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We calculate the electron elastic mean free path due to ionized impurity scattering in semiconduc-
tor quantum wires, using a scheme in which the screened ionized impurity potential and the electron
screening self-consistently determine each other. By using a short-range-scattering potential model,
we obtain an exact solution of the self-energy within the self-consistent Born and "noncrossing"
approximations. We find that, compared to the mean free path for the bare unscreened potential
/b „, the calculated mean free path including self-consistent screening E„ is substantially larger,
going as l„ Ib „[1n(lb „)j for large Eb „

Advances in nanofabrication technology now make it
possible to fabricate semiconductor quantum wires in
which the motion of the electrons is confined to be in
one spatial direction. Quantum wires have the poten-
tial for many microelectronics applications, such as novel
optoelectronic devices and transistors, and many experi-
ments probing the electronic properties of these quantum
wires have been performed. It is, of course, experimen-
tally desirable to make these wires as clean as possible.
However, to populate the wires with carriers, it is neces-
sary to place ionized dopants close to the wire, and these
dopants scatter the free carriers in the wire. Thus, elas-
tic impurity scattering cannot be avoided in conducting
quantum wires. A quantitative understanding of ionized
impurity scattering in quantum wires is thus important
from both technological and fundamental viewpoints.

Sakaki made the striking prediction that in quantum
wires that are remotely doped, the electrons should have
extremely high mobilities because elastic ionized impu-
rity scattering for Fermi surface electrons is greatly sup-
pressed. This is due to the fact that at low temperatures,
the only allowed resistive scattering in a one-dimensional
system is the 2k~ scattering. However, in Sakaki's calcu-
lation, and in some subsequent calculations by others,
the interaction between the ionized donors and the con-
duction electrons was assumed to be the bare unscreened
Coulomb potential. This ignores screening effects of the
electrons in the quantum wire. In this paper, we show,
using many-body techniques, that the inclusion of screen-
ing effects in the wire snbstantially enhances the mean
&ee path of electrons at the Fermi surface. The mean &ee
path for electrons at the Fermi surface is particularly im-
portant because this is the quantity which determines the
low Beld transport properties in these structures. Fur-
thermore, it has been shown that the mean &ee path
and the localization length of electrons in strictly one-
dimensional systems are essentially equivalent, and thus
the mean &ee path of electrons is the maximum length
over which a quantum wire can be considered metallic.
This gives added impetus for an accurate calculation of
the electronic mean &ee path in quantum wires.

The simplest approximation taking screening into ac-
count is one which assumes that disorder has no effect

on the screening properties of the one-dimensional elec-
tron gas. Unfortunately, in the T = 0 limit, this ap-
proximation gives meaningless results for the mean free
path of electrons at the Fermi surface, for the following
reason. At the Fermi surface, the only elastic scatter-
ing that can occur is the transfer of electrons from one
side of the Fermi surface to the other, with momentum
transfer of 2k~. To the lowest order, this depends on the
2k~ component of the screened impurity potential. How-
ever, as is well known, the 2k~ screening at T = 0 in a
pure one-dimensional wire is perfect (i.e. , the 2k~ screen-
ing diverges), and hence within this approximation, the
scattering rate at the Fermi surface is always zero for any
impurity concentration. Clearly one needs a better (and
more physical) approximation.

The key point is that disorder afFects screening which
will no longer be perfect at 2k~ in the presence of impu-
rities. The extent to which screening in the presence of
scattering is modified &om the pure wire case depends on
the strength of the disorder created by the ionized impu-
rities, but the strength of disorder in turn depends on the
strength of screening. Thus, we are faced with a problem
in which both the scattering potential and the screening
properties self-consistently determine each other. In this
paper, we carry out this self-consistent scheme in one-
dimensional wires, which has been previously applied to
two-dimensional systems in a large magnetic field, but
to the best of our knowledge, has not yet been applied to
one-dimensional systems.

