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We calculate self-consistently the spatial distribution of ionized silicon donors in the barrier of a
nanostructured GaAs-Al,Ga;_.As heterostructure with a corrugated top gate, as well as the electron
density of the corresponding modulated two-dimensional electron gas (2DEG). The geometry of the
periodically corrugated Schottky gate gives rise to an inhomogeneous occupation of deep donor
levels (DX centers) at room temperature, which freezes in when the device is cooled down. This
charge pattern can nearly compensate the desired field effect near the GaAs-Al,Ga;_,As interface.
On the other hand, moderate doping of the barrier is predicted to lead to an improvement of
the confinement potential, which affects the electrons in the 2DEG. Our numerical treatment of
the laterally modulated electron density combines a Fang-Howard variational approach describing
quantum confinement in the growth direction and a Thomas-Fermi approximation modeling the
lateral inhomogeneities, and covers the gate-voltage-induced crossover from a weakly modulated

2DEG to isolated quantum dots.

I. INTRODUCTION

In recent years, the preparation and investigation of
low-dimensional electron systems in Al,Ga;_,As-GaAs
heterostructures have attracted continuously increasing
interest. Various techniques of surface preparation have
been developed, in order to impose lateral constric-
tions on the two-dimensional electron gas (2DEG) lo-
cated in the GaAs near its interface with the Si-doped
Al,Ga;_,As barrier. A lateral density modulation of the
2DEG and, eventually, a complete depletion of electrons
from certain regions of the 2DEG can be achieved either
by appropriate etching techniques or by means of a later-
ally structured metallic gate evaporated on the sample.!
Although these methods of nanostructuring work very
successfully, it is not well known what happens inside the
sample when, at room temperature, the top of the sample
is etched and eventually covered by a metallic layer. In all
cases, inhomogeneously distributed charges are created
near the surface, which interact electrostatically with the
2DEG. However, the amount and the location of these
charges and, as a consequence, the external confinement
potential, which restricts the motion of electrons in the
2DEG, are not well known. This is obvious for single
quantum dots, which can be defined somewhere under-
neath or between macroscopic gate fingers and have been
investigated by magnetotunneling spectroscopy.?3 But it
is also true for the extremely regular and over many unit
cells apparently perfectly periodic structures, which have
been investigated by far-infrared (FIR) spectroscopy? "
and by magnetotransport experiments.® We will demon-
strate this below within a rather realistic model of a het-
erostructure with a strictly periodic lateral superlattice
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defined by a corrugated top gate. For realistic model
parameters, the mere presence of the periodically corru-
gated gate leads to a nontrivial spatial distribution of ion-
ized Si atoms in the Al,Ga;_,As barrier, which could not
have been anticipated without a self-consistent numerical
calculation of charge distribution and electrostatic poten-
tial in the sample.

The motivation of the present work is the fact that
many experimental results, notably on FIR magneto-
spectroscopy of arrays of quantum dots,” cannot be sat-
isfactorily understood without a good knowledge of the
confinement potential defining the dot. The gross fea-
tures of the FIR spectra can be explained if the confine-
ment potential for an individual quantum dot is assumed
to be parabolic. Then a generalized Kohn theorem?®
(GKT) predicts that, in the presence of a perpendicu-
lar magnetic field, the collective FIR spectrum of the
dot is identical with that of a single electron mov-
ing in this parabolic potential. The characteristic fine
structure of the experimentally observed FIR spectra
has been explained in terms of the lowest-order devia-
tions of the true confinement potential from its harmonic
approximation.’® In order to decide whether this expla-
nation is correct or off the truth by orders of magnitude,
one needs to know the confinement potential.

The role played by the confinement potential is the
basic physical difference between an artificial atom, con-
sisting of a quantum dot with a few electrons, and a
natural atom. In the latter, the electrons are bound by
the well-known Coulomb potential of the nucleus in the
center of the atom. The confinement potential of an ar-
tificial atom, however, has its sources in remote charges
and is not well known. The excitation spectra of natural
atoms are characteristic for the elements, i.e., the num-
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ber of electrons in the atom. Those of the artificial atoms
depend on the electron number only because the confine-
ment potential is not strictly parabolic. To understand
the fine structure of these spectra, a good knowledge of
the confinement potential is inevitable. This situation is
obviously very different from that met in the magneto-
transport spectroscopy of single quantum dots.?® There,
the characteristic features of the conductance oscillations
have been observed on many different quantum dots, and
thus cannot depend on details of the confining potential,
which would be different for each dot.

In view of existing experiments? 7 and possible future
extensions of recent model calculations'®™*2 on quantum
dots with only a few electrons, it is of considerable in-
terest to calculate the confinement potential of a pe-
riodic array of quantum dots within a realistic model.
The experiments are done on arrays with typically 108
unit cells, so that rare imperfections, e.g., due to im-
purities, will not be important, and will not be con-
sidered in our model. As in experiment,” we will con-
sider a GaAs-Al,;Ga;_,As heterostructure with a cor-
rugated metal gate. Applying a suitable gate voltage
Vg, one depletes electrons locally from the 2DEG, thus
increasing the density modulation while decreasing the
average density of the 2DEG. This feature makes the
GaAs-Al,Ga;_,As heterostructures very suitable for in-
vestigation of dot systems with few electrons, and distin-
guishes them from the metal-insulator-transistor concept
recently suggested by Drexler et al. in order to keep the
2DEG closer to the field effect electrode.?

