytic forms for the roughness spectrum is important in a
wide variety of roughness studies including, for example,
x-ray scattering, light scattering, ' as well as quartz
crystal microbalance studies. '

II. SURFACE MQDEI.

g(R)=AOR (0&H(1) . (2.1)

Ao is ~ proportionality constant. If H) 1, at large
length scales the interface fluctuations can exceed the sys-
tem size which is physically impossible. This kind of sur-
face roughness is related to the self-aKne surface, defined
by Mandelbrodt in terms of fractional Brownian
motion. ' The exponent H is indicative of the surface
texture, and is associated with a local fractal dimension
D=3 H. ' When —R~oo, g(R)~~, but
g (R)/R ~0 since H ( 1 (asymptotically fiat surface).
This is a rather ideal case because on real surfaces g (R)
may saturate to the value 2o [o.=(z(0) )'~ ] for many
reasons, finite size being one such reason, since a surface
with this kind of power-law roughness does not have a

Consider a rough surface in terms of a solid-on-solid
model (SOS) in which the surface height z(r) is con-
sidered a single-valued random function of the in-plane
positional vector r=(x,y). We make the central assump-
tion that the difference z(r) —z(r') is a random Gaussian
variable whose distribution depends on the relative coor-
dinates (x' —x,y' —y), and we write (Iz(r) —z(r')] )
=g(R), R=r' —r. The notation ( ) means an ensemble
over all possible choices of the origin average, and g (R)
is the height-diA'erence correlation function. For many
isotropic solid surfaces the height-difterence correlation
can be represented by
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g(R) ~R'H, R «g,
g(R)=2cr2, R»g'.

(2.2a)

(2.2b)

The length scale g is called the in-plane correlation length
which together with H controls how far a point on the
surface can move before losing memory of the ini-
tial value of its z coordinate. In general, g (R) is
related to the height-height correlation function C(R)=

& z(R)z(0) ) by means of the equation

well-defined mean position which implies the existence of
an efFective roughness cutoff such that for R « g,
g(R) 0-R . ' Therefore, g(R) for real self-affine sur-
faces has the following behavior:

III. ROUGHNESS SPECTRUM

Let us denote the average macroscopic sample surface
by A. If we define the correlation function by

C(R) = f &z(P+R)z(P) )d I'
A

and the Fourier transform of z (R) by

(3.1)

close to the regime where the correlation turns
significantly away from the linear behavior, showing
therefore its real significance for the corresponding sur-
face morphology, as well as comparing favorably with
cluster sizes obtained from the STM images.

g (R) =2o —2C(R) . (2.3) z(k) = z(R)e '" d R1

(2~)
(3.2)

Equation (2.3) for the correlation function Cs(R) yields
)2H

g, (R ) =2cr ( 1 —e ' ~' ) which is consistent with the
asymptotic behavior in terms of Eqs. (2.2).

In Fig. 1, we illustrate the applicability of the correla-
tion function Cs(R) with a fit to correlation data from a
silver (Ag) film of thickness —100.0 nm, deposited on a
polished quartz crystal held at 106 K by means of
thermal evaporation. The deposition rate was 0.3 A/sec,
and the film thickness was monitored by means of a
quartz crystal microbalance (QCM). ' The sample was
left to be annealed until it reached room temperature
after deposition. The system base pressure was—1.0X10 Torr, and during the deposition —5X10
Torr. The STM measurements have been performed un-
der dry N2 gas atmosphere, and four files of correlation
data recorded at different locations on the surface have
been averaged. The scan size was 500.0 nm, with 400
points per line scan. The power-law fit permits direct
measurement of H uniquely which gives H =0.12+0.05.
The correlation length is estimated from the value
C(R)o, assuming R =g, which is e ' for Cs(R). The
resulting correlation length, g, = 12.3+0.5 nm (1) is

The Wiener-Khinchin theorem yields'

& Iz(k)I ) = f C(R)e '"' d R .
(2') (3.3)

Since C(R) is assumed to be isotropic, angular integra-
tion yields

& Iz(k)I'& =,f "RC(R)J,(kR)d'R .
(2~)'

(3.4)

10
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Figure 2 shows roughness spectra for small and large
values of H in order to be pointed out also in k-space
similarities and differences in behavior of the associated
correlation functions. The observed linear regime in Fig.
2 for kg))1, corresponds to a power law -k
which permits the determination of the roughness ex-
ponent H from Fourier profile analysis. Another in-
teresting property of the roughness spectra is the location
of the knee regime with respect to the in-plane correla-
tion length g (see Fig. 2). An estimation of g directly
from the location of the knee regime, as has been some-
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FIG. 1. Fit of C&(R)/o. to correlation data for the silver
(Ag) film (106 K) of thickness 100.0 nm, with g, =12.3 nm and
H=0. 12. The inset depicts a power-law fit for g (R) in order to
determine H, which yields H=0. 12+0.05. The arrow indicates
the position of the correlation length g, and the squares the re-
gime of length scales at which the power-law fit was performed.