In our model, we assume that (1) the electrons are
confined to a one-dimensional quantum wire in the strip
geometry with a finite width m in infinite square well
confinement and (2) the ionized donors are placed ran-
domly along a line a distance d away from the wire. (One
could quite easily use a distribution of distances d to sim-
ulate a more realistic configuration of impurities, but we
find the quantitative effect of doing so is small. ) The set
of equations which must be solved for this calculation is
shown schematically in Fig. 1. For a given screened im-
purity potential, the Green's function is computed. In
this paper, we employ both the Born approximation and
what we denote the "noncrossing approximation, " which
excludes all diagrams that have impurity lines crossing
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FIG. &. (a) Set of diagrams which are solved to cal-
culate the electron Green's function in the self-consistent
Born approximation (excluding diagrams in parentheses) and
noncrossing approximation (including diagrams in parenthe-
ses). The thin (thick) dashed (wavy) lines are the bare
(dressed) electron-impurity (electron-electron) interactions.
The screened electron-impurity interaction and the Green's
function are numerically iterated until self-consistency is ob-
tained. (b) Second-order contribution to self-energy, which
we ignore in the self-consistent loop.

tion is valid because the actual screened interaction in
quantum wires is short ranged due to screening by the
conduction electrons. Our primary motivation in using
the short-range scattering potential model is that we are
able to obtain physically meaningful analytical results
whereas the Coulomb case is necessarily completely nu-
merical in the self-consistent scheme.

The short-ranged impurity potential approximation
yields simple expressions, both in the Born and noncross-
ing approximations, for the self-energy Z and the static
random phase approximation (RPA) polarizability II(q)
with vertex corrections. ' For both approximations, the
self-energy is k independent and is given, for arbitrary
temperature, by [in this and subsequent equations, to
obtain the result for the Born (noncrossing) approxima-
tion, the terms within (]] should be excluded (included)]

Z(a)) = N;Uo —G(q, &)2 dg

2~
OO n

x +Iq, U, ) (U, —G)q, tx))
n=2

1
ha) —( —Z( )

Here N, is the impurity concentration, m is the band
electron mass, and (~ = h q /(2m) —p, where p is the
chemical potential (which is computed self-consistently).
This implies that Z(z) can be obtained &om the following
cubic equation:

one another. (In fact, as we show below, for experimen-
tally relevant parameters we find that Born and noncross-
ing approximations give essentially indistinguishable re-
sults. ) Then, with these Green's function, one computes
the polarizability, including the ladder vertex corrections
(which are necessary to satisfy the Ward identities and
ensure, inter alia, that particles are conserved). This
gives the dielectric function, which is used to screen the
disordered impurity potential, yielding a new screened
impurity potential. This loop is iterated until conver-
gence is complete.

The actual bare electron-impurity interaction should
of course be the long-ranged Coulomb interaction, and
ideally, the exact interaction should be used in the calcu-
lation, but the numerical task in performing the iteration
to self-consistency is formidable. Therefore, as a first at-
tempt, we find it expedient to approximate the screened
interaction to be of the short-ranged form Uo h(x —xo)
(i.e. , a constant in momentum space). This approxima-

UpkF hp
(x +@+Re) x — ——=0,

2 . 2
2=x +Lu+p, (2)

where p = 2&,Uo2m/(hsk~) is the Born approximation
scattering rate for electrons at the Fermi surface. The
proper choice for the correct solution from the three
roots of Eq. (2) is dictated by the requirement that
Im[Z(ur)] &&0 for Im[w] &&0. In Fig. 2, we show the self-
energy for both approximations with hp/Ez = 0.5. Note
that the magnitude of Im[Z(w)] is smaller in the non-
crossing approximation than in the Born approximation,
because the Born approximation overestimates the scat-
tering of a particle from a b-function potential.