In our conventional heterostructure geometry, the re-
lation between the periodically modulated potential cre-
ated at the gate and the resulting density modulation
of the 2DEG is dominated by two effects. The first is
that, according to Poisson’s equation, a periodic poten-
tial modulation in the zy plane, which is created at the
gate, will decay exponentially in the growth (z) direction
of the heterostructure. As a consequence, the modula-
tion amplitude in a parallel plane near the 2DEG may
be smaller than the modulation amplitude near the gate
by several orders of magnitude. The second important
effect is screening by mobile charges. At low temper-
atures, only screening by the 2DEG is relevant, which
is linear for sufficiently small modulation amplitudes. If
the potential modulation becomes too large, or equiv-
alently, the average density of the 2DEG becomes too
small, linear screening breaks down and the 2DEG may
fall abruptly into disconnected pieces.!* For an electron
gas in a randomly fluctuating potential, created, for ex-
ample, by statistically distributed donor charges in the
Al,Ga;_,As barrier, this may lead to an insulating state
where the electrons are localized in disconnected paddles
of irregular shape.l® If we impose a strong modulation
with square symmetry, we should expect that this abrupt
change of the screening behavior will favor the formation
of isolated quantum dots.

At sufficiently high temperatures (T > Ty =~ 150 K),
an additional screening effect in the Si-doped part of the
Al,Ga;_,As barrier becomes important. Due to ther-
mal fluctuations, deep donor levels can be populated and
depopulated, and an equilibrium occupation according

14 417

to the local value of the electrostatic potential will be
established.®'7 If the sample is cooled down below Ty
these thermal fluctuations are suppressed, i.e., relaxation
times become longer than days,'® and the occupation of
the deep donor levels is frozen in and can no longer fol-
low the local electrostatic potential. The fact that, at
low temperatures, electrons cannot recombine into ion-
ized deep donor levels in Si-doped Al,Ga;_,As is known
as the persistent photoconductivity effect. It was ex-
tensively exploited by the holographic nanostructuring
technique used by Weiss and co-workers to produce the
high-mobility samples which showed novel modulation-
induced magnetoresistance oscillations.® The principle of
this holographic technique is to ionize, at low tempera-
ture, deep donor levels with a suitable interference pat-
tern of laser light, so that a spatially modulated, periodic
arrangement of donor charges results, which defines a lat-
eral superlattice.

If a nanostructured heterostructure, at room temper-
ature, is covered by a corrugated Schottky gate, the oc-
cupation of deep donor levels will rearrange according to
the local value of the imposed spatially modulated elec-
trostatic potential which, in turn, is determined by the
spatial distribution of charges in the doped barrier and
the 2DEG and by the electrostatic boundary conditions.
We will include all these effects in our self-consistent cal-
culation, and we will see that, for realistic model parame-
ters, spatial variation of the ionized-donor charge density
is a drastic effect. Our model will be specified in detail
in Sec. ITA. In contrast to a previous work by Kumar,
Laux, and Stern'® calculating the ground state of a sin-
gle quantum dot with a few electrons within the Hartree
approximation, we consider a periodic array of quantum
dots, which simplifies the electrostatic boundary condi-
tions and facilitates comparison with experiments. Apart
from some other, more technical differences, we use a
Thomas-Fermi treatment of the 2DEG, which allows us
to cover the whole range from a weakly modulated 2DEG
to isolated dots. Furthermore, we emphasize the spa-
tial variation of the ionized-donor density, which has not
been discussed in Ref. 18. Owur results for the ionized-
donor distribution will be presented in Sec. IIT A, and the
corresponding results for the dot confinement potential,
which compare very favorably with experimental results,
will be discussed in Sec. ITIB.

II. MODEL
A. Basic device parameter

The basic device parameters required for numerical
calculation are fitted to the samples used in the experi-
ments of Meurer and co-workers.”'1° In detail, we assume
a plane back gate formed by a Si §-doping layer on top
of a substrate at z > L3, followed by a 330 nm undoped
GaAs region in Ly < z < Lz. The § layer is modeled as a
surface of constant electrostatic potential at z = L3 like a
metallic layer but with a small effective Schottky barrier,
because the Fermi level is pinned close to the conduc-
tion band by impurity states. On top of the GaAs layer
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there is a 36.3 nm spacer of undoped Alg 32Gag esAs in
L, < z < L; and a 56.1 nm Al 3,GagegAs Si-doped
layer from L; to L, (see Fig. 1). A periodic pattern is
etched 100 nm deep into a subsequent 108.8 nm GaAs
cap layer at z < Lj, which is finally covered by a metal-
lic gate. The inset of Fig. 2 shows one unit square of the
periodic corrugation shape. The input data we used for
the gate corrugation g(r) for one unit cell are created by
means of a simple product of Fermi functions,

