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We present a theoretical investigation of the collective excitations in doped tunneling semiconduc-
tor superlattices by calculating the loss functions describing inelastic electron scattering and Raman
scattering experiments. The dynamical response of this inhomogeneous electron system is treated
within the random-phase approximation. Our calculations indicate that in addition to the conven-
tional plasma modes associated with the in-phase motion of all electrons in the system, as well as
the single-particle-like transitions with nonvanishing oscillator strength, there exist plasma modes
related with the charge depletion in the surface layers of typical systems. A tunneling plasma mode
corresponding to the electron motion along the superlattice growth direction is also shown to exist.
The dispersion relations for the different plasma modes are obtained together with their effective
oscillator strength for both inelastic electron and light scattering experiments. The strongest in-
traminiband plasmon behaves like that in two-dimensional electron systems in the small

q~~ regime,
while the surface plasma modes exhibit an acousticlike linear dispersion due to the screening of the
electrons in the bulk subbands. The behavior of the tunneling plasma mode is intermediate to these
two. We show explicitly that the two experimental probes emphasize different modes in the various
wave-vector regimes, and are therefore rather complementary.

I. INTRODUCTION

Superlattices are an interesting class of materials com-
posed of alternating thin layers of two or more differ-
ent constituents. As a erst approximation, superlattices
represent an ideal and periodic band modulation along
the growth direction. The resulting one-dimensional po-
tential well chain affects the motion of the electrons in
the growth direction so that the conduction band is ef-
fectively split into a series of subbands or minibands.
Each of these subbands represents a continuum of free-
electron-like states in the plane perpendicular to the
growth direction, producing an interesting anisotropic
three-dimensional (3D) electronic system. On the other
hand, 6.nite length superlattices with only a few peri-
ods along the growth direction have also been fabricated
where superlattice surface states are created near the end
layers, due to the existence of surface dangling bonds, as
well as defects and impurities which pin the Fermi level.
The Fermi level pinning produces a position-d. ependent
density profile of charge carriers, depleting them from
the end layers even in the case of homogeneous doping.
All of these systems have received considerable attention
because of their technological interest and also because
of the fundamental physics involved. '

In this work, we focus on the electronic modes charac-
teristic of these systems. There are numerous theoretical
papers studying collective excitations in superlattices.
However, previous work has not considered all the intri-
cacies mentioned above and found in. real structures. One
can trace the various elements entering in the study of
these anisotropic 3D systems, starting from the pioneer-
ing work of Chen, Chen, and Burstein, who investigated.

the collective modes associated with the transitions be-
tween 2D subbands by using a relatively simple model.
More complicated treatments of the intersubband transi-
tions were erst given by Dahl and Sham and by Eguiluz
and Maradudin. As for electronic correlation effects,
Vinter and Ando have stressed the importance of
vertex corrections in 2D electron systems. Tselis and
Quinn gave a unified model of collective modes in in-
version layers, while plasma modes for two-layer electron
systems were discussed by Chin and co-workers. The
latter authors indicated that, in addition to the 2D plas-
mon, there exists an acoustical plasmon with a disper-
sion relation u q in a two-layer system. This linear
dispersion relation typically arises in a system in which
the electrons have different spatial extent. The acous-
tic plasmon can be viewed as an out-of-phase collective
motion of electrons in one subband or state relative to
the other. The polarization field for the electrons in one
subband is strongly screened by the charge in the other
one, producing a weaker restoring force and dispersion
relation than the io ~q relation in a pure 2D system.

As for multilayer systems, such as multiple quantum
wells where electrons cannot tunnel across, most au-
thors viewed these systems as one-dimensional arrays of
2D electron gases, coupled only through their Coulomb
interactions. ' Tselis and Quinn4 investigated collective
excitations in an ideal superlattice system. In their the-
ory, one can take into account higher order many-body
efFects, magnetic fields, and electron-phonon coupling.

