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The electric-Geld-dependent intrinsic lifetimes of resonances in biased multiple quantum wells are
studied by using a complex-energy analysis based on an Airy-function transfer-matrix description of
tunneling. Special attention is paid to the case when at some particular electric field two resonances
belonging to different quantum wells resonantly align in energy. Two different characteristic behav-
iors were found in such electric-field sweeps: Long-lived resonances typically exhibit an anticrossing
of their quasieigenenergies and a corresponding crossing of their lifetimes, usually associated with
large changes in these lifetimes over many orders of magnitude, while short-lived resonances feature
a crossing of their quasieigenenergies and an anticrossing of their lifetimes with less variation in these
lifetimes. The parameters relevant for these two different regimes are discussed, and a simple model
is derived to describe the crossover between these regimes.

I. INTRODUCTION

Among the physical properties explored in nanoscale
heterostructures, such as resonant tunneling diodes
(RTD) or multiple quantum wells (MQW), the intrinsic
lifetime of electronic resonances is of fundamental inter-
est both to the study of quantum mechanics as well as
to the design of applications where a rapid charging or
discharging of these resonances is of high importance, as
is the case in high-&equency devices. Resonances occur
in these structures since the typical vertical length scale
is comparable to the electron wavelength. The present
paper deals with a simple way of calculating the intrin-
sic lifetime of these resonances due to tunneling in the
absence of any many-particle interaction.

Experimentally, lifetimes of resonances can be stud-
ied by measuring the sweep-out times of photogener-
ated carriers in RTD's or MQW's, for instance, with the
help of time-resolved photoluminescence spectroscopy,
or time-resolved electroabsorption measurements. '

Though it is fairly diKcult to establish a rigorous connec-
tion between what is measured and the intrinsic lifetime,
a thorough understanding of the intrinsic lifetime is cer-
tainly a big step forward. So far, a number of methods
have been employed to calculate the intrinsic lifetime
of resonances in these structures. Apart from various
semiclassical or wave-packet approaches, probably
the easiest and most often used method is based on a line-
shape analysis of the transmission probability of the so-
called scattering states. ' ' These states are de6ned
as having an incident plane wave of given wave vector k;
upon reaching the structure, part of the wave is rejected
while the rest can pass as the transmitted wave. By defi-
nition, there is no incident wave on the transmitted side.
As in nuclear physics, by sending such a continuous wave
onto the structure one can probe internal resonances of

the system when varying the energy of the incident beam.
When the energy of the incident wave hits a resonance,
the transmission probability T is greatly enhanced, ap-
proaching unity under certain conditions. The linewidth
I' of such a peak in T is associated with the lifetime of
the resonance via r = 6/I'. This method works fairly
well in simple cases, but it has a number of serious draw-
backs when applying it to more complicated structures.
First, the stated relation between the linewidth I' and
the lifetime 7 of the resonance is exact only as long as
the line shape of T(E) is strictly Lorentzian. Second,
this analysis can only be used for resonances with ener-
gies above the conduction-band edges in both contacts, as
otherwise the transmission probability will vanish iden-
tically. And Anally, related to the first point, if some
resonances lie very close to each other in energy, it be-
comes impossible to extract their exact position on the
basis of T(E) alone; ambiguities in the line-shape Btting
will always remain. En particular this last point renders
many interesting eKects inaccessible to the line-shape-
analysis method. On the other hand, there exist a couple
of approaches based on more sophisticated methods, such
as, for instance, the tunneling-Hamiltonian formalism,
but even when assuming a constant mass throughout the
structure, this formalism is still too involved to be easily
used for the analysis of complex structures.

A very elegant and simple-to-use extension of the line-
shape analysis of T(E) is the complex-energy method,
which has already been successfully applied to sin-
gle quantum wells. ' ' Other applications include the
study of resonances in oscillating barriers, T-shaped
quantum wires, and there has also been an attempt
to utilize this method to describe inelastic scattering in
double-barrier structures. Basically, in this approach
one considers appropriately defined scattering states hav-
ing complex energies. The transmission amplitude t(E)
of these states has poles in the complex-energy plane.
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II. COMPLEX-ENERGY
TRANSFER-MATRIX FORMULATION

The complex-energy method is basically the linear-
system theory of classical mechanics applied to quantum-
mechanical scattering states. Given a linear system

(E) = t(E)~ (E) (2.1)

defining a relation between the input amplitude @'" and
the output amplitude it " as a function of energy (clas-
sically, the frequency), the eigenenergies of this system
can be obtained by searching for the poles of t(E) in
the complex-energy plane. Equivalently, and numerically
more conveniently, one can look for the roots of 1/t(E).
At such a pole, respectively, root, the system has non-
trivial solutions with finite output amplitude even for
vanishing input amplitude, which can be interpreted as
describing decaying quantum levels having only outgo-
ing flux (see Fig. 1). The real part of the pole position
then gives the quasieigenenergy of the decaying quantum
level, while the imaginary part is related to its lifetime
(classically, the damping factor p of the resonance).

As such, the complex-energy method is simply a con-
venient mathematical tool which is not limited to poles
having small (on whatever scale) imaginary energies, yet
one has to check carefully whether the resonances found
this way have anything to do with the physical resonances
in the system. In the following we summarize the basic
physical properties of a scattering state having a com-
plex energy: First, by definition, it solves the Schrodinger
equation with a complex eigenenergy,

For each pole, the real part of the pole's position defines
the quasieigenenergy of a resonance, while the imaginary
part is inversely proportional to its intrinsic lifetime.