—d
U exp ()] 1+ onp (W8]

g(r) = (1)
[

where d; = 100 nm denotes the etching depth, a = 400
nm is the lateral period, and b is chosen to be a/25. For
the sake of clarity residues of photoresist, often integrated
in optically defined lateral structures, are not taken into
account. We take the conduction band offset as 410 meV.
For the height of the Schottky barrier between cap layer
and top gate 700 meV is assumed. An effective Schot-
tky barrier of 50 meV is attached to the back gate de-
scribing the pinning of the Fermi level mentioned above.
The binding energy of the deep and the shallow donors is
taken to be 150 meV and 0 meV, respectively.!® Following
the paper of Schubert, Knecht, and Ploog!® the portion
of deep donors to the total number of impurity states de-
pending on the Al mole fraction is 90% in our case, and
the critical temperature Ty where thermal activation of
occupied deep donors becomes impossible is 150 K. For
the parameters used throughout this paper the shallow
donors are completely ionized. Figure 2 shows the con-
duction band edge in growth direction for two points in
the zy plane. Occupied and unoccupied impurity states
are also indicated.

z a
dgy =100 nm
0.0 GaAs !
L —
L Si-doped AlGay ;As
...... PSR
L, undoped ALGay_;As'spacer .V,
[~ - -~ —————_=—7_°7 T?.I_)_E—G_ TTLTLTLLTITITT YT
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L3
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FIG. 1. Spatial arrangement of material layers and etching
pattern of the model sample of our paper. The gate voltage
is applied between the §-doping layer and the nanostructured
gate which are both indicated by thick lines. The modulated
two-dimensional electron gas (2DEG) is sketched by dashed
lines (L, = 8.8 nm, Ly = 64.9 nm, L, = 101.2 nm, and L3 =
431.2 nm).
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B. Formulation of the boundary value problem

The spatial variation of the electrostatic potential,
which we describe by the potential energy ®(x) of an
electron of charge —e, between the flat and the corru-
gated metal gate is determined by Poisson’s equation

A®(x) = p(x), (2)
and the corresponding boundary conditions.

&(r,g(r)) —V1 =0, (r,2) =x, (3)
®(r,L3) — Vo, =0. (4)

p(x) is the charge density times e/egx, while ¢g and x
are the dielectric susceptibility of the vacuum and the
relative dielectric constant of GaAs, respectively. Con-
sidering periodicity and quadratic symmetry in the zy
plane, the corrugation g(r), the potential ®(x), and the
charge density p(x) can be expanded in Fourier series:

p(x) = p(k,z)exp(ik - 1), (5)

k

9(r) = g(k)exp(ik -r), (6)
k

®(x) = ) ®(k,2)exp(ik - r), (7)
k
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FIG. 2. Typical conduction band energy along growth di-
rection taken at two different points in the zy plane, where
the lateral potential landscape has its extrema. In the doping
layer shallow donors are totally ionized and their energy levels
are marked by + signs, while occupied and unoccupied deep
donor states are distinguished by o and X, respectively. No
bias voltage (Vy = 0 V) is assumed and the binding energy Ep
(dashed line) is below the Fermi level Er (horizontal dotted
line), which is defined by a back gate outside the range of this
figure. A weakly modulated 2DEG is established at the inter-
face. The inset shows one unit square of the corrugation of
the metal surface which acts as field effect electrode at the top
of the device. In the main figure, the upper line indicates the
variation of the conduction band edge below a corner of this
unit square and the lower line that below the center. Here we
have chosen the dopant density to be No = 1.0 x 10*® cm™3
and the temperature of the equilibrium state to be 150 K.
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where k = (2w /a)(n,m). Inserting Egs. (7) and (5) in
Eq. (2) we obtain the following differential equation for
the amplitudes ®(k, 2):

;;EQ(I(, z) — |kl2¢(k,z) = p(k, z). (8)

Introducing the definition

R(k, z) :/ dz' exp(—2kz")

L,

X / dz" exp(kz")p(k,2"), (9)
L,

Eq. (8) is formally solved by the expressions

®(k,z) = ®(k){exp(—kz) — exp[—k(2L3 — 2)]}
+[R(k,z) — R(k, L3)] exp(kz) (10)

for k = |k| # 0, and

®(k=0,2) =®(k=0)[z— L] + V;
+R(k =0,2) —R(k=0,L3). (11)

One can check that the boundary condition (4) is satis-
fied. It remains to satisfy the boundary condition (3) as
well. Since we can take only a finite set of Fourier coef-
ficients (k € K) into account, this can be done only ap-
proximately. We will satisfy condition (3) approximately
by minimizing the boundary value mismatch defined by

FloM] = /C d2r|®M (r, g(r)) — VA2 (12)

The integral is taken over one unit cell. The index M in-
dicates the difference between our approximation &M (x),
taking M Fourier coeflicients per lateral degree of free-
dom into account, and the exact potential ®(x) which
contains an infinite number of coefficients. At the min-
imum of F[®M] the variation with respect to the coeffi-
cients must be zero,

6F

We carry out the derivative explicitly, making use of
Egs. (9)-(12) and of R(k, g(r)) = 0, which follows from
the fact that the doping layer is confined to L; < z < L,
so that p(x) =0 for z < L;. The result is