Recently, electron-energy-loss spectroscopy (EELS)
has been used extensively to study the collective exci-
tations in nonuniform electron gases. This technique is
very sensitive to the dispersion of the collective modes
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on the same scale of wavelength that characterizes the
charge density profile at a semiconductor surface or at an
interface between a semiconductor and another material.
Namely, the electron-energy-loss method can explore the
wave-vector regime q~~

/ 1, where / is the thickness of
the spatial extension of the charge carrier in the surface
or interface, and

q~~
is the in-plane momentum transfer of

the scattered external electron.
On the other hand, inelastic light (Raman) scattering

has also been used extensively to investigate the novel
electronic structure and collective excitations in systems
of highly reduced dimensionality. Notice that the effec-
tive oscillator strength of the various excitation modes,
especially those that are surface-related, is expected to be
rather different in these two scattering processes, due to
the different coupling mechanism, even as both processes
provide the same information for the excitation energies.
We explore further this point below as we compare ex-
plicit results for the systems under study and contrast
their different characteristics.

Both EELS and Raman scattering experiments have
stimulated many theoretical studies on the details of the
scattering processes. For example, Ehlers and Mills in-
vestigated the EELS yield from collective excitations in
n-type semiconductors, with emphasis on the infIuence of
the depletion and accumulation layers. Similarly, Yu and
Hermanson have recently studied plasmons in accumula-
tion layers of ZnO and InAs(110) (Ref. 19) with only two
subbands populated and found that, also in these sys-
tems, there exists an acousticlike mode, in addition to
the two-dimensional-like plasma mode.

In the pioneering work of 3ain and Allen, the inelas-
tic light scattering intensities from a semi-infinite array
of two-dimensional electron gas layers were calculated ne-
glecting intersubband transitions, for simplicity. Hawry-
lak, Wu, and Quinn have also calculated the Raman
scattering intensities for finite quantum-well arrays, al-
though also in the fiat miniband approximation (without
tunneling). Katayarna and Ando have also presented
self-consistent calculations for the ground state and col-
lective excitations of an infinite multiple-quantum-well
system, in which the surface mode was not included
and dispersion relations were not presented. Recently,
we have also reported preliminary calculations of Raman
yields for a superlattice system with both tunneling and
charge depletion included.

In this paper, we present a fully nonlocal description of
collective excitations in doped tunneling semiconductor
superlattices of finite size, such as GaAs/Al Gat As,
and focus on the calculations of the inelastic electron
scattering intensity as a function of excitation energy
and momentum transfer. These calculations augment
the long wavelength results of Zhang, Ulloa, and Shaich,
who used. the d-parameter formalism to describe the op-
tical response in similar systems. Our results uncover
a wealth of interesting mode behavior. We also present
some of the main results for inelastic light scattering in
order to compare how efFiciently the different probes cou-
ple to the normal modes of the system. In the calcula-
tion, we incorporate fully the infIuence of the superlattice
surface states mentioned above, allowing charge carrier

tunneling among the different periods and depletion due
to Fermi level pinning at the surfaces of the structure.
In addition to the surface mode associated with charge
depletion, and the usual 2D plasma mode, we obtain a
novel tunneling mode due to carrier tunneling. As ex-
pected, the collective excitation energy and coupling to
external probes of the different modes change in a rather
complex fashion, as the wave vector changes. The scat-
tering intensities for all the modes, especially those that
are surface-related modes, are rather different in inelas-
tic electron scattering and Raman scattering due to the
different coupling matrix elements. We also comment on
other differences between the two probes.

The outline of the remainder of the paper is as follows.
In Sec. II, we present the model and basic formalism used
in the calculation. The basic method for studying the re-
sponse of the electron system is closely related to that
discussed by Ehlers and Mills, while we have extended
it to suit our needs in the tunneling superlattice system.
In Sec. III, we present our results and a detailed discus-
sion on these and related issues.

II. FORMALISM

We consider a semiconductor superlattice as K quan-
tum wells of width a separated by a series of potential
barriers of thickness 6 and supported by a semi-infinite
uniform medium of dielectric constant e (see inset in Fig.
1). The period of the superlattice is d = a + b The.
surface-parallel motion of the electron is treated as a free-
electron gas characterized by an effective mass m. The
lattice vibrations are ignored for now but their effects will
be discussed in Sec. III. The ionized donors are assumed
to be smeared out into a uniform positive background
which just cancels the charge density generated by the
free carriers. The electronic wave function C' (z) and en-

ergy E of the tunneling motion along the z direction
are calculated self-consistently, taking into consideration
the carrier depletion produced by surface dangling bonds
and. impurities. Therefore, the full wave function of a
conduction electron can be written as