FIR. 2. Roughness spectra are depicted for (~z(k)~~),f/A,
H=0. 3 (solid line), and H=0. 7 (short-dashed line), as well as
for (~z(k)~ )s/A related to Cs(R); H=0. 3 (dashed line),
H=0. 7 (long-dashed line). During the calculation we used;
/=100. 0 nm, and a =0.7 nm. The arrows indicate the corre-
sponding positions of g as well as 4g in k space in order to point
out their relation with respect to the knee regime.
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times assumed, can be misleading since the corresponding
length scale is approximately 4g which is expected since
the knee regime corresponds to the point where the asso-
ciated correlation will start having an insignificant effect,
R ~4/.

The Fourier transform of C&(R ) =o e ' »~' in two-
dimensions for values of the roughness exponent H in the
interval 0 & H & 1 has an analytic form only for H =0.5,

2 2

(2~)~ (I+k2q2)3»2 ' (3.5)

IV. K-CORREI.ATION FUNCTIONS

From equilibrium phenomena theory a simple form of
the free-energy functional evaluated in terms of long-
wavelength Fourier components, which can describe the
qualitative features of the thermal roughening transition
for vicinal or stepped surfaces, was introduced by Jorge
et al. , namely, F=—,'gk[nk»+n'k ] u(k)~ +Up»[1—cos2nu (y) ]. Replacing the cosine by its second-order
Taylor expansion, we obtain a harmonic free energy
which easily yields an average value below the transition
temperature,

1

1+ak +bk
(4.1)

from which it can be observed that the roughness ex-
ponent H =0.5 enters the roughness spectrum as a power
of 1+k g and not of k individually. On the other
hand, in temporal relaxation phenomena a similar empir-
ical expression in the frequency domain has been intro-
duced by Haviliak and Negami (HN) to describe the
behavior of glass-forming liquids, p(co) —[I+(ia»ro)']
with the parameters c and y ranging from 0 to 1. ' Be-
cause of the nonanalytic expression for the Fourier trans-

—( ~/~o)
form of the KWW function -e, as well as its ac-
curate description of real data, Alvarez et al. established
a relationship among the parameters of these two models
which is not an analytic one since these two functions are
not exactly Fourier transforms of each other.

However, for two-dimensional spectra the previous ob-
servation from Eq. (3.5) related to the k dependence of
( ~z(k)

~ ) signals already the possibility of the existence
of a wider family of roughness spectra with an analytic
form similar to the HN function, as well as close to those
of the C&(R) function which can describe the real corre-
lation significantly well (Fig. 1). In addition, comparison
with relevant equilibrium as well as nonequilibrium cases
in the limit H ~0 will support such a conjecture. There-
fore, we turn to a more intuitive method that captures
the essence of exact calculations as far as critical
behavior is concerned, and leads also to a calculation of
the correlation functions.

joulade' which can reduce to the SOS model studied by
Chui and Weeks under the correspondence u (y)~z(R)
in a discrete version and is known to have a roughening
transition. " Furthermore during the surface growth un-
der nonequilibrium conditions highly anisotropic phe-
nomena occur, rejected in the stationary case through
the roughness exponent H in terms of a power-law rough-
ness ~ 8 of which a limiting case can be considered the
logarithmic roughness at H~O; limIt 0(1/2H)[R —1]
—+ln(R). On the other hand, the limiting behavior of the
power-law roughness at H~O has its own counterpart,
the nonequilibrium analog of the roughening transition
which has been predicted to occur at temperatures close
to where the equilibrium case is expected as well as with
correlation g (R ) ~ ln(R) in the stationary phase.