Y T @™ (k)

k'eK

= Z A [R(K', L3) + (Vi — Va) O 0] , (14)
K'ex

where

Picxr =/Cd2rf(k',g(r))f*(k,y(r))exp[i(k'—k)r],

(15)
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A = /C &rexp (K g(r)) £* (k. 9(r)) expli(k’ — K)r]

(16)
and
F(k # 0,z) = exp(—kz) — exp(—2kLs + kz),
f(k=0,2)=2z—1L3.
We write Eq. (14) more symbolically as
™ _A.R=0. (17)

Equation (17) can be solved provided the matrices I' and
A are known. The integrals (15) and (16) defining the
elements of I' and A are determined by the function g(r)
describing the corrugation of the gate, and must be cal-
culated numerically. We have inverted the matrix I' and
then multiplied by A. The resulting matrix 2 =I'"1 - A
applied to the vector R which includes complete informa-
tion about inhomogeneities gives the best approximation
of the Fourier coefficients represented by the components
of the vector M. This is one essential part of the self-
consistency loop. A given charge distribution is trans-
formed into the related electrostatic potential with the
correct boundary conditions up to an error only due to
limitation to a finite set of Fourier coefficients.

For practical purpose M =8 Fourier components for
each lateral degree of freedom are sufficient to obtain a
relative error § in the potential amplitudes less than 1%,
where we have defined § by

5= oMk —22(k)| / 3 |82%(k)|,

kek kex

taking the calculation with M=12 as a reference. Go-
ing beyond M=16 we achieved no improvement of the
accuracy due to rounding errors. Note that § gives no di-
rect information about how well the boundary condition
(3) is fulfilled. Also F[®M] itself is not an appropriate
measure for checking (3), because F[®M] must in princi-
ple be zero. Therefore we considered Q = F[®M]/ F[®°],
which reflects the improvement of F[®] going from zero
to M Fourier components. For our model calculation we
checked that Q was about 0.1%. Since F[$9] is a measure
for the potential variation between the bottom and the
top of the gate in the absence of lateral potential mod-
ulations, @ measures the effectiveness of the M Fourier
components in reducing the mismatch F[®°] all over the
surface z = g(r).

Before going into further details of the self-consistent
calculations some general properties of our model should
be noticed. In the following we neglect in the notation
the subtle difference between exact and numerical values,
i.e., omit the superscript M.

First, for a flat gate, i.e., g(r)=const, one sees imme-
diately that the matrices defined in (16) and (15) are
diagonal and thus € is diagonal, too. According to the
fact that Vi — V; differs from the gate voltage V, only
by a constant AE, caused by different Schottky barriers,
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we can conclude with (14), that in the presence of a flat
gate, only the lateral mean value of the electrostatic po-
tential, i.e., ®(k = 0, z), can be manipulated by applying
a gate voltage. In other words, any potential fluctuations
remain unaffected by a flat gate geometry.

Second, let us consider the case of a corrugated gate.
Then the off-diagonal elements of 2 do not vanish and
Eq. (14) yields a linear relation between the potential
amplitudes ®(k) and the gate voltage V,

O(k) = o [AE, + V] + ) wR(K,Ls).  (18)
k!

It follows that, for a laterally homogeneous charge den-
sity, i.e., if R(k,L3) = 0 for k # 0, the electrostatic po-
tential is also laterally homogeneous for a certain value
of the gate voltage V,

V) = —AE, — R(0,Ls), (19)
which is independent of the corrugation g(r).

The linear dependence Eq. (18) of ®(k), and, as a
consequence, of the confinement potential of an array
of quantum dots, on the gate voltage V;, may resolve an
apparent discrepancy between the statement of the gen-
eralized Kohn theorem and experimental findings.2® If,
with a sufficient accuracy, the confinement potential of an
individual quantum dot can be assumed to be parabolic,

V(z,y) = tm*wi [:c2 + yz] , (20)

one expects from the GKT to see in the FIR response at
zero magnetic field a resonance at the frequency wg. This
result should be independent of the number of electrons
in the dot and of Coulomb interaction effects. The ob-
served linear dependence of the square of the resonance
frequency on the gate voltage2® seems on the other hand
to indicate a dependence on the electron number, which,
according to the common capacitor rule, is expected to
increase linearly with the gate voltage. However, if one
defines the confinement frequency wp according to

1 8%V (0,y)
m*  Oz? m*  Oy?

W2 1 82V (z,0) (21)

and calculates V (z,y) from ®(x) as defined by Egs. (7)-
(11), one obtains from Eq. (18) a linear dependence of w3
on the gate voltage V,, as observed in experiment, and

without any contradiction against the GKT.

C. Model of charge distribution

If one knows the charge distribution p(x) inside the
sample, the formalism of Sec. II B gives the corresponding
potential with the correct boundary values.

In an explicit way one can obtain the ionization pro-
file in the doping layer by occupying, according to Fermi
statistics, the donor levels which are assumed as homo-
geneously distributed between L; and Lo:
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pd(x) = CN()[@(Z - L1) - @(Z — Lz)]
x{1 = &f([2(x) + Ec — Esq — p]/kBT)
(1 =8)f([2(x) + Ec — Eaa — p]/ksT)}, (22)

where Ny denotes the impurity concentration, E. the
conduction band offset, and E 3 and E,; the binding
energy of deep and shallow donors, respectively. f(z) is
the Fermi function and £ the fraction of shallow donors
to the total impurity concentration.