200-

150-

100-
A

0-
—2.70 —1.35 0.00 1.B5 2.70

k„(1 00/a. )

FIG. 1. Miniband structure for GaAs/Al Gaq As super-
lattice of ten periods. Within a two-miniband model there
are 20 levels, of which only the lowest five are occupied. The
surface-related levels are shown as dotted lines. Inset shows
a diagram of a superlattice used in the numerical calculation.
d=226 A. and ao is the Bohr radius.
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4'k„,„(rii, z) = e'" ' 4„(z),
A

and the corresponding eigenvalue is

h kll
E„(kii) = + E„,

where r ll, kl~ are position and wave vectors in the x-y
plane.

The dynamical response of the inhomogeneous electron
system is treated in a fully nonlocal theory within the
random-phase approximation (RPA) . Correspondingly,
the dielectric susceptibility y describing the density-
density correlation of electrons can be obtained by solv-
ing a Dyson equation:

y(q~~, ~, z, z') = yp (q~~, cu, z, z') +
L L

dz& dz2 [ yp(q~~, cu, z, z~) V(q~~, z&, z2) y(q~~, z2, z') j,

where V is the Fourier component of the Coulomb interaction potential with Hartree and image terms given by

V(qadi, z, z') = V~+ Vi,

27t e —
q(( lz —z'l

qll

2me e —1
q ~z+zq~~ Z Z

6+ 1

yo is the susceptibility of the noninteracting electron system

where II, , is given by

1
11„,„,= ) 0(E —E,„„,) h~+ E„, —E„,—2" (2k(~ q[[ + Ill) +

1

h(u + E„,—E„, ——"(2k~~ .
q~~ + Ql~) + 9

A closed form of II, , can be obtained through contour integration:

m' f h'v(( & . &'q(('kF'
1/2

fn'q '
+ hO, , —hw —ig2m2 "'"'

)

h gll k~
m2

( h, '~2
+ hO~ ~ + hbd + 'L'g

( 2m

where hO, , = E, —E, . The case n~ ——n2 corre-
sponds to intrasubband transitions and nq P n2 describes
intersubband transitions. The phenomenological damp-
ing parameter g is chosen to simulate typical impurity
broadening of levels and is kept small in our numerical
calculations below.

In a Wannier function representation, C' (z) can be
expressed as

Xp(qadi, (u, z, z') = A'(z) B(qadi, cu) . A(z'),

where A, (z) = P; (z) P~ (z) and B„(q~~,u)

zs a compound index.
The advantage of working in this Wannier representa-

tion is that the integral equation (3) can be decoupled
and solved exactly. ' We obtain

where P; (z) is the Wannier function for the nth mini-
band centered on the ith layer. Then, yo can be written
as

y(q~~, ~, z, z') = A'(z) B(1—VB) A(z'),

where

(12)
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v.. (qadi)
= dz dz' A. (z) U(q~~, z, z') A, ~ (z') .

The definite-parity and the highly localized behavior of
various P; greatly reduces the numerical calculation of
the matrix elements V»&.

An experimentally measurable quantity in both inelas-
tic electron and light scattering experiments is the scat-
tering cross section. This gives the probability for a pro-
cess in which an incoming electron is "rejected" from a
surface with a two-dimensional momentum transfer hq~~

and energy loss hu. It can be proved that the cross
section at low temperature is proportional to the loss
function:

P(q~~, ~) = P ( qadi,
M, z) dz, (i4)

where

P(q~~, ur, z) = u*(z) dz' uj(z') [
—Imp(q~~, ~, z, z') j,

and
e &~~ (inelastic electron scattering)

to(z) = e*"* (inelastic light scattering), (i6)

III. RESULTS AND DISCUSSIONS

Using the expressions derived in the preceding sec-
tion, we have calculated the loss functions P(q~~, tu) for

and Imp is the imaginary part of the susceptibility in Eq.
(12). P(q~~, cu, z) describes the contribution to the total
scattering intensity from different electron layers at posi-
tion z and given (w, q~~), where II', is the z component of
wave vector of the incident light. Therefore, Eq. (14) sets
up a relation between the microscopic nonlocal correla-
tion function and an experimentally measurable quantity.
Notice that the couplings between incoming beams (light
and electron) and electrons in the superlattice are quite
different. The electron beam couples via the rapidly de-
caying weight function in Eq. (16), while light is able
to probe the whole structure. We would therefore expect
different response intensities for the collective excitations
in the two inelastic scattering experiments, as indeed we
observe.