Therefore following the previous reasoning and com-
paring Eqs. (3.5) and (4.1), it is plausible to examine the
possibility of a more general class of height-height corre-
lation functions for self-alone fractals with an associated
roughness spectrum depending mainly on H as a power
of ( 1+k g ) of the following form:

2 2

(2 )5 (1+ak2g2)1+H
(4.2)

which distinguishes itself from the equilibrium analog
equation (4.1), through the exponent H. The parameter a
in the denominator of Eq. (4.2) has been introduced in or-
der to accommodate values of H other than 0.5. More-
over, an examination of the consequences and implica-
tions of such an assumption has to be pursued as far as
consistency with the self-affine nature [g (R ) ~ R 2~;

0 & H ( 1] and logarithmic behavior [g(R ) ~ ln(R );
H —+0] is concerned.

Inverse Fourier transformation of ( ~z(k)~ ), in Eq.
(4.2) yields

kJO(kR )
C, (R)=t» gf, dk .

o ( 1+ k2(2)1+H (4.3)

lim —[x —1]~in(x) .H
H-~0 H

(4.4)

In the continuum limit g(R) is related to the roughness
spectrum by the following equation:

g(R)=2 f (~z(k)~ )[I—e'"' ]d k (4.5)

The lower limit of integration in Eq. (4.3) is to the order
of 3 ' which for A of macroscopic size can be com-
pletely neglected. k, =~/ao represents an upper cutoff'
since at an atomic level we do not expect any fractal
behavior. For comparison with a lattice model ao is
identified with the lattice spacing. During the following
calculations the limit H —+0 will be considered in terms of
the scheme

with an associated correlation function
([u (y) —uo(0)] ) ~ 3 BKo(p/g) ~ln(p) —for p &(g;
p =(n'/n)y +(n/n')m

The previous formulation captures the qualitative
features of a more generalized model for the roughening
problem described by Villain, Grempel, and Lapu-

which, according to Eq. (2.3), imposes the following nor-
malization condition for ( ~z(k)

~ ), :

(4.6)

Equation (4.6) permits the determination of the parame-
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ter a in a consistent manner for the whole regime of
values of the roughness exponent H.

Integration of Eq. (4.) for 0 & H & 1 yields

p. 5 I I I I

p 4

a,f= [I—(I+a fk, g ) ]
1

(4.7)

which in the limit H~0 according to Eq. (4.4) takes the
form

0.2
a, =

—,
' in[1+a, k, g ], (4.8)

depicting at the same time the significance of a lower
fractal bound or discreteness effect in order for the loga-
rithmic behavior to be recovered from a power law. The
notation sf means self-a%ne fractal and lg logarithmic
roughness. Equations (4.7) and (4.8) define in general the
parameter a =a (/lao, H) for the whole range of values
of the roughness exponent H, 0 ~ H & 1.

In the continuum limit, since ao «g the integration in

Eq. (4.3) can be extended to ~ which yields in terms of
the integral identity,

p v pk'+'J, (kr)(k +x )
' ~dk= K, p(xr)

0 2~1 (p+1)
(4.9)

valid for —1 & R (U) & 2R (p)+ —'„
2

C, (R)=
aI (1+H) 2(Va

H

IC~ — . (4.10)
R

a

The functional K~(x) means the second kind of Bessel
function of H order from which the characterization K
correlations comes.

A. Power-law roughness correlation functions

g(R) r=2o. 1—
2Ha, f

+ o. I (1 H) R—

a,rHI (1+H)

2H

(4.11)

In Eq. (4.7) for H & 0 and ao «g, neglecting discrete-
ness effects we obtain a,f= 1/2H. With a substitution in
the small-length scale (R « g) expansion of
g, (R ) =2o. —2C, (R ) in terms of Eq. (4.10),

0.1

100 200 300
R (nm)

400 500

FIG. 3. Schematics for C(R),f correlation function, o.=0.7
nm; /=100. 0 nm, H=0. 3 (short-dashed line), H=0. 5 (solid
line), H=0. 7 (long-dashed line). The inset shows a fit of
C(R),f/o (solid line) to correlation data (squares) of the cold
silver (Ag) film (106 K), with H=0. 69, and correlation length
$„=19.1 nm.