We assume the Si-dopant density in the layer L, <
z < Ly to be homogeneous, since fluctuations on a length
scale of the mean distance between impurities (~ 10 nm
for Ny ~ 108 cm™3) according to Poisson’s equation will
not affect the 2DEG. Also fluctuations on a scale much
larger than the period a of our lateral superlattice will
be effectively screened by the mobile donator charges at
high temperatures. Random fluctuations of the dopant
density on a length scale comparable with the period a
might disturb our results and lead, e.g., to fluctuations
of the confinement potential for isolated quantum dots.
There is no experimental evidence that such fluctuations
should be relevant”'® and we neglect such complications.

Since our aim is to calculate the distribution pg(x) of
ionized donors, we restrict ourselves to a rather crude
model for the 2DEG. Assuming that the lateral variation
of the electron density happens on a much larger scale
than the variation in z direction, we employ an adiabatic,
Born-Oppenheimer-type approximation for the electronic
charge density,

pru(B,x) = —ena(r) loru(B, 2)|* (23)

and treat the lateral 2D density n,(r) in a quasiclassical
Thomas-Fermi approximation (TFA). This should be an
excellent approximation for variations of n,(r) on a scale
much larger than the typical extent of wave functions,
i.e., the Fermi wavelength or mean distance between elec-
trons (S 50 nm), but not for isolated quantum dots con-
taining only a few electrons. Indeed, the successful appli-
cation of the TFA to randomly distributed electrons in a
stripe by Nixon and Davies!® and the explanation of self-
consistent Hartree results for a one-dimensionally modu-
lated 2DEG in terms of the TFA (Ref. 14) indicates that
the TFA works reasonably well for equilibrium proper-
ties of submicrometer-structured semiconductor samples,
even near the threshold between a strongly modulated
2DEG and isolated 1D or 0D regions containing many
electrons.

The z direction is treated quantum mechanically. We
assume that a single quantum state (subband) is occu-
pied and describe it by a Fang-Howard variational ansatz
with the wave function

eru(B8,2) = [%i} [z — L] exp (i(zb:is)) , (24)

defined for z > L,. In the spirit of the adiabatic ap-
proximation, 8 should depend on the lateral position r.
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For the sake of simplicity, we will, however, optimize the
value of (3 for the position ro at which ns(r) becomes
maximum, and we will take this 3(ro) for all r.

To optimize 3 we proceed as follows. First we set 3 = b
in Eq. (23) and determine from the total charge distri-
bution

Etot(/B7 b, 1'0) = <<PFH(/8)

Note that all the z integrations necessary for the eval-
uation of ®(b,x) and Eio(8,b,r0) can be done analyti-
cally, so that the derivative with respect to 3, which is
necessary to minimize Ei.(83,b,r0), can also be taken
analytically. To obtain self-consistency of wave function
and potential, we have to evaluate the extremal condition

for B3 =b,

*;—BEtot(ﬂ,b, l‘o) . =0. (26)

This implicit equation must be solved numerically and
determines b for a given input density n,(r) of the 2DEG.

The sheet density n,(r) as a function of the chemical
potential defined by the back contact is modeled within
the framework of the Thomas-Fermi approximation. De-
scribing the lateral density modulation of the 2DEG by
a weighted 2D density of states we write

*k _ A" —
_ m*kpT 1+exp(” Eior (}(b,z,r))},

Tls(l‘) = —ﬂ_ﬁé—-— In

kT

(27)

where the expectation value

Z = (prH|z|¢Fu) = Ls + 3/b,

fixes the zy plane from which we have to read the values
of the potential modulation:
d(b, z, r) = ®(b,z,r) — (b, z,10) . (28)
In each iteration step we start with input values of p4(x)
and n,(r) and calculate b from Eq. (26). This yields
®(x) = ®(b,x), and new values of ps(x) and n,(r) ac-
cording to Egs. (22) and (27). If Egs. (22)—(28) hold
simultaneously, self-consistency is achieved.

At the critical temperature (T = Ty) both pg(x) and
pru(b, x) are still variable, while at lower temperatures
pd(x) is assumed to be unchangeable. Thus expression
(22) is in some sense only valid for (T > Ty). For
the calculation of properties of the modulated 2DEG at
low temperatures (T' < T,), one should take a frozen-in
ionized-donor distribution pg(x) calculated at T = Tj,.

2 dZ
ame a2 T 22 T0)
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p(x) = (e/eox) [pa(x) + pru(b, x)]

the electrostatic potential ®(b,x), following the proce-
dure of Sec. II B. Next we consider the expectation value
of the energy of an electron in this potential with the
wave function (24),

m(ﬁ)> : (25)

III. RESULTS
A. Ionization profile

In the following we will present some numerical results,
to illuminate the influence of inhomogeneously ionized-
donor states on the electrostatic properties of the sample
characterized by Fig. 2. As can be seen, the potential
modulation near the region of the 2DEG is strongly sup-
pressed as compared with that in the doping region close
to the gate. The occupation probability of deep donor
states, which are located near the Fermi level, is sensitive
to the lateral variation of the conduction band edge. In
this way a space charge pattern is created, which compen-
sates potential modulation effectively, so that the band
edge dispersion near the interface at L, on the scale cho-
sen in Fig. 2, looks like that of an unstructured sample.

