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Magnetotransport through antidot and dot lattices in two-dimensional structures
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The redistribution of electron density caused by magnetic gaps is explored for both dot and
antidot lattices. It is assumed that the saddle points in the electron-density distribution determine
the magnetotransport in these periodic systems. We show that the quantum Hall plateaus are
shifted to lower magnetic fields in the case of antidot lattices and to higher magnetic fields in the
case of dot lattices. Our theory is in a good quantitative agreement with the experimental data by
Ensslin and Petrol for antidot systems. The results are obtained by computer simulation taking
into account nonlinear screening by the electrons of two Landau levels. For one-level screening, we
present an analytical solution of the nonlinear electrostatic problem.

I. INTR.ODUCTION

Antidot or dot type lattices in two-dimensional struc-
tures can be created by electrostatic confinement using
gate electrodes of special geometry, holographically in-
duced persistent photoconductivity, focused ion-beam
implantation, or selective etching. ' The transport
properties of such lattices have been studied theoret-
ically, using both classical and quantum ap-
proaches. Usually the confinement potential was consid-
ered in the one-electron approximation. Deruelle et al.
and Stern have shown that electron screening decreases
the confinement potential in an antidot lattice very effec-
tively. In this paper we consider electron screening of the
confinement potential in a strong magnetic field.

If the lattice period is much larger than all microscopic
lengths, the confinement potential can be considered clas-
sically. In this case, the spatial distribution of electron
density n(r) can be found from the solution of the fol-
lowing electrostatic problem. ' In regions with non-
zero electron density (metallic regions) the electrochemi-
cal potential p must be independent of r. This condition
takes the form

EF(n) +. F,(r) +—,= p.
ez n(r') d2r'

v r —r'

Here E~(n) is the local chemical potential, which is a
function of the local density n(r), F (r) is the electro-
static confinement potential energy, and r is the dielec-
tric constant. The third term is the electrostatic poten-
tial energy, created by the two-dimensional electron gas
(2DEG). In regions with zero electron density (dielectric
regions), the total potential energy of an electron

/r —r'/

must be larger than the electrochemical potential p in
the metallic regions. The solution of this nonlinear prob-
lem includes finding the boundaries between metallic and
dielectric regions.

Throughout this problem only the local chemical po-
tential contains information about the density of states
and other microscopic properties of the system. It is de-
fined as E~ = dH/dn, where H is the energy density
of the homogeneous electron liquid on a positive back-
ground. At high electron density, without a magnetic
field, E~(n) is close to the Fermi energy of a Bee electron
gas, but at low density it is determined by correlation and
can be negative.

The spatial variation of the first term in Eq. (I) is of
the order of e n'/rq„where n' is the local variation in
electron density and q, = (2me /tc)dn/dE~ is the recip-
rocal screening radius. The third term is of the order of
e n'P/K, where P is the characteristic size of the con-
finement potential, say, a period of an antidot lattice. If
Pq, )~ 1, one can neglect the first term and obtain an
electrostatic problem which does not require any infor-
mation about the microscopic properties of the system.
This approximation assumes that the total electrostatic
potential is constant in metallic regions, which means
"perfect" screening. This perfect screening approxima-
tion has been used for calculations of the density distri-
bution in an antidot lattice, in a random potential,
and for some one-dimensional problems.

The aim of this paper is to take into account the effect
of gaps in the chemical potential, caused by a strong mag-
netic field, on the electron distribution. These gaps ap-
pear in the problem as discontinuities of the local