Cs (R ) for which the inversion occurs at R =g (Fig. 3).
The inset in Fig. 3 depicts a fit of C (R ),r to the previous
cold silver film (106 K) correlation data with H=0. 65,
and g, i.=11.6 nm, which shows clearly that the C(R),f
model is a realistic one since the fit parameters are in be-
tween the limits of H and g obtained previously, and with
an associated roughness spectrum given by

o g
1+H(2~)

1+
2H

(4.14)

However, it is noteworthy to point out that the approxi-
mation a,r= 1/2H as the ratio g/ao decreases is more
consistent with higher values of H. If we go beyond this
approximation, we can estimate the length scale R,f for
which the continuum limit breaks down as ~ function of
H, g, and ao. Since from Eq. (4.7) a,f

& 1/2H, if we con-
sider Eq. (4.11), R,f can be defined from the condition
g,f(R ) =0 which yields R r =2/+a, r(1 —2Ha, r )'

we obtain, finally,

2o I (1 H)—
I (1+H)

2H

2(+a„
(4.12)

which confirms consistency with the self-affine nature in
the continuum limit and 0&H & 1 as is defined in terms
of Eqs. (2.2). Equation (4.10) for a, i. = 1/2H yields

2Ho
r(1+H)

R &2H
2g

RV 2H
H (4.13)

which for H=0. 5 is equivalent to Cs(R). In addition,
C (R ),f reveals an inversion of its decay rate as a function
of H at a length scale R -2.5g, in a manner similar to

B. Logarithmic roughness correlation functions

Therefore, if we consider the existence of a lower frac-
tal bound logarithmic roughness follows naturally from
the power-law roughness in the limit H ~0, with the cor-
responding correlation function in the continuum limit,

2

C(R), = Ko
ais

' a+a„
and an associated roughness spectrum given by

(2') 1+a, k g

(4.15)

(4.16)

Equation (4.15) for R « g yields
g(R)&s=2o +2(o /a&s)ln(R/2/+a& ) which alterna-
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tively can be from Eq. (4.11) in the limit H ~0 in account
of Eq. (4.4). The corresponding lower limit for the validi-
ty of the continuum approximation is given in this case

by R
&

=2/+a& e

It is interesting at this point to examine the conditions
under which Eq. (4.8) has a solution, as well as the rela-
tion of such a solution to the universal amplitude
2/H [g(R)=(2/m )ln(R /ao)], observed in equilibrium
Kosterlitz-Thouless phase transition. Equation (4.8) can
be rewritten in the form e '=1+ak, g, and if we denote

by f=e ' and X= 1+ak, g, the necessary and sufficient
condition for a nontrivial (ai &0) solution to exist reads
as (df Ida)o & (dX/da)o. This condition is satisfied since
for g»ao we obtain (df/da) =o2«(dX/da) o
=(m.g/ao) . Figure 4 shows a numerical solution of Eq.
(4.8) where a saturated behavior of a& at large correlation
lengths is observed. The latter is expected since

(da&a/de) =2a&sk, g/(1+2ai k, g ) —1/g« 1 for g»ao.
The crossover with the value 2/m occurs for correlation
lengths g-10 ao in an increasing manner as ao becomes
larger (solid line, Craig. 4). This behavior is in remarkable
agreement with equilibrium cases, ' where the corre-
sponding prefactor approaches the value 2/~ for tem-
peratures near to the transition temperature, T ~ T„with
the correlation length diverging as
ln(g) = ~(T T, )IT, ~'—. As can be observed in the inset
of Fig. 4, the two curves collapse into each other which is
expected since a& is determined by the ratio g/ao in Eq.
(4.8). The reason we compare only the prefactor 2/a,
with the universal value 2/m (excluding o ) is related to
the fact that a measure of the height-height density Auc-
tuations in the continuum limit is provided by the rela-
tive interface fiuctuation, g, (R)/o with the prefactor

1g

2/a
&

characterizing its strength. In various models
describing the irreversible growth of surfaces under none-

0.30

0.25

quilibrium conditions, the observed logarithmic behavior
occurs in some cases with a prefactor having the univer-
sal value 2/m, as well as with the nonuniversal value in
some other cases. In our case, the transition from
power-law to logarithmic roughness in the stationary
phase occurs with a prefactor which has a nonuniversal
character, however, it approaches the universal constant
2/~ as the correlation length increases with the cross-
over value to the order of 10 ao. Therefore the logarith-
mic behavior as a limiting case of the power-law rough-
ness bears characteristics close to those observed in cor-
responding equilibrium as well as nonequilibrium sys-
tems, ' "' ' depicting in that way the relevance of our
arguments.