In this paper we present a complete analysis of the in-
trinsic lifetimes of resonances in MQW's and RTD's as a
function of an applied electric field. In contrast to previ-
ous approaches, we use the exact Airy-function solutions
in the case of finite electric fields. Moreover, all possible
boundary conditions for resonances are discussed. Par-
ticular attention is paid to the field dependence of intrin-
sic lifetimes when two diferent resonances come close to
each other. If both resonances are strongly bound, an an-
ticrossing with large "dips" in the lifetimes occurs as the
electric field is swept. In contrast, for weakly bound lev-
els we find that they usually undergo a crossing instead of
an anticrossing, and that the "dips" in their lifetimes are
generally much smaller or even completely absent. These
findings have, for instance, implications for the analysis
of carrier sweep-out rates, as they indicate intrinsic lim-
its on the detectability of resonances in sweep-out rates
even if otherwise perfect conditions are assumed. And
finally, we will brieQy discuss what happens when —for
example, under the application of an electric field —the
real part of the quasieigenenergy of a resonance crosses
the conduction-band edge in the emitter or the collector
contact, in which case the boundary condition for this
resonance changes.

Boundary conditions for

scattering states

transmitted

structure

'L%WV. %X%%'1%%%%W%VAXW% L%%W'LWW%X

incoming

reflected

decaying quantum levels

structure

outgoing outgoing

FIG. 1. Schematic boundary conditions for scattering
states and decaying quantum levels (resonances). The for-
mer are defined as having an incoming, a reQected, and a
transmitted wave, while the latter have only outgoing Quxes
to both sides. At a pole in the complex-energy plane, the
input amplitude of a scattering state goes to zero relative to
the re8ected and transmitted amplitudes, and hence for this
particular complex energy the scattering state also satisfies
the boundary condition for a decaying quantum level.

ih —@(z,t) = H(z)q(z, t) =
l
E —i

l
q(z, t) . —.rl

Bt 2) (2.2)

At any point in space it decays exponentially as

h~, I@( t)l'=-I'I@( t)l' (2 3)

which defines its intrinsic lifetime to be r = h/I'. It
should be noted that for complex eigenenergies this wave
function usually cannot be normalized as it diverges at
z m +ao. s This makes an interpretation of Eq. (2.3)
as describing the decay of a localized level not straight-
forward. However, in the case of a "good" resonance,
the wave function has a very large amplitude somewhere
within the structure as compared to its amplitude at the
contacts, and it is in this sense that we can speak of
localized wave functions. Introducing such a cutofF at
the contacts can be justified by the randomization prop-
erties of the contacts. Another problem when compar-
ing with experiments is that even though the resonances
are localized in the system, on a quantum-well length
scale they may be rather delocalized, occupying, for in-
stance, two or more quantum wells. We do not consider
how photogenerated carriers relax into such a delocalized
level, but rather assume this process to have already hap-
pened. In general, we believe that with increasing imag-
inary eigenenergy it becomes more and more difFicult to
actually prepare a carrier in this level or only close to it.
But even if this preparation cannot be done completely,
a knowledge of the complex-energy resonances is useful
as they completely characterize the analytic properties of
the transmission amplitude t(E), and thus the system.

It is easily seen that in the limit of infinite lifetimes the
standard line-shape analysis of the transmission proba-
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bility T = tt* gives exactly the same quasieigenenergy
and intrinsic lifetime as the complex-energy method. In
the neighborhood of a single pole at complex energy Eo
(which is always a first-order pole), t(E) can be approx-
imately written as

A

0
(2.4)

with some constant A. On the real axis this has the form

t(E) = A

(E —Re(Eo)] —i Im(Eo)
(2.5)

which yields a Lorentzian line shape for T with the reso-
nance position at Re(Eo) and a half linewidth of Im(Eo).
Equation (2.5) is exact in the limit Im(Eo) —+ 0, i.e. , for
infinite lifetimes.

From this point on we will be more specific about the
functional form of the transmission amplitude t(E). We
assume an effectively one-dimensional two-terminal de-
vice with an almost arbitrary internal electrostatic po-
tential distribution, the only restriction being that the
potential in the contacts is kept flat. This restriction
is necessary if we want to define boundary conditions for
the scattering states in terms of eigenstates of the current
operator, i.e., in terms of plane waves.

In this case, four different kinds of resonances with
three different boundary conditions can be distinguished.
First, there is the truly bound quantum level with an
eigenenergy below the conduction-band edges in either
contact, resulting in an infinite lifetime. Second, there
are semi-bound levels with quasieigenenergies between
the collector and the emitter conduction-band edge. The
quantum levels belonging to the third class, which we
will call quasibound levels, have quasieigenenergies above
the conduction-band edges in both contacts, but are still
confined by some potential barriers in the system. Fi-
nally, virtually bound levels are unconfined towards at
least one contact and have even higher quasieigenener-
gies than quasibound levels. A distinction between the
last two types is somewhat arbitrary as they satisfy the
same boundary conditions, but nevertheless it is a useful
approach in view of their vastly different lifetimes. All
but the quantum levels belonging to the first class have
finite lifetimes.