Figures 3 and 4 display the correspondence and mutual
dependence of lateral variation of the band edge energy
and space charge distribution. The data are taken along
a line defined by = = y, and along the growth direction.
The 3D presentation offers an intuitive and geometrical
impression of the global physical situation.

More quantitative insight is given by Fig. 5 for which

FIG. 3. Three-dimensional plot of the potential landscape
for the parameters given in Fig. 2. The coordinates vary in
growth direction (z) and laterally along the line = = y.
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FIG. 4. Three-dimensional plot of the space charge distri-
bution corresponding to the potential landscape of Fig. 3. The
z range of the plot is limited to the region of the doping layer.

we introduce two kinds of quantities: The laterally aver-
aged mean value Ng(z) defined as follows:

Ny(z) = aii ./c d*rpa(x) , (29)

and the standard deviation o(z) defined by
1 _
72 = 5 [ dripatx) — Na()P. (30)
c

Ng4(z) measures the degree of depopulation of donor
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FIG. 5. The lower part of this figure shows in units
of No = 10'® cm™2 the laterally averaged ionization pro-

file N4(z) for three different impurity concentrations: (a)
No = 1.0 x 10'® cm™, (b) No = 0.5 x 10*® cm™3, (¢)
No = 0.3 x 10*® cm™3. In the upper part the correspond-
ing standard deviations for the three cases are plotted. The
z range of the plot is identical with the extent of the doping
layer, i.e., L1 < z < La. L, lies outside the scope of this plot.
The fundamental period of our model is taken to be a = 400
nm throughout this paper.
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states in a plane located at z, while o(z) contains in-
formation about the amount of lateral variation in this
plane. The plot in Fig. 5 shows these two moments of
the lateral charge distribution function for three differ-
ent Si-doping levels. First we notice that modulations get
weaker with decreasing impurity concentration. Further-
more, a correlation between the peak value of o(z) and
the maximum slope of Ny4(z) can be seen. This is due to
the fact that, on the one side, close to the gate almost ev-
ery donor state is ionized, on the other side, in the right
half of the doping layer there are only a few percent of
the states ionized. In both situations o(z) is very small.
It is obvious that between these limits there is a region
where the lateral alternating of population and depopu-
lation causes a high value of o(z). Simultaneously the
spatial transition from weakly to highly ionized regions
takes place and leads to a pronounced slope of Ny4(z). To-
wards the edge of the spacer at L., one can observe that
the degree of ionization Ny(z) increases again. This is
forced by an increasing of the conduction band edge and
is remarkably not accompanied by strong lateral charge
fluctuations. This indicates that the corresponding lat-
eral fluctuations of the band edge have already died out,
as can also be seen in Fig. 6.

To learn more about the interplay between band bend-
ing effect and compensation of the lateral field effect we
performed a numerical experiment. We repeated the self-
consistent calculation (at T = 150 K) for three values of
the applied gate voltage (V; = —1.0 V, 0.0 V, and 0.5
V). The resulting Ny(z) and o(z) are plotted in Fig. 6.
The center of the region with large lateral fluctuations
o(z) of the occupation probability shifts with increasing
negative V; and its width gets enlarged, while the peak
value remains constant. This can be understood within
the picture of electric-field-induced surface charges. An
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FIG. 6. The lower part of this figure shows the laterally av-
eraged ionization profile Ny(z) for three different cool-down
conditions: (a) V, =05V, (b) V, =0.0V, (c) V, = -1.0 V.
The impurity concentration is always 1.0 x 10*® cm™3. The
dashed horizontal line reflects the contribution of shallow
donors to the total space charge distributions (a), (b), and
(c). In the upper part the corresponding standard deviations
for the three cases are plotted also. z range and the period a
are the same as in Fig. 5.
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increasing of the negative voltage drop relative to the
back gate causes an excess of negative charges on the
metal gate. These attract positive charges from the dop-
ing layer or, in other words, ionize the impurities. As a
consequence the donor states will be more and more de-
populated if one increases the negative bias voltage —V
until Ny(z) reaches the saturation value Ny [see Ny(z) of
Fig. 6].

Let us briefly reexamine the situation addressed in Eq.
(19), where the potential modulation can be switched off
by a suitable gate voltage. This situation occurs as soon
as we have no electric field inside a finite layer containing
the top gate. Then the potential is constant everywhere
and any surface inside this region is a surface of constant
potential. The boundary value problem of Sec. II then is
solved trivially, i.e., the vector R in Eq. (17) equals zero.
In a real sample, however, we have always a finite field
component in the growth direction at the gate, which
has its sources in different Schottky barriers and ionized
impurities, so that the influence of the gate is usually not
switched off even in the case of zero gate voltage. Finally,
a more negative voltage results in a stronger E field near
the gate, which enhances the lateral field effect inside the
sample. At the same time the increasing compensation
via lateral charge separation in the doping layer causes
the enlarged width of o(2) in Fig. 6 [curve (c)].