Finally, notice that all our calculations are in the
RPA, so that the exchange-correlation effects are ne-
glected. However, previous studies for similar superlat-
tice systems by Katayama and Ando, Zhang, Ulloa, and
Schaich, and others, have indicated that these terms
do not affect significantly the energies of the collective
modes and that the results obtained in the RPA agree
extremely well with those of calculations that go beyond
this approximation. This is of course a consequence of the
nearly-three-dimensional character of electrons in these
superlattices, and is in contrast to the situation in purely
2D systems, where higher order corrections are indeed
essential.

an n-type doped semiconductor superlattice with typical
structure parameters. The superlattice structure con-
sidered in our sample calculation consists of ten peri-
ods deposited on an undoped semi-infinite dielectric sub-
tract, as shown in the inset of Fig. l. In the typical
GaAs/Al Gaq As superlattice we model, the efFective
electron mass is m = 0.067 and the dielectric constant is
~ = 12.5. The period of the superlattice and the doping
density are taken to be d=188(well) A.+38(barrier) A.=
226 A and p = 1.9 x 10 cm, respectively. In addition,
a two-miniband model is adopted and twenty subbands
are involved in the calculations, which imposes significant
demands on the CPU time invested in the calculation
and inversion of matrices in Eq. (12). The broadening
parameter g is taken to be 0.5 meV in the calculation.
The self-consistent ground state energy-level structure
and wave functions for the superlattice considered were
obtained using a tight-binding envelope-function method
developed by Zhang and co-workers. In this method,
the potential associated with the inhomogeneous charge-
depletion layers is incorporated self-consistently. The
termination of the finite superlattice gives rise to near
surface-localized states lying in the miniband gap and
with wave functions strongly peaked near the end lay-
ers of the superlattice, and with a fast-decaying tail of
one unit period typically. Figure 1 shows the resulting
level structure for our example, including surface-related
subbands. The surface-localized states (dotted lines) lie
close to the Fermi level and are detached from the main
group of levels. In the discussion of the collective exci-
tations of these superlattices with depletion layers, the
surface states play an important role.

Notice that the collective excitations examined by
Zhang, Ulloa, and Schaich are the modes with oscil-
lations in the direction perpendicular to the surface, and
no momentum transfer from the probe is allowed in this
long wavelength limit. All these modes can, of course, be
described as vertical transitions between different sub-
bands in terms of electronic levels, as supported by the
nonzero excitation energies in the long wavelength limit.
Nevertheless, the response undergoes rather important
changes as the wave vector leaves the long wavelength
regime, as electrons with different spatial positions cease
to respond in phase to the external probes. From this
also, one can expect that the effects of charge depletion
and carrier tunneling in the superlattice would then inhu-
ence the dispersion and coupling strength of the plasma
modes. Given the complex nature of this problem, de-
tailed numerical work is necessary to investigate this be-
havior, as we show below.

We turn our attention to the dynamical response of
the systems considered. Figure 2 gives the loss function
P(q~~, w) versus w for difFerent wave vector q~~, for the in-
elastic electron scattering process. For convenience, all
2D wave vectors are presented in units of qo ——2' x 10
A. ~. For comparison, the loss function for inelastic light
scattering is also shown in Fig. 3 for several wave vec-
tors. Moreover, we also present in Fig. 4 the loss function
for an ideal periodic superlattice (no depletion regions)
with the same structure parameters and doping density.
To help identify the nature of the collective modes in
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FIG. 4. Inelastic electron scattering intensities of an ideal
periodic superlattice for various parallel momentum transfer
values (in units of qo

——2m x 10 A. ). Each curve is dis-
placed vertically for clarity. Intensity is in arbitrary units.
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~(meV)