In order to specify proper boundary conditions, the
standard procedure is to decompose a scattering state of
energy E in the contacts as

g~,„(z) = A~ ~ exp(k~ „z) + B~ ~ exp( —k~ „z), (2.6)

where kl „=h +2m~ „(Vj„—E) is the wave vector in
the left (right) contact. This decomposition holds not
only for plane waves [i.e. , for Re(Vj „—E) & 0], but also
for the case of evanescent modes with Re(Vj —E) ) 0,
and one can thus treat all possible cases on the same
footing.

A standard transfer matrix relates the scattering-state
coefficients A and B in one contact with those of the
other contact,

&+.) &+&)
(2 7)

In the Appendix details are given for how to calculate
the 2 x 2 transfer matrix T " for finite, piecewise con-
stant electric fields. The standard scattering states can
be obtained from this general formula by choosing the
coefficients A and B in either the left- or the right-hand
contact such that at this side only an outgoing plane-
wave component exists (compare Fig. 1). The other side
will then consist of an incoming plane wave and a re-
Hected part (again, in the case of evanescent modes these
boundary conditions have to be suitably modified in an
obvious fashion). To describe a decaying level, one has
to impose different boundary conditions. By definition,
a decaying level has only outgoing but no incoming flux
(see Fig. 1). Usually, this requirement on the coefficients
cannot be met by using real energies of the scattering
states alone: one has to use complex energies. Finding
scattering states having complex energies such that the
boundary conditions for decaying levels are met is what
the complex-energy method is concerned with. Through-
out the paper we will assume the incident wave to be on
the right-hand side of the structure. Some of the follow-

ing results are well known from standard textbooks on
quantum mechanics but are repeated here for the sake of
completeness.

For truly bound levels the boundary condition is that
the wave function must not diverge for z ~ +oo, and
thus we have to require B'I ——0 and A„= 0. With our
choice of scattering states, the condition B~ ——0 is al-
ready satisfied by definition. For the remaining condition
we think of A„as a vanishing input amplitude, and set
up an equation in the spirit of Eq. (2.1) as A„= Tii "AI.
[To be precise, this is the inverse of Eq. (2.1).] Then the
condition A„= 0 is satisfied at roots of Tz~~ "(E), i.e. , at
complex-energy poles of 1/Tii . As expected for truly
bound levels, these roots always lie on the real-energy
axis, yielding infinite lifetimes for these levels. For the
discussion of semi-bound levels we take the potential in
the left-hand contact to be higher than that in the right-
hand contact. Then a decaying level has to satisfy the
boundary condition that its wave function must not di-
verge in the left contact, and that on the right-hand side
it may contain outgoing plane waves only. This requires
B~ ——0 and B„=0, where again the first condition is
automatically fulfilled because of our definition of the
scattering states. To meet the second condition we now
utilize B„=Tz~ "A~, and thus find that for this type of
boundary condition the roots of Tz~P (E) are relevant.
Similarly, quasibound and virtually bound quantum lev-
els, having only outgoing flux, have to satisfy A~ ——0 and
B„=0, and with the relation B„=T22 "B~ we see that
in order to match both conditions we have to search for
the roots of T22 (E).

These boundary conditions ensure that all types of res-
onances have only outgoing Pux in the contact regions (or
none if their energy is below the respective conduction-
band edge), and thus describe decaying quantum levels.
With 2 Im(k) —I'm/Re(k) = I'/v we then find that
the total derivative of the probability function vanishes
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in coordinate space [as shown in Figs. 4(b) —4(d)], they
also interchange the channels and ways to escape from
these levels, i.e. , their intrinsic lifetimes. This has, for
example, a pronounced effect on the sweep-out rates of
photogenerated carriers as measured in experiments. '

If we assume that only the lowest level in each quantum
well is occupied, then the lifetime of a carrier in the quasi
ground state of the left quantum well will follow neither
curve r2 nor curve rs of Fig. 5(b), but approximately be
given by curve w2 up to the point where it crosses curve
&3, and after that by curve 73. The resulting line shape
of the sweep-out time exhibits a strong "dip" of more
than two orders of magnitude at the resonance position
where the two levels align. It can therefore be concluded
that the sweep-out mechanism is most efFective at reso-
nance. Finally, we note that for quasibound levels [which
by deBnition have energies above both conduction-band
edges and hence finite transmission probabilities T(E)]
the anticrossing characteristic of the quasieigenenergies
can also be seen in the transmission probability as a dis-
tinct double-peak fine structure, even at resonance.

Electric field F [100 kV/crn]
FIG. 5. (a) shows the energy shifts of the four quantum

levels EI —E4 of Fig. 4 as a function of the app1ied electric
field I'. The potential on the collector side is taken to be
the reference point. The dash-dotted line labeled E, refers to
the energy of the conduction-band edge in the emitter con-
tact. At En = 207 kV/cm the levels E2 and Es undergo an
anticrossing, which is reflected in (b), showing the intrinsic
lifetimes v;, as a corresponding crossing of their lifetimes.