In the case of liquid surfaces, or purely two-
dimensional systems, it is well known that if we ignore
finite-size e6'ects, the capillary-wave Auctuations cause
g(R) to follow logarithmic behavior, ' g(R)-ln(R).
For liquids finite-size efFects due to gravity or finite depth
cut off the long-wavelength surface modes causing g (R)
to be given by (gravitational cutoff) g (R ) —2cr

BKo(R—), comparing directly to g (R )&
—2o.

B'Ko(R—). In general for H~0, D =3 H +3, —whic—h

is a rather subtle situation since a three-dimensional ob-
ject can be either a fractal or a volume. For the case of a
fractal, Eq. (4.15) represents a plausible candidate.

V. SURFACE WIDTH

A characteristic and important surface quantity that
represents a measure of the correlations along the direc-
tion of surface growth is the surface width. In the sta-
tionary phase the surface width, o(L), scales with the
linear size L on the surface for self-alone fractals as fol-
lows. o(L)—L for L «g and o(L)~cr f.or L &&g. '

Measurement of o(L) in various physical systems has
been performed in order to explore the scaling properties
of the involved surface morphology, ' and stands as a
suitable technique for roughness characterization by
means of STM especially for surfaces with large-scale
roughness, g & 100.0 nm (Fig. 4). For the case of surfaces
with a shorter roughness scale g& 100.0 nm, the ap-
propriate alternative is a correlation function measure-
ment (Figs. 1 and 6, details will be given elsewhere). The
surface width for a surface section of linear size L in the
continuum limit is given by

s & s l t I s & I I

2000 4000
g/a.

6000 o' (L)=J, (z(k)z(k'))d kd k' .
2~/L &k, k'&k, (5.1)

0.20

I I I I I I I I I I I I I I I I I I I I I I I I I I I

0 200 400 600 800 i000

( (nm)

FIG. 4. Numerical solution of Eq. {4.8) where the behavior of
2/a, g is depicted as a function of g for ao=0. 17 nm (short-
dashed line), and ao =0.27 nm {solid line). The solid line paral-
lel to the x axis corresponds to the universal value 2/m . The
inset depicts the collapse toward each other of the previous two
curves in agreement with the fact that a&g is determined by the
ratio g/ao.

Since the surfaces we consider are stationary stochastic
processes,

(z(k)z(k'))= fi(k+k')(iz(k)~ ) . (5.2)

which for ao «g and a,&=1/2H is simplified to have the
form a (L),&=o. (1+k~ g /2H) . Equation (5.3) in the

Substitution in Eq. (5.1) from Eqs. (5.2) and (4.2), carry-
ing out the integration yields for 0 (H ( 1 and k& =2~/L

2
o. (L),~= [(1+a,fk, g ) —(1+a,fk, g ) ] (5.3)

2Ra, f
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limit H~0 with Eq. (4.2) yields

1+a, k, g
o (L)i = ln

1+a k'g' (5.4)

100

100
I I I I I I I I] I I I I I I I I

g 10—1

, I

100
I I I t I I I I

10
I. (nzn)

] 02
I I I I I 1 I

10
1, (rim)

FIG. 5. Schematics for the surface width, Eq. (5.3) with
a,f = 1/2H, as a function of H, ao=0. 27 nm, (=100.0 nm, and
o.=0.7 nm; II=0.3 (short-dashed line), and H=0. 7 {solid line).
The arrows indicate the positions of g and 4g in order to point
out their relation with respect to the knee regime. The inset de-
picts a fit of the gold (Au) surface width data with parameters
H=0. 96 (determined by power-1aw fit), /=2000. 0 nm, and
o. =450.0 nm.

For L (((, Eqs. (5.3) and (5.4) yield
o(L) t=(2') a,t"+ ' o(L/g) and cr(L) s=(o/
Qa& )ln' (L/2ao), respectively. In the opposite limit
tr (L )—+ o in both cases, as can easily be verified by the
defining equations for the parameter a.

The knee regime for cr(L) corresponds to a length scale
approximately 4g in agreement with our earlier comment
for the location of the roughness spectrum knee regime.
The inset in Fig. 5 shows a fit to surface width data from
a previous work by Krim et al. ' (Fig. 2 in Ref. 13) for a
gold (Au) film with large-scale roughness (-2000.0 nm,
in order to illustrate the applicability of Eq. (5.3). It is
noteworthy to point out that in this case because of STM
head limitation, surface-width data acquisition for larger
scan sizes was impossible. Therefore the only way to esti-
mate o and g easily and accurately (power-law fit gives
H) is to proceed through a fit in terms of Eq. (5.3) where
the knee regime —8000.0 nm signals qualitatively an es-
timation of g as we explained previously.