B. Properties of the 2DEG

We now address the most interesting question, how the
spatial distribution of ionized donors affects the proper-
ties of the 2DEG. First, we consider the situation where
the 2DEG breaks up into an array of isolated quantum
dots and calculate some characteristics of the confine-
ment potential. Specifically, we calculate the confine-
ment energy fuwo, obtained according to Egs. (20) and
(21) from the parabolic approximation of the potential
in the center of a quantum dot, and the lowest-order
corrections to this approximation. Ad hoc assumptions
on these quantities have previously been used to explain
characteristic features of FIR resonance spectra of quan-
tum dots.'®

In order to eliminate any artifacts due to our simple
Thomas-Fermi treatment of the 2DEG, we proceed in
two steps. First, we calculate self-consistently at T; =
150 K for three values of the gate voltage and for several
values of the Si-doping level the spatial distribution of
ionized donors and of electrons in the 2DEG. In this step
the use of the TFA is not critical, since the ionized-donor
distribution will not depend sensitively on fine details of
the density variation in the 2DEG. In the second step (at
low temperature T' = 4 K) we freeze in the ionized-donor
distribution calculated at Ty and apply now that thresh-
old gate voltage V;; at which the depletion of the 2DEG
is just complete. For this situation, where no electrons
are in the dots and thus the TFA is of no relevance, we
determine the characteristics of the “bare” confinement
potential for electrons in the quantum dots. The thresh-
old voltage V;;, depends, of course, on the gate voltage
applied at T = T, and on the Si-doping level Ny. In
Fig. 7 we present for three values of V, (our “cool-down
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FIG. 7. Confinement energy vs impurity concentration
for different cool-down conditions: (a) V, = 0.5 V, (b)
Vg =0.0V, (c) V; = —1.0 V. Any star represents a complete
self-consistent calculation at 150 K and a subsequent numer-
ical determination of the confinement energy at 4 K, where
a negative bias voltage is applied, so that the channel is just
depleted. The solid lines connect data points with identical
cool-down conditions. The dashed line is adjusted to a set
of reference data one obtains by homogeneously smearing out
the space charges of case (b) over the whole doping region.

conditions”) the confinement energy Awy, calculated at
the threshold Vi, as a function of the Si-doping level
Ng. The z value (distance from the interface between
spacer and GaAs) at which the confinement potential is
evaluated is indicated by the vertical dotted line in Fig.
8 and chosen near the expected center of the dots. Re-
sults for the same cool-down condition (same value of
V,) are connected by solid lines in Fig. 7. The data
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0.1 0.15 0.2
(z—Ly)/a

FIG. 8. The extremal values (®min and Pmax) of the poten-
tial landscape (dashed lines, right scale) and the confinement
energy hwo (solid line, left scale) as a function of the distance
from the interface.
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points connected by the dashed line are obtained by a
different procedure. First, at T = Ty, the spatial dis-
tribution pg4(x) of ionized donors was calculated without
applied gate voltage, V, = 0, as for curve (b). Then,
however, this positive charge was homogeneously redis-
tributed over the total Si-doped volume, and with this
homogeneous positive space charge (in Ly < z < L)
the confinement energy was calculated at T' = 4 K. This
procedure eliminates the screening of the gate-induced
potential modulation by spatial redistribution of donor
charges at elevated temperatures (' 2 Ty). Compari-
son with the data sets (a)—(c) demonstrates that, for a
sufficiently high doping level (Ng 2 0.6 x 108 cm™3),
this screening mechanism is very efficient and leads to a
considerable reduction of the confinement energy, which
then depends only weakly on the Si-doping level Ny and
on the cool-down condition. The resulting small Awq val-
ues (~ 2 — 3 meV) compare very favorably with typical
experimental data.>71® We take this as a strong indi-
cation for the relevance of our model, which relies on
the existence of the deep donor states and the possibility
of their thermal (re)occupation at elevated temperatures
(T 2 150 K).16

A completely different situation is found at low im-
purity densities (Np < 0.6 x 10'® cm™3). As long as the
Fermi level is low enough so that recombination of ionized
impurity states with electrons is impossible, the positive
charge in the doping layer is homogeneous. Consequently,
there is no difference between the data of case (b) and
the reference data (dashed line). As soon as neutraliza-
tion of ionized states takes place, lateral inhomogeneities
are produced and screening by ionized-donor charges be-
comes effective. The higher the degree of ionization, the
stronger is the band bending along the growth direction.
In this way deep donor states come below the Fermi level.
In the case of low doping this effect can be suppressed by
applying a negative voltage, as can be realized by com-
parison of the data sets (a) and (c). In highly doped de-
vices the possibility of manipulation in this way is rather
poor.