40 50

2.0 (a)a=4.2 meVFIG. 2. Inelastic electron scattering intensities for dif-
ferent parallel momentum transfer values (in units of qs
27r x 10 A ). Each curve is displaced vertically for clarity.
Intensity is in arbitrary units. Peaks (1) and (2) are numbered
according to Fig. 7.
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(d) 39.3 meV '

the nonuniform electron systems, the position-dependent
loss function P(q~~, w, z) is also presented in Figs. 5 and 6
for the inelastic electron scattering and Raman scatter-
ing, respectively. The various collective excitations can
be classi6. ed into two categories: intraminiband modes
(hu ( 30 meV) and interminiband modes (hw ) 30
meV). Figure 7 gives the intensity (peak height) for sev-
eral prominent modes as a function of

q~~
for the electron

scattering probe. The corresponding oscillator strengths
for the same modes in Raman scattering are also pre-
sented in the inset of Fig. 7 for the purpose of compari-
son. The dispersion relations are shown in Fig. 8. Each
set of modes will be discussed newt in detail.
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FIG. 5. Inelastic electron scattering amplitudes from a dif-
ferent electron z layer along the superlattice growth direction
for q~~

= 0.25qp. Each curve corresponds to a different fre-
quency mode as indicated. Intensity is shown in arbitrary
units.
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FIG. 3. Inelastic light scattering intensities for parallel
momentum transfer values (in units of qo = 27r x 10 A ).
Each curve is displaced vertically for clarity. Intensity is in ar-
bitrary units. Notice considerable differences in relative mode
intensities with Fig. 2 ~

FIG. 6. Inelastic light scattering amplitudes from a differ-
ent electron z layer along the superlattice growth direction for
g~~

= 0.25gp. Each curve corresponds to a different frequency
mode as indicated. Intensity is shown in arbitrary units.
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FIG. 7. Inelastic eEectron scattering amplitudes in arbi-
trary units as a function of wave vector for different plasma
modes as indicated. Inset shows the inelastic light scattering
amplitudes in arbitrary units as a function of wave vector; no-
tice different decay behavior, produced here only by Landau
damping. Curves (1) and (2) are for the main "bulk" plasma
mode and surface mode, respectively. Curves (3) and (4) are
for the two interminiband modes.

A. Intraminiband plasma modes

25.
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5

0 A
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q,
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FIG. 8. Dispersion relations for different modes in Fig.
2. Intraminiband plasma modes: surface [x, peak (1) in Fig.
2], tunneling (A), and bulk [+, peak (2) in Fig. 2] modes.
& curve is the collective mode related to surface-to-miniband
transitions. Interminiband modes are shown in the inset. Low
(high) energy curve is the surface-related (bulk) mode. Up-
per dashed line shows the dispersion for a 2D plasmon, for
comparison.

All intraminiband plasma modes are associated with
collective motion (transitions) within each populated
subband or between the partially occupied subbands.
The loss functions in Fig. 2 indicate that all the promi-
nent intraminiband modes appear well below her=30
meV in this structure. In this range, and for

q~~
& 0.25,

there exist four distinct modes in the electron scattering
calculation (Fig. 2). As

q~~
decreases to

q~~
= 0.25, the

mode with the second highest frequency disappears. If
q~~

is further decreased to 0.05, there is only one mode
left in the loss function curve and all others are too weak
to be observed. The dispersion in Fig. 8 and oscillator
strength curves in Fig. 7 indicate that these collective
modes have rather rich structures as

q~~ goes from the
long wavelength limit to the finite region. Comparing

the loss function of the ideal superlattice (Fig. 4) with
those of the superlattice of finite size (Fig. 2), we con-
clude that, except for the first peak (mode), there exists
a one-to-one correspondence between the plasma modes
in these two difFerent systems. This suggests that the
lowest energy peak in the loss function of the real su-
perlattice [labeled (2) in Fig. 2] is associated with the
collective excitations in the depletion layer, while other
peaks correspond to "bulk" plasma modes. This result
is also supported by the fact that this surface mode has
dominant oscillator strength in the large

q~~
regime [Fig.