5(b) in the case of the Ei and Es levels of the right-hand
well. On the other hand, the drastic, steplike increase
of the lifetime w2 of the E2 level in the left-hand well at
an electric field of about 46 kV/cm is due to this level
dropping at this field strength below the conduction-band
edge of the emitter contact, which renders the tunneling
towards this side impossible. Though such a drop does
in principle occur for the other levels too when they pass
a conduction-band edge, it is by far strongest for the E~
level as this level has two quite opaque barriers to the
right but only one rather transparent barrier to the left.
Thus electrons escape from this level primarily towards
the emitter contact, and when this channel is closed the
intrinsic lifetime increases by many orders of magnitude.
The precise electric field at which this transition hap-
pens obviously depends on the voltage drop over the ac-
cumulation layer, which is the layer between the emitter
contact and the first barrier, and hence on the length of
this layer. In the present example this length was set
to be 90 A. For very thick accumulation layers, such as
those used in MQW devices, the electric-field necessary
to push a quantum level below the emitter conduction-
band edge goes to zero, and thus for virtually all electric
field strengths carriers can only tunnel to the collector
contact. Another interesting behavior in the lifetimes
shows up at 207 kV/cm when the E2 and Es levels come
to resonance. While the quasieigenenergies of these levels
undergo an anticrossing, their lifetimes exhibit a crossing.
The reason is simply that when the levels swap positions

C. %"eakly bound levels

The situation is quite different for weakly bound lev-
els. When changing the parameters used in Fig. 4(a) only
slightly to a well width of 60 A and a barrier width of
65 A, the resulting quasieigenenergies Ei E4 are slig—htly
higher than before, making these levels less bound [see
Fig. 6(a)]. In this case we find that the levels now un-
dergo a crossing instead of an anticrossing in an electric-
field sweep. This means that at resonance the levels no
longer swap positions, but more or less remain localized
in their respective wells [compare Figs. 4(b) —4(d) with
Figs. 6(b)—6(d)]. Only a small delocalization is found
at resonance, as seen in Fig. 6(c). The crossing of the
quasieigenenergies as shown in Fig. 7(a) is accompanied
by a corresponding anticrossing in the lifetimes [Fig.
7(b)]. In the case of weakly bound levels, the "dips" in
the lifetime at resonance are much less pronounced than
before, and may even vanish for extremely loosely bound
levels.

D. Crossing versus anticrossing behavior

To understand what the relevant parameters are which
determine whether two unperturbed quantum levels Ei
and E2 will undergo a crossing or an anticrossing, we will
study the standard two-level approximation to quantum
resonances, generalized to eigenfunctions with complex
eigenenergies. (In the following, the notion "eigenen-
ergy" refers to the standard assembly of quasieigenenergy
and inverse lifetime into a complex quantity, E —ih/2r. )
As a basis set we take two eigenfunctions ]~Pi), ~&$2)) of
the full Hamiltonian, one of each branch, at an electric
field I"0 slightly loioer than the Beld E~ at which the cross-
ing/anticrossing occurs. The precise value of the field Eo
does not matter as long as it is sufFiciently far away from
the resonance field EIt so that the states ~Pi) and ~P2) do
not yet noticeably interact. The efFective Hamiltonian
H(E) to be diagonalized is2
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and consequently complex eigenenergies, the quantities
M(E), A(E), and W2(E) occurring in Eq. (3.2) become
complex. If we define the cut of the square root in the
complex plane to be located as usual on the negative real
axis, the transition between very long-lived levels and
truly bound. levels will be smooth, as required. In par-
ticular, by taking the principal branch of the square root
we see that for all possible complex values of the square
root's argument, the real part of gE(E) + 4W2(E) will
always be positive. As a consequence, we again find the
relation Re[E+(E) —E (E)] & 0 to hold for all electric
fields in the neighborhood of the resonance, seemingly
implying that quantum levels with finite lifetimes, too,
will always undergo an anticro88ing in their quasieigenen-
ergies. However, this naive analysis does not consider the
case that when increasing the electric field, the square
root's argument, A(E) + 4W (E), may in fact cross the
cut on the negative real axis at some particular point.
Continuity of the solutions then requires that from this
point on the other solution of the square root having a
negative real part has to be used. In terms of the E+
and E branches this means that at this particular field
strength the relation Re[E+(E) —E (E)] ) 0 turns into
Re[E+(E) —E (E)] ( 0, and hence that a crossing of
the quasieigenenergies takes place.

The crossover point between the anticrossing and the
crossing regime can thus be characterized by the condi-
tions

to anticross. To explicitly demonstrate that Eq. (3.2)
can describe both regimes, we adopt a simple model in
which the matrix elements depend linearly on the electric
«Id as (1IH(E)ll) = ~iE —i(&i+»E) (2IH(E)I2) =
n2E —i(P2 + p2E) (with n, , P;, p; ) 0), and W2(E) =
const. For simplicity, we let the crossing take place at
zero energy and zero electric field. The crossover point
is then given by 2W = 2Wp =!Pi —P2!. Figure 8 shows
the eigenenergies E+, E and intrinsic lifetimes w+, ~
as calculated from Eq. (3.2) by using some typical values
for n, , P, , and p;. Figure 8(a) is representative of the
anticrossing regime with W ) Wp, while in Fig. 8(b)
W ( R p was assumed, which characterizes the crossing
regime. Both cases clearly reproduce the typical features
of the crossing (anticrossing) regime as found in the exact
numerical treatment (compare, for instance, with Figs. 5
and 7).

There are two ways of turning an anticrossing into a
crossing. One can either increase !Im(EiP —E2P)! by in-
creasing the difference in intrinsic lifetimes, preferably by
decreasing the shorter of both lifetimes or, alternatively,
one can decide to reduce the eII'ective overlap integral
W(E) between the states

!Pi) and
! P2), for example, by

increasing the barrier thickness between the two quan-
tum wells involved.

To illustrate how the transition takes place between a
crossing and an anticrossing behavior, we have looked in
the crossing regime at the well-width dependence of the

Re[A(E) + 4W (E)] = 0,

1m[A(E) + 4W (E)] = 0 .
(3.3)

a) W&W„ E+.
r-

Pr

In the neighborhood of the resonance Re(1!H(E)!1)
Re(2!H(E)!2) holds, giving

Re[&(E)] = —(™[(IIH(E)ll) —(2IH(E) 12)]k' (3 4)

and

1m[A(E)] = 0 .

After having carried out a proper renormalization pro-
cedure to overcome the difhculties associated with the
eigenfunctions initially not being normalizable (see Ref.
28), the imaginary part of W2(E) will be negligible, and
hence the crossover point between the anticrossing and
the crossing regime satisfies the relation

I I 1 I j I I
I \ I i

I
I

b) W&W

I i I » I i c i ~ I
I I I

I
I I I I

I
I f I \

I
I I ~ I

PP

E+

~ ~ m w mm ~ ~ %a\&&

2!W(E)!= g—Re[A(E)]
= !Iin[(l!H(E)!1)—(2!H(E)!2)]]
= Ilm(&i —E2)

I
(3.6) Electric field

where Im(Eio —E2) is the diIFerence in the imaginary
parts of the unperturbed eigenenergies, extrapolated to
the resonance region. The physical interpretation of Eq.
(3.6) is simple. If the difference !Im(Ei —Ez)! (which is
directly related to the difFerence in intrinsic lifetimes) is
smaller than the efFective overlap integral 2!W(E)!, the
levels will undergo an anticrossing, if it is larger they
will cross. Thus for a given overlap integral, short-lived
levels will tend to cross while long-lived levels are likely

FIG. 8. Energy shifts E+, E and lifetimes w+, 7 as cal-
culated from the real and imaginary parts of Eq. (3.2) when
assuming that the matrix elements depend linearly on the
electric field. The only difFerence between (a) and (b) is a
variation of the overlap integral W (which is taken as a pa-
rameter). In (a) this integral is greater than the difference in
the imaginary energies, Wo, leading to an anticrossing behav-
ior of the quasieigenenergies. For (b) W ( Wp was assumed,
resulting in a crossing.
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lifetimes ~2 and 73 at resonance in a double-well structure
having otherwise the same parameters as in Fig. 6. The
wider a quantum well the lower are the quasieigenenergies
of the levels, and hence the stronger are the levels bound.
As a result, when increasing the well widths the di8'erence
in the lifetimes w2 and w3 gets smaller. According to the
discussion given above, one can therefore expect that at
some well width the crossing behavior of Fig. 6 will turn
into an anticrossing. Figure 9 shows such a well-width
sweep for three different configurations of the barriers.
For Fig. 9(a) all barrier heights were set to V~ ——0.5
eV as in Fig. 6. The solid curve shows the lifetime of
the E2 level at the point where this level is at resonance
with the E3 level whose lifetime is given by the dotted
curve. The crossover point between the crossing and an-
ticrossing regime is where these two curves intersect, and
is found to be at a well width of 61.35 A. . To reduce
the overlap integral W(F) we then increased the height
of the middle barrier to V = 0.53 eV, while leaving
the other barriers at 0.5 eV. The result, shown as curve

(b) in Fig. 9, indeed indicates a stronger tendency of
the two levels to undergo a crossing, with the e8'ect that
the crossover point between the two regimes is shifted to
larger well widths (= 63.0 A.). It has to be said though,
that this e8'ect is not only due to the overlap integral
W(I") being reduced but also due to the quasieigenener-
gies going up for increased. confinement, effectively reduc-
ing (in particular) the right-hand barrier height. On the
other hand, raising only the right-hand barrier has the
opposite effect. Figure 9(c) was generated using a right-
hand barrier of 0.515 eV, and the crossover point is now
shifted down to 59.9 A. This can be explained in terms
of a taller right-hand barrier leading to both levels, E2

and E3, having reduced cruxes towards the right contact,
which tends to equalize their inverse lifetimes. According
to the analysis given above, this makes an anticrossing of
the quasieigenenergies more likely.

The results of this section resolve the problem as to
whether quantum levels belonging to two di8'erent, ex-
tremely weakly coupled wells would always "see" each
other at resonance if there are no phase-breaking mecha-
nisms —regardless of the separation of the wells. They
will not, as their overlap integral will be too small at large
separations, and so they will simply undergo a crossing.
Moreover, as the overlap integral becomes smaller and
smaller, the intrinsic lifetimes will eventually display no
resonance at all at the point of crossing. This is impor-
tant for the analysis of MQW structures with many wells
as it allows us to restrict our considerations to fairly small
systems of only a few coupled quantum wells.

IV. CROSSOVER BETWEEN DIFFERENT
BOUNDARY CONDITIONS

When changing parameters of the system, such as, for
instance, the electric field or the width of some layers, it
may happen that the boundary conditions to be satisfied
by a particular quantum level may change. The question
of whether or not such a transition between one boundary
condition and another yields continuous quasieigenener-
gies and intrinsic lifetimes as a function of the transition
parameter turns out to be very much a question of how
exactly such a transition is performed. I et us first study
a case where this transition is continuous.