Further characteristics of the confinement potential are
the lowest-order corrections to the parabolic approxima-
tion. With square symmetry in the zy plane, these can be

expressed by the parameters a and b in the expansion!®
V(z,y) = 3m*[wi(2® + %) + wia(2® + y*)?
+wb(a?y?)]. (31)

As a consequence of Eq. (14) we have already pointed out
that, according to Eq. (18), the potential ®(x) depends
linearly on the gate voltage V,. The same is true for
spatial derivatives of ®(x), so that the parameters a(Vy)
and b(V,) obey linear relations of the form

A(Vy) = A(Vin) + [Vg — Vin] B, (32)

where Vi, denotes the threshold voltage discussed be-
fore. In Table I we list the coefficients A(V;,) and B
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TABLE I. List of data necessary to determine the model
potential of (31) according to Eq. (32). In addition, threshold
value and slope for the potential minimum &®(ro) are given.
The fixed zy plane is chosen near the interface at L, as indi-
cated in Fig. 8. The impurity concentration Ny of the sample

under consideration is taken to be 1.0 x 10'® ¢cm~2 and no
bias voltage is applied at elevated temperatures.

A(Vin = —0.82 V) B
®(ro) —13.65 meV —195 meV V™!
(Buwo)? 6.05 meV? —0.46 meVZ V™!
a ~15.7x10% A2 1.5x102A72v -1
b 46.5x10% A7? —2.1x10% A2 v

for a(Vy), b(Vy), and other characteristics of the con-
finement potential. For this purpose we take w? as
1071%2(V, = Vi) in accordance with Ref. 10. The
mechanism of the resonance peak splitting suggested in
Ref. 10 has its starting point in rotation-symmetry break-
ing and nonparabolic terms introduced by Eq. (31). Our
results confirm this explanation because the deviations
from the pure parabolic confinement are even stronger
than estimated in Ref. 10.

Finally, we want to discuss within our simple Thomas-
Fermi approximation the density distribution in the
2DEG. Although exchange and correlation effects, and
even the discreteness of the electronic charge in an iso-
lated quantum dot, are not included in our model, it is
of interest to study its implications as a possible refer-
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FIG. 9. Gate-voltage dependence of the sheet density as
defined in Eq. (27). The density values are taken at three
different points of the unit square as indicated in the right
inset. Four distinct cases are covered: modulated 2DEG (I),
antidots (II), dots (III), and finally the empty channel (IV)
(solid lines). In the case of isolated dots the averaged sheet
density per unit cell (dashed line) shows up the charge of a
single dot.
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ence for future more sophisticated work. Our model has
the advantage that it describes the weakly modulated
case and the case of isolated dots as well, which is hardly
possible within a strictly quantum mechanical treatment.
Exchange and correlation effects and especially the dis-
creteness of charge will become important in the limit of
only a few electrons per dot, and then our TFA will fail.
In Fig. 9 we plot the electron number per unit cell to
clarify where this may happen.

From physical intuition it is clear that with increasing
negative gate voltage —V, the modulation of the 2DEG
gets stronger and, perhaps, certain areas of local deple-
tion arise, before a further increasing leads to the transi-
tion to isolated electron islands. For a quantitative treat-
ment we plotted three indicating key values of the numer-
ically calculated electron sheet density vs —V, in Fig. 9.
As can be seen there, a hole in the electron sheet (anti-
dot) occurs at the point (a) of the unit square (I — II)
(see inset of Fig. 9). When the density vanishes at point
(b) the last bond between different cells is broken. The
zero dimensional limit is reached (III). At the threshold
voltage (Vih = —0.82 V) no charge can be found even
at (c), i.e., the 2D channel is completely empty (IV). It
is remarkable that the nearly linear gate-voltage depen-
dence of the local density found in (I, IT), no longer holds
in the case of isolated dots (III), where the dimensional-
ity of the electronic system is reduced, and a more rapid
decrease leads to an abrupt depletion of the dot at V.
Moreover the existence of antidots is limited to a small
gate-voltage regime (6V, = 0.4 V), which agrees with ex-
perimentally measured values on samples with the same
geometry.!® This sensitively geometry-dependent effect
can be considered as a rather significant test of the qual-
itative correctness of our model assumptions.
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IV. CONCLUSIONS

We presented self-consistent calculations treating the
inhomogeneously ionized deep donor states in nanostruc-
tured heterojunctions.

Space charge patterns inside the doping layer can com-
pensate the lateral field effect of a structured gate to
a large extent. In addition to the charge-independent
exponentially dying out of every Fourier coefficient by
means of Poisson’s equation, the influence of such space
charges should be taken into account on the way to im-
prove the lateral field effect of submicrometer-structured
gate electrodes, because they are, other than randomly
distributed charges, a characteristic of design parameters.
Therefore we numerically investigated the dependence of
the confinement energy Awo on the Si-doping level and
on different cool-down conditions. From our results it
is evident that a thin and only moderately doped layer
should improve the desired confinement potential in the
channel in the best way, because recombination of ionized
deep donors at room temperature is so avoided. We dis-
cussed the linear gate-voltage dependence of the squared
one-particle confinement energy, (Awg)2, which can be
understood as an ordinary electrostatic effect. This fact
does not explain the linear dependence of the squared
plasma frequency observed in FIR experiments quanti-
tatively, but should be included in forthcoming calcu-
lations. Our data support the arguments of Ref. 10,
that the mechanism of the resonance splitting is due to
rotation-symmetry breaking and nonparabolic terms.

As a final point emphasizing the relevance of our
model, we were able to reproduce the crossover from the
modulated 2DEG to the case of isolated quantum dots
within a realistic gate-voltage regime.
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