2 and curve (2) in Fig. 7]. More convincing evidence for
this point is the behavior of the z-dependent loss function
shown in Figs. 5 and 6, in which P(qll ~ ) at q
plotted for various modes. Curves (a), (b), and (c) cor-
respond to three prominent intraminiband modes with
excitation energy of 4.2, 8.0, and 15.6 meV, respectively.
Clearly, the first mode is strongly localized in a few sur-
face layers. Notice that this surface mode exhibits an
acousticlike dispersion relation (x curve in Fig. 8) and
has a zero excitation energy as the wave vector goes to
zero. The 2D-like weak Coulomb potential in the surface
layers is responsible for the vanishing frequency in the
long wavelength limit. The surface mode can be viewed
classically as the out-of-phase motion of the electrons in
the surface layers with respect to the bulk layers. Ac-
cordingly, the polarization fieM in the surface layers is
strongly screened by the electrons in the bulk layers (the
electrons in the low-lying subbands), which produces the
linear dispersion. A similar acousticlike mode has also
been found in ZnO and InAs(110) systems with accu-
mulation layers and other quantum-well systems.

The main peak in Fig. 2 [labeled (1)] carries most of
the intensity as the wave vector enters the

q~~
& 0.5 re-

gion, and corresponds to the in-phase motion of all elec-
trons including those in the depletion region. For even
smaller wave vectors (q~[ & 0.1), which corresponds to a
length equal to five times the total length of the super-
lattice, the dispersion relation (+ curve in Fig. 8) agrees
very well with that of the ideal two-dimensional electron
gas: cd(q~~) =

[ 7IAe q[~/Em ] . T ls imp les t a't, w eil

q~~
& O. l, the nonuniform electron system behaves ef-

fectively as an ideal two-dimensional electron gas with
all its carriers oscillating in phase. On the other hand,
the dispersion curve for the 2D-like plasma mode departs
increasingly from that of the ideal 2D electron gas as ex-
pected, due to the internal electronic structure of the
superlattice. This mode also exhibits a vanishing fre-
quency in the long wavelength limit. In this limit, all the
electrons in the system respond to the external perturba-
tion in phase, even though the equilibrium density is not
homogeneous and the superlattice has finite thickness.
Incidentally, notice that the general dispersion relations
of the plasma modes obtained in inelastic electron scat-
tering and Raman scattering are the same, although the
oscillator strengths are quite difFerent.

Curves (1) and (2) in Fig. 7 are the electron scattering
oscillator strengths as a function of wave vector

q~~
for the

main bulk mode and the surface mode. These two modes
have roughly the same strength around

q~~
——0.65. While

the bulk mode carries a very small portion of the intensity
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due to the strong damping of the field, the surface mode
dominates in strength in the large wave-vector regime

(q~~
) 0.65). This implies that the surface-related modes

would be more easily observed in the large wave-vector
region in the inelastic electron scattering than in Raman
scattering. Moreover, in the intermediate regime of the
wave vector, both modes carry a substantial part of the
total intensity. In contrast, as the wave vector goes to the
regime below 0.3, where the damping of the probing field
is relatively weak, the bulk mode has the largest oscilla-
tor strength as expected, since only a very small portion
of the total number of electrons is in the surface layers.
Meanwhile, as the wave vector goes to

q~~
& 0.5, all the

peaks in Fig. 2 become weak and broad, which can be
understood in terms of the interaction between the plas-
mon and single-particle excitatjons (Landau damping).

The second peak in the loss function curves is called
a tunneling mode, as it is associated with the tunneling
motion of electrons along the superlattice growth direc-
tion. This novel mode has a nonzero excitation energy
of 2.8 meV as

q~~
~ 0 (E curve in Fig. 8). This en-

ergy can be viewed as arising from transitions among the
bulk-related subbands of the structure but shifted by the
Coulomb interaction from 2.6 meV (Fig. 1). Curve (c)
in Figs. 5 and 6 indicates that the tunneling mode is
basically extended throughout the superlattice. As far
as the oscillator strength is concerned, our calculations
show that the collective tunneling mode carries substan-
tial intensity if the wave vector is within the region 0.1—1.
Again, this mode enters the Landau damping region and
becomes not well-defined as the wave vector increases be-
yond 1.3. The d-parameter theory of Zhang, Ulloa, and
Schaich obtained similar results for the same system in
the long wavelength regime.

Notice in Fig. 2 that there exists another mode with ex-
citation energy intermediate to the tunneling mode and
the surface mode in the inelastic electron scattering as
the wave vector goes beyond 0.25. Our calculation shows
that both the excitation energy and oscillator strength
vanish as the wave vector approaches zero and are al-
ways small (the dispersion is not included in Fig. 8). This
mode is identified as a mixed result of all possible coher-
ent motions of the electrons in different layers. In terms
of electronic levels, there should exist many possible co-
herent transitions among the populated subbands, and
indeed this mode carries its highest intensity for large
wave vectors on and around 0.7, but eventually it Lan-
dau dampens for values close to l.