Consider a right-hand contact which includes a thick
barrier of height E and width L as illustrated in Fig.
10. A decaying quantum level of energy E (with E, (
E ( E,I) has to satisfy the boundary condition that to
the right-hand side only an outgoing plane-wave compo-
nent can exist. However, letting the barrier width I go to
infinity is tantamount to changing the conduction-band
edge from E, to E t, i.e. , to changing the boundary con-
dition. The analysis of this transition is simple. For any
finite barrier width L, the wave function in the barrier
layer consists as usual of two contributions, a decaying
and a divergent evanescent mode. It is easily seen that
with increasing width L the divergent contribution in the
barrier will die out, and hence that in the limit I —+ oo
the wave function will satisfy the proper boundary condi-
tion appropriate for E & E, , meaning that the transition
between these two boundary conditions is smooth.

FIG. 9. Lifetimes w2 and 7q at resonance in the crossing
regime as a function of the well width in a double-barrier
structure otherwise identical to Fig. 6. As the levels become
more bound for wider wells, the tendency to anticross in-
creases, resulting in the two lifetimes approaching each other.
The crossover point between the crossing and anticrossing
regimes is where the vq and 7s curves intersect (indicated as
o). For set (a), all barriers have a nominal height of 0.5 eV.
In case (b) the middle barrier was raised to 0.53 eV, while
in case (c) the right-hand barrier was increased to 0.515 eV.
The resulting shift of the crossover point can be explained in
terms of changes in the overlap integral and the difference in
lifetimes (see text for details).

/////////'////////////////
J/

system
W W W W W

/rrrr//r///rrr///rr/rrrr/'

right
contact

FIG. 10. Schematic right-hand contact of a "black-box"
structure. The width L of the barrier layer is variable. For
any finite L, the quantum level at energy E ) E has to
meet the outgoing-plane-wave boundary condition, while for
L —+ oo the boundary condition is that the wave function
decays exponentially. The transition between these two types
of boundary conditions is continuous (see text)
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On the other hand, when sweeping the electric field,
the transition between boundary conditions is usually not
smooth. The transition happens when the quasieigenen-
ergy of a resonance (i.e. , the real part of the position
of the complex-energy pole) crosses the conduction-band
edge in either the emitter or the collector contact, in
which case the wave function in that contact changes
from a plane wave to an evanescent wave or vice versa.
This transition is certainly not smooth, but one has to
be careful about the scale to expect for the discontinuity.
For instance, such a transition may be associated with
large changes in the intrinsic lifetime when that particu-
lar side on which the crossing occurred served as the main
exit for decay, as we have seen, for instance, in Figs. 4—7.
Nevertheless, it can be shown that this dramatic change
in the lifetime is not discontinuous but that there is an
onset of a change just before the quantum level is about
to dip below the conduction-band edge. Basically, the ar-
gument relies on the outgoing Aux being proportional to
the k vector in that contact. When for decreasing energy
this Aux goes to zero, so does the probability for an elec-
tron escaping towards this contact and hence, eventually
the lifetime will rapidly but smoothly change.

The "true" discontinuity when sweeping the electric
field is on a much smaller scale. Our preliminary nu-
merical results show that for a small transition regime
of electric fields it may happen that the resonance at the
conduction-band edge either cannot exist at all or, on the
contrary, that two resonances can coexist, one with the
old boundary condition and the other with the new one.
Though this effect is certainly of interest in applications
utilizing the stability of pinned virtually bound quantum
levels in multistable coherent-electron devices, it seems
that the transition regime of electric fields is rather small,
making an experimental observation difficult. A further
analysis of this efFect is under way.

V. CONCLUSIONS

A complex-energy analysis of the transition ampli-
tude of scattering states has been utilized to calcu-
late quasieigenenergies and intrinsic lifetimes of decaying
quantum levels in semiconductor heterostructures under
arbitrary bias. All possible boundary conditions for the
decaying levels were studied (corresponding to their en-
ergies being below or above the conduction-band edges in
the emitter and collector contacts), and the electric field
was exactly taken into account by employing Airy func-
tions in the transfer-matrix description of the scattering
states. The main body of the paper had been devoted
to an analysis of electric-field sweeps in double quantum-
well structures, which represent the simplest case where a
resonant alignment of quantum levels belonging to differ-
ent wells can be achieved, but the theory presented here is
also applicable to more complicated structures. Basically,
two different characteristic behaviors were found. As the
electric Geld is swept, strongly bound quantum levels al-
ways experience an anticrossing of their quasieigenener-
gies and a corresponding crossing of their lifetimes. This
behavior is very well known from the treatment of truly
bound levels in standard textbooks on quantum mechan-

ics. On the other hand, weakly bound levels having a very
short intrinsic lifetime generally do the opposite they
cross in quasieigenenergies and anticross with respect to
their lifetimes. These two different behaviors can be ex-
plained in terms of a simple two-level model, and the rel-
evant parameter distinguishing the two regimes is found
to be the ratio of an effective overlap matrix element to
the difference in the inverse intrinsic lifetimes of the two
(unperturbed) levels involved. At resonant alignment,
the intrinsic lifetime of the longer-lived quantum level
typically changes by orders of magnitude. This is partic-
ularly the case for strongly bound quantum levels, and
has been seen in a number of experiments. Finally, a
better understanding of the electric-Geld dependence of
the intrinsic lifetime is also of great value to the design
of high-speed devices based on RTD's or MQW's.
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APPENDIX: DEFINITION
OF TRANSFER MATRICES

In this appendix the basic formulas are summarized
for describing electronic resonances (i.e. , truly bound,
semi-bound, quasibound, and virtually bound levels) in
RTD's, MQW's, and related vertical heterostructures by
utilizing a transfer-matrix description of the scattering
states in these structures.