The static RPA polarizability with the ladder vertex
corrections (Fig. 1) in a one-dimensional electron gas is
found to be

Q2 2

II(q) = 2kxkBT ) (Ex QE('tx ) 2llv —I4 ( + 4)K(lx ) NKP —I4))
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where the summation is over the "fermion frequencies"
ihv = (2n + 1)7rk~T. While the above equations are
valid for 6nite temperature, henceforth, we specialize to
the case of T = 0, where the effects of self-consistent
screening are most pronounced. In Fig. 3, we show the
calculated II(q) for various values of the strength of dis-
order in both the Born and noncrossing approximations.
The suppression of the Kohn anomaly in II(q = 2k~) is

FIG. 2. Real (solid lines) and imaginary (broken lines)
parts of the electron self-energies for impurity scattering, as a
function of frequency, for hp/F~ = 0.5& in the self-consistent
Born (thick bold lines) and noncrossing (medium bold lines)
approximations. For comparison, we also show the Z for the
non-self-consistent Born approximation (thin lines), in which

the bare (instead of dressed) Green's function is used.

larger in the Born approximation than in the noncrossing
approximation, which is consistent with the fact that the
Born approximation overestimates scattering.

We incorporate the b-function screened potential ap-
proximation into our iteration scheme by adjusting the
potential strength Uo at each iteration to match the Born
approximation scattering rate at the Fermi surface. The
self-consistent scattering rate p„ is calculated as follows.
For a set of parameters (doping density, etc.), we pick
an initial Uo to match the scattering rate of the bare
Coulomb interaction at the Fermi surface. The polariz-
ability is then calculated for that Uo (for both the sepa-
rate cases of the Born and noncrossing approximations).
This allows us to recalculate the scattering rate for the
screened Coulomb potential at the Fermi surface. The Uo

is then adjusted to reproduce this scattering rate, and the
polarizability is recomputed. This procedure is repeated
until convergence is complete, which typically takes 10—
50 iterations. The chemical potential is also adjusted to
ensure that the density of electrons is constant, as shown
in the inset of Fig. 3.

The results are shown in the Fig. 4, for the wire den-
sity n = 10 cm and wire width tU = 100k.. We
show the mean free path l = v~/p, for both the bare
and the self-consistently screened Coulomb interactions
with both approximations, as a function of the dis-
tance d of the impurities &om the wire. The mean free
path for the bare Coulomb interaction Eb „is a repro-
duction of Sakaki's result generalized to take into ac-
count the Gnite width of the wire. As can be seen from
Fig. 4, both Born and noncrossing approximations give
essentially indistinguishable results for self-consistently
screened mean free paths E„, indicating that multiple

I I I I I I I I I2. , 06 'l
I I I

f
I I I I

(

I I I I

(

I

100

2.0—
&04

l.Q

E~ 102

0.5
io'

Q
l 1 I I I I I I I I ) I I I I I I I I I I I I I I I I 1 I I I I I I I I !0.

0 2 3

q/kF

I I I I I I I I I I I"0.0 50 100

d (A)

l50 200

FIG. 3. Static one-dimensional polarizabilities II(q) within
the RPA with short-ranged impurities (including vertex cor-
rections) at T = 0 for hp/E~ = 0, 0.1, 0.5. The bold lines are
for the self-consistent Born approximation and the thin lines
are for the noncrossing approximation. There is a larger sup-
pression of the 2k~ peak in the Born approximation as com-
pared to the noncrossing approximation, due to the fact that
the Born approximation overestimates the scattering. The
inset shows the chemical potential as a function of disorder in
both approximations.

FIG. 4. Elastic mean free paths 8 as a function of dis-
tance of charged impurities d from a quantum wire. The
parameters used were for GaAs, with an electron density of
10 cm and a wire width of 1004.. The solid line is for
the self-consistently screened potentials and the broken line
is for the bare Coulomb interaction. On this plot, the result
for noncrossing approximation is essentially indistinguishable
from that of the self-consistent Born approximation. In the
inset, we show the ratio of the self-consistently screened to
bare mean free paths, as a function of d.
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scatterings from the same impurity do not play an im-
portant role in the transport properties of these sys-
tems. Also note that the self-consistently calculated
mean free paths are significantly longer than the un-
screened Incan free paths. The large enhancement is a
result of the Kohn anomaly in II(q = 2k~) (see Fig. 3),
which diverges logarithmically as the scattering goes to
zero. Thus, the self-consistent scattering rate p„, in the
limit where the bare scattering rate pb, is small, goes
as p„= pbsre/)&(2k~) pg „/( 1n(p„)(, which implies
that the self-consistent mean free path should go (to low
est order) as E„Eb „~1n(Eb „)~

. We have explicitly
verified this asymptotic behavior in our numerical calcu-
lation.