Before ending the discussion of the intraminiband col-
lective excitations, a comparison between the inelastic
electron and light scatt;ering results is necessary. As men-
tioned before, due to the different coupling mechanism in
these two scattering processes, there exists rather promi-
nent diBerences in the intensity curves for the surface-
related modes. For large wave vectors, the surface modes
dominate in effective oscillator strength in the inelastic
electron scattering, while this characteristic is absent in
the Raman scattering. Given the same wave vector of
0.25 in Figs. 5 and 6, P(q~~, cu, z) for the surface mode
in these scattering processes is plotted [curve (a)]. No-
tice that the intensity in inelastic electron scattering is

stronger than that in the Raman scattering, and even
though both curves imply that this mode is strongly lo-
cated around the surface layers, there are subtle differ-
ences that yield different total amplitudes. This impor-
tant point is even more clear for the surface-related inter-
miniband mode, which will be discussed next. Indeed,
surface-related modes would be preferentially enhanced
in inelastic electron scattering compared with the results
of Raman scattering experiments.

B. Interminiband plasma modes

As Figs. 2 and 3 indicate, in addition to the intra-
miniband plasma modes there also exist two intermini-
band plasma modes, associated with transitions across
the miniband gap. The corresponding dispersion and
oscillator strength are also given in Fig. 8 (inset) and
Fig. 7, respectively. Between the interminiband and the
intraminiband energies there is a large single-particle-
like excitation continuum in which no plasma mode can
exist. Moreover, the single-particle excitations also ex-
ist in other energy regions with small but nonvanishing
strength. For small wave vector q~~, the energy gap be-
tween the single-particle excitations and plasmons forbids
the exchange of their energy. The gap will decrease and
eventually vanish as

q~~
increases and the system then

enters the strong Landau damping regime.
In a simple case, for example, when only two subbands

are involved in the calculation and the effect of other sub-
bands can be neglected due to a large energy separation,
the interminiband plasma resonance can be viewed as
coming from the corresponding single-particle transition
but shifted by the depolarization fields. ' The energy
shift in the long wavelength approximation is propor-
tional to the volume charge density n and a Coulomb

integral f such that cu(q~~) = w2+ fcu2, where u, is

the separation of the two subbands considered, and ~„
is the well-known plasma frequency of the equivalent 3D
system. When more subbands are included, as in the
case of the tunneling superlattice considered in this pa-
per, and the included subbands have very close energy
values to form a miniband, the complicated and stronger
polarization fields will also cause significant shifts in the
excitation spectrum. Several empty subbands with ener-
gies lying close to the occupied states have an important
contribution to yield a large mode strength. The spa-
tial dependent loss function shown in curve (d) of Figs. 5
and 6 confirms that the first interminiband plasma mode
[labeled (3) in Fig. 2] is mainly confined to the end lay-
ers, while the higher energy mode is basically extended
throughout the superlattice. This also agrees with its
absence in Fig. 4, as the ideal superlattice supports no
surface states or modes, and it; only shows one broad in-
terminiband mode. We therefore conclude that the first
interminiband mode corresponds to the transitions from
the populated surface subband to the unoccupied bulk-
like subbands. In contrast, the second mode [(4) in Fig.
2] describes the tunneling among the different wells and
basically results from transitions from the lowest four ex-
tended occupied subbands to the empty subbands. The
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oscillator strength curves as a function of wave vector for
these two modes in the ii".elastic electron scattering, rep-
resented by curves (3) and (4) in Fig. 7, show that mode
(4) decays fast to zero as the wave vector increases from
0.15 to 0.45, while mode (3) exhibits a very slowly decay-
ing behavior and reaches zero only after 1.25. The rapid
intensity decay of the second mode can be attributed to
the factor e &~~' in the bulk region (z very large ) in Eq.
(16). On the other hand, the decay of the first mode at
large q~~

is mainly due to the Landau damping.
The dispersion curve for the first mode remains al-

most constant at about 39.4 meV when
q~~

& 0.286. In
the small

q~~ regime, the depolarization field of the in-
duced charge density fluctuation parallel to the surface
in the depletion layer appears to change very slowly, and
produces no mode dispersion. The situation is different,
however, as the excitation energy increases for wave vec-
tors beyond 0.286. In contrast, the dispersion of mode
(4) exhibits a negative slope in the small wave-vector
region, changes into a positive slope at qll