1. Arbitrary electric fields

To calculate a scattering state across the whole struc-
ture, the standard approach in effective-mass approxima-
tion is to split the heterostructure into a number of layers,
each layer having a constant electric field and a constant
effective mass. Then the time-independent Schrodinger
equation in layer I reads

2
d' —2mr (Vj —E —F'gz) ) tP~(z) = 0,

dz
(AS)

where my, Vy and I"y are the efFective mass, the potential,
and the electric field, respectively, of layer I (for conve-
nience, the elementary charge e has been absorbed in the
electric field I"). For vanishing field I"i = 0 the general
solution is a linear combination of plane waves,

vlji(z) = Ai exp(kiz) + Ri exp( —kiz), (A2)

with the wave vector hki = +2mi(Vi —E), whereas for
finite electric field the solution is a linear combination of
Airy functions,

gi(z) = AiAi[Zi(z)] + BiBi[Zi(z)],
with Zi(z) = (2miEi) ~ (h ki —2miEiz). At interfaces
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Or(z, ) = Mii(z;),
1 0—Ai(z)

mlI Bz
1 —A(z)

m~ Bz
(A4)

To get a transfer-matrix description of a scattering state,
this is usually rewritten in terms of a matrix equation for
the expansion coeKcients Ap, B~ of layer I and App, Bpp
of layer II,

between diferent layers I and II, the wave function has
to satisfy the standard boundary conditions of continuity
of the wave function and continuity of the flux,

conventional

definition

IV VI—&VII
z6

T z
)
~ z 2 ~~ VI ~
Tz,- z,~~

f

our

definition

TII~ II I

T I~I I z 2 TIII—&IV

IV~V
V~VI

II

T
III

VII

Tr(( I) Tii) zi(" E~z) " &~II) (A5) Tlm VII A„

The transfer matrix relating the coeKcients of layer I
across an interface located at z,. with those of layer II is
then given by

TI~II (TII) I TI (A6)

This is the standard way of defining a transfer matrix.
It relates the plane-wave, respectively, Airy-function ex-
pansion coeKcients of the wave function in the various
layers with each other (see also Fig. 11). At each inter-
face z, there are four diferent flavors of transfer matrices
corresponding to the four possibilities of having zero or
finite electric fields in the neighboring layers I and II: (1)
the flat-flat case,

1 (n exP(kr, rrz*) P exP( kr+iiz;) &

+2 (P exp(kI, IIz, ) n exp( kI, IIz;) )
with k,+„=kr + krr, hkr = /2mr(VI —E), n = 1+ "„'

and P = 1 —&' ", (2) the field-field case (where the
I

FIG. 11. The "conventional" definition of the transfer ma-
trix is to let it relate the expansion coefficients A and B in
the various layers of the structure (upper part). An easier and
numerically less complicated way is to define transfer matri-
ces between the values of g~ and Q' at the interfaces instead
(lower part) In .order to relate the coefficients A~, B~ with
A„and B„, all we need to do is to add two "half" transfer
matrices called T, and Ty, one on each side.

properties of the Wronskian of the Airy functions have
been used to calculate the determinant of the inverse),

TI-+ii ~(
Bi'„Air —n BirrAir O'IirBir —n BiiiBiz )

q n Airr Air A'IIAiz nA'IIB'r A'rrB'I )

with Air = Ai(Zr), Zr = (2mzEI) ) (h kr —2miRz;)
(similar definitions hold for the other Airy functions, and
for Zrr), and n = (mzEg/miiEgi) "; (3) the field-flat
case,

Tz~ii 1 ( (Aiz —n Aii) exp( —kirza) (Biz —n Biz) exp( —kziz, ) )
2 ( (AiI + n Aii) exp(kirz;) (Bir + n Bii) exp(krrz, )

(A9)

with n = [(2miEI) ~ /krr] ";and finally, (4) the flat-field case,

( (Birr + n Biir) exp(kiz') (Bi» —n Biii) exp( —kiz')

( —(Aiii + n Aiir) exp(krz') —(Aii, —n Airr) exp( —kiz, ) )
(A10)

Tl~r Tr —i—+r TII—+IIITI—+IITl —+I (All)

Prom a numerical point of view, if rounding and trun-
cation errors become a problem which is particularly
the case for small electric fields it is more convenient
to use another set of transfer matrices which we have il-
lustrated in Fig. 11. Instead of Eq. (A6) we define as
transfer matrix

with n = [ki/(2miiFII)I)s]
The transfer matrix across the whole heterostructure,

relating the coeKcients of the left- to those of the right-
hand side, is then simply the product of all interface
transfer matrices,

( cosh(kihz, ;)
I
—"' sinh(kzbz~. , )

„' sinh(ki8z~, ) )—
(A13)

cosh(ki8z~;) )

I

where I is now the layer between the interfaces z; and z~.
In this way the expansion coefBcients of the wave function
are not related with each other but rather the values of
the wave function and its derivative at the interfaces are
related. This approach has a couple of advantages. First
of all, the transfer matrices become much simpler, as they
now depend on the parameters of one layer instead of
two as before, thus leading to only two diferent types of
transfer matrices. In the case of zero electric field, we
find

Tz, —+z, TI (TI ) (A12) with bz~; = z~ —z, . For finite fields the result is
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( Ai(Z, )Bi'(Z, ) —Bi(Z, )Ai'(Z;)
(Pi Bi'(Z, )Ai'(Z, ) —Ai'(Z, )Bi'(Z;)]

[Ai(Z, )BiiZ;) —Bi(Z, )Ai(Z;)] /))g)
Bi'(Z, )Ai(Z, ) —Ai'(Z, )Bi(Z;) (A14)

where Pi = (2miEi) i /mi and Z; z
——(2miEi) ~ (h ki —2miEiz; ~). Eventually, we want to relate the expansion

coeKcients Ay, and By, of the wave function across a series of interfaces z;, . . . , zz to a second set of coefBcients, Ag,
and Bi, , as we did before in Eqs. (A6) and (All). To do this we simply have to add an initial matrix in layer Ii and
a Gnal matrix in layer I2, as illustrated in Fig. 11 for Iq ——I and I2 ——VII,

TI1mI2 T jTZ~ mZj Ter. mr& TZ, mZk gZ;
f

These matrices are defined as

(A15)

exp(kiz;)
!q —"' exp(kiz;)

Ai(Z;)
, ( —PiAi'(Z, )

exp( —kiz;)
——"' exp( —kiz, )) '

A16
Bi(Z, )
p B'(z )

where z; is at the left-hand side of layer I= Iq, and

f exp( —kiz~) &' exp( —kiz~) )
exp(kizz ) —

&
' exp(kiz& ) y

with z~ at the right-hand side of layer I= I2.

2. A low-Beld expansion

For vanishing electric Geld, the arguments of the Airy
functions in Eq. (A14) diverge, and thus a straightfor-
ward comparison with the zero-field case (A13) is not
possible. Moreover, this situation is dificult to han-
dle numerically. In this subsection we will outline our
method to make contact with the zero-field case. A Tay-
lor expansion of the Airy functions defines four functions
Ai(x, y), Az(x, y), Bi(x, y), and B2(x, y) by

Ai(x+ y) = Ai(x, y)Ai(x) + A2(x, y)Ai'(x),
Bi(x+ y) = Ai(x, y)Bi(x) + &2(x, y)»'(*),

Ai'(x + y) = B (x, y)Ai(x) + B2(x, y)Ai'(x),
Bi'(x+ y) = Bi(x,y)»(x) + B2(*,y)»'(*) .

The functions A~, A2, B~, and B2 obey the same di8'cr-
t

ential equations as the

d—& ( y) = B (* y)
dy

—A.2 (x, y) = B2 (x, y)
dy

Airy functions,

,
—Bi(x, y) = (x+ y)Ai(x, y),
dy

,
—B2(x, y) = (x+y)A2(x, y);
dy

(A19)

in fact, they are simply linear combinations of Airy func-
tions as can be seen by inverting Eq. (A18). With the
help of these functions the transfer matrix of Eq. (A14)
can be rewritten as

A, (Z;, bZ, ;)
P,B,(Z, , », , )

—
p A2(Z, , AZ, ;) )

B2(Z, , bZ, , )

(A20)

xy 2"
const x y'+' x ) P, , (n) (2n+ j)! ' (A21)

where l and j are some integers and Pi ~ (n) is a polynom
in n. These serieses can be summed up giving functions of
cosh(v xy), sinh(~xy), and their derivatives. An expan-
sion of the coefficients Ai(x, y), A2(x, y), Bi(x, y), and
B2(x, y) with respect to the electric field is then obtained
by utilizing the asymptotic relations x = Z, oc F
y = hZ~; oc I" ~, and i/xy -+ kbz = const for F' m 0.
When classifying the expansion terms according to these
rules we get for up to the fourth order in the electric Beld
F

with bZ~,. = Z~ —Z;. Though the Airy functions diverge
for vanishing electric field, the functions Ai, A2/Pi, PiBi,
and B2 do not. It is thus very useful to have a low-Beld
expansion for them, instead of using their definitions in
terms of the Airy functions. For example, with the aid of
a symbolic programming language, it is found that their
Taylor expansion consists of subseries of the general form

Admix, y) = (i — +, +y 7y y
4x 32x2 32x
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It can easily be verified that this expansion satisfies Eq.
(A18) up to the fourth order in the electric field, and that
for vanishing field Eq. (A20) reduces to the zero-field
result (A13). Its usefulness depends on the parameters
of the RTD/MQW structure, but from our experience
it seems to cover a range of a few hundred Vjcm for
reasonable choices of parameters.

3. A brief description of the numerical method

Having provided an iterative definition of the analytic
result for the derivative of the inverse transmission am-

I

plitude, t (E), the roots of t (E) were found by us-
ing a standard Newton root finder in the complex-energy
plane. When changing the electric Geld, "tracks" of roots
were generated by extrapolating the new root first and
then using this value as a starting point for the root
finder. In this way it was possible to keep track of the var-
ious quantum levels in a heterostructure, even when their
quasieigenenergies came to resonance. To avoid running
over an (anti)crossing of two quantum levels by using a
too large step size in the electric field, the likely positions
of these (anti) crossing events (as well as possible crossings
with the conduction-band edges) were estimated before
each step, and the next step size correspondingly chosen.
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