Furthermore, we illustrate the relation of the surface-
width knee regime with respect to g directly with com-
parison of correlation and surface-width data obtained
from a rough silver film —80.0 nm thick, Fig. 6. The ex-
perimental conditions during Alm preparation and mea-
surement, were similar to those of the low-temperature
(106 K, Fig. 1) film except that the sample was held at
room temperature —300 K during deposition. Five files
of correlation data acquired from STM images with 400
points per line scan and scan size 500.0 nm have been
averaged. The inset depicts a fit to surface-width data of

CQ

10tg

100

FIG. 6. Power-law fit for the room-temperature silver (Ag)
film of thickness 80.0 nm in terms of g(R)/2o. which gives
8=0.68+0.02 (squares indicate the regime of length scales for
the power-law fit). The inset depicts a fit to surface width data
of the same film in terms of Eq. (5.3) with H =0.70, o.=2.08
nm, and /=24. 0 nm. The arrows indicate the positions of g on
the correlation data as well as on the surface width data.

the same film by means of Eq. (5.3) with H =0.70,
o =2.08 nm, and g,t=24. 0 nm (1). Each point of the
surface-width data represents an average rms roughness
of 5 —10 images after planefit was performed in order to
remove mainly the sample tilt. The value of the correla-
tion length is approximately to —,

' of the knee regime
length scale —80—90 nm. The correlation length es-
timated directly from the regime where the correlation
data in Fig. 6 deviate significantly from the linear
behavior is roughly -20.0+5.0 nm, o. =2. 1 nm which
was calculated as the average rms roughness from the
corresponding images used to acquire the correlation
data, as well as the value of H in terms of a power-law fit;
H=0. 68+0.02. It is worthwhile to point out that the
slight oscillatory behavior of the correlation data in the
regime of length scales 30—50 nm is rejected also on the
surface width for the same approximate range of length
scales as a steppedlike feature. Therefore, the compar-
ison between correlation and surface-width data accord-
ing to the specified limits of the surface parameters H and
g confirm experimentally the theoretical prediction for
the knee regime of the roughness spectrum and surface
width, as well as depict the relevance of the correspond-
ing formalism.

VI. CONCI. USIONS AND DISCUSSION

In conclusion, we described a class of height-height
correlation functions for self-alone fractals with the
correct limiting behavior at H ~0, and associated rough-
ness spectrum of analytic form which enables straightfor-
ward calculation of other relevant surface properties, as
well as enlarge the class of height-height correlations for
self-aKne fractal surfaces which are related to analogous
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equilibrium phenomena as far as critical behavior is con-
cerned, under a more general unifying scheme, Eqs. (4.7),
(4.8), and (4.10). Although the assumption, Eq. (4.2), on
which we based our derivation has an ad hoc nature, the
qualitative comparison with exactly solvable models from
equilibrium phenomena in the limit H ~0 with the none-
quilibrium analogs, justifies the relevance of our conjec-
ture. Furthermore, the analytic calculation of the surface
width can provide an estimation of surface parameters
also for cases where the corresponding length scales can-
not be probed in practice due to equipment limitations.

As a general comment on the importance of roughness
spectra in indirect methods of surface roughness studies,
we point out the following. The diA'use x-ray or neutron
scattering diff'erential cross section, do. (k)/dQ, for in-
cidence angles close to the angle of total external
reffection, yields the Fourier transform of C(R) which is
giv. n by Eq. (3.3), der(k)/dn-(~z(k'~'). ' Further-
more, in light scattering theories on surface roughness
studies, the diAerential scattering cross sections either for
scattering or adsorption (surface plasmons) of elec-
tromagnetic radiation due to the presence of surface

roughness, are directly proportiona~ to the roughness
spectrum, Eq. (3.3).' Under the same frame in a recent
work on QCM studies involving surface roughness, the
frequency change is related directly to the roughness
spectrum. ' The previous examples show the evolution of
surface roughness in a wide variety of surface studies, and
therefore reAect the significance for the knowledge of an-
alytic forms for the roughness spectrum. More
specifically, this need is satis6ed by the roughness spectra
associated with the E-correlation functions, Eq. (4.2),
(4.7), (4.8), and (4.10), not only because of its simple ana-
lytic form, but also because of the correct asymptotic
behavior in the limit H ~0 (logarithmic roughness) as far
as critical behavior is concerned.
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