——0.15, and
eventually the mode disappears at 0.45. This somewhat
unusual negative slope behavior in the interminiband
dispersion relation has been found in other systems as
well. Moreover, as discussed before, optical absorption
calculations also obtained two interminiband plasma
modes with excitation energies of 39.8 and 42.5 meV, re-
spectively, which agree with our results of 39.4 and 42.4
meV in the long wavelength limit.

Before concluding this part of the discussion, we would
like to comment on the effect of phonons in our calcula-
tions. We have treated the dielectric response of elec-
trons in the tunneling superlattice without including the
contribution of the lattice vibrations. Generally speak-
ing, polar semiconductors have an infrared-active trans-
verse optical phonon mode at long wavelength. This
mode usually plays an important role in inelastic elec-
tron scattering. Therefore, in order to compare with
experimental results, in principle, one needs to incor-
porate the effect of the lattice vibrations. This can be
done by replacing the frequency-independent dielectric
constant by a frequency-dependent dielectric function:.(~) = ~ (~' —~,' + aqua„~)/(~' —~T + zqp„~). For
GaAs, h~~ ——33.6 meV and hwL, ——36.8 meV, and gph
is a phenomenological parameter for phonon broadening.
When phonons are included in the dielectric response cal-
culation, and because of the interaction of the polariza-
tion fields of phonon and plasmon, new coupled modes
arise. These new modes are basically a mixture of the
plasma and phonon modes. However, this coupling has a
substantial influence only when the energy difference of
these two modes is small. Therefore, in case of a large
energy difference, only one extra phononlike mode will be
obtained as the original modes would have only a slight
shift to higher energy when the lattice vibration is in-
corporated in the picture. Since for GaAs huT is rather
far from both the main intraminiband peak and the first
interminiband mode for all wave vectors of interest, we

do not expect to obtain qualitative differences, except
around the phonon absorption peak hcuT ——33.6 meV.

IV. SU MMARY

We have applied a full nonlocal response theory in
a Wannier function representation to study the collec-
tive excitations and their dispersion relations by calcu-
lating the loss function describing the inelastic electron-
electron scattering and Raman scattering experiments
for doped tunneling semiconductor superlattices such as
GaAs/Al Gai As with charge depletion in the surface
layers. In the calculation, a total of twenty subbands
are involved, out of which only five subbands are occu-
pied. This work complements the results obtained by
Zhang, Ijlloa, and Schaich for a similar superlattice
system, providing detailed information for mode intensity
and dispersion relation, well beyond the long wavelength
regime. The complicated depolarization fields, which are
created by the electrons in different subbands, govern
the dispersion relations of different modes. All the in-
traminiband modes describe the collective motion paral-
lel to the surface, while the interminiband plasmons are
associated with a small polarization along the superlat-
tice growth direction. As

q~~ goes to zero, these two kinds
of modes have vanishing and nonvanishing excitation en-
ergy, respectively. The novel tunneling mode has nonzero
frequency in the long wavelength limit. Especially, the
surface-related intraminiband mode has an acousticlike
dispersion curve, which can be attributed to the screen-
ing of the electrons in the bulk layer. Besides, for small
wave vectors, the dominant intraminiband mode exhibits
a very strong 2D-like electron gas behavior. On the other
hand, the mode exhibits substantially different responses
to the two external probes studied here. This produces
different mode intensities in the loss function due to the
unique coupling process. The fast decay of the oscil-
lator strength in EELS for the bulk-related modes in
the large q~~ regime is mainly due to the damping fac-
tor e ~~~ '. However, the intensity of the surface-related
modes results from Landau damping. The inelastic elec-
tron and light scattering complement each other well in
that the inelastic electron scattering is more sensitive to
the surface-related normal modes. We are hopeful that
this work will encourage comparative studies on the same
superlattice structure as a way to characterize all modes
of the structure well.
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