This result seems to indicate that semiconductor quan-
tum wires will be very good conductors, and will be
metallic over very large length scales, because the elastic
mean free path is essentially a measure of the localization
length in one-dimensional systems. Experimentally, how-
ever, the opposite seems to be true. Attempts to fabri-
cate quantum wires using electrostatic confinement with
a split gate generally fail if the length of the wire is more

than a few micrometers, and it has been theoretically
shown that these wires tend to become disjointed before
single channel occupation is achieved. The reason for this
extreme sensitivity to impurities in the electrostatically
confined wires is that the confinement potential is very
shallow, and therefore perturbations due to ionized im-
purities have a very large effect. However, recently, wires
of GaAs in Al Gaq As have been fabricated, where
the confinement potential is much stronger, and these
wires are more robust against the effects of the ionized
dopant potential. These wires should show dramatically
long mean &ee paths at the Fermi surface, as calculated
in this paper. Our theory is only applicable to the situ-
ation with weak disorder, where hp/EJ, + 1.

Before concluding, we discuss the validity of our as-
sumptions and approximations, and possible extensions
of this calculation. It is natural to ask if multiple scat-
tering diagrams we have left out of our self-consistent
iteration scheme, such as the one shown in Fig. 1(b), are
important. We have evaluated this diagram explicitly,
assuming a b-function interaction, and. a A:-independent
self-energy in the Green's function, and we obtain

Z2(k, (u) = (hp) 2

4 [~+p —Z(~)]{h2k2/(2m) —9[~+p —Z(~)]) (4)

Comparing Eqs. (2) and (4), one can see that Z2 is
smaller by a factor of hp/E+ than the Born and noncross-
ing approximation Z's, and therefore since hp/E~ ( 0.1
in our self-consistent calculation, E2 makes a negligible
contribution. We find that the results for the calculated
self-consistently screened mean free paths are relatively
insensitive to the criterion used for the adjustment of Uo
to match the actual screened Coulomb interaction. How-
ever, it is probable that the scheme we have used some-
what overestimates the effect of self-consistent screening,
since we are looking at the scattering rates where the
effect of screening is the strongest (i.e. , at the Fermi sur-
face). On the other hand, we have neglected the effect
of electron-electron vertex corrections in the polarizabil-
ity, which have been shown to increase the divergence
at 2k~. To extract the true scattering rate, one must
use the actual Coulomb interaction for the bare electron—
ionized-impurity interaction. This considerably compli-
cates the iteration task, due to the lack of any analytic
results and the strong k dependence of the self-energy,
and work on this is currently in progress. We expect
our short-ranged results to be at least semiquantitatively

valid. The issue of the applicability of Fermi liquid the-
ory to disordered interacting one-dimensional systems is
complicated and has been discussed previously. Finally,
we note that our calculation can easily be extended to
include effects of finite temperature and occupancy of
several subbands. The finite temperature will serve to
cut off the 2k~ divergence of screening, and therefore the
maximum polarizability at 2k~ will be on the order of
in[max{knT, hp)].

To conclude, using a self-consistent screening scheme,
we have calculated the elastic mean free path of electrons
in a quantum wire which are scattered by remote ionized
impurities. We have shown that the mean free paths of
electrons at the Fermi surface is significantly enhanced by
the self-consistent screening. The calculated mean free
paths provide a direct measure of the length scale over
which the electrons in quantum wires are expected to ex-
hibit metallic behavior due to the peculiarity of Anderson
localization in one-dimensional disordered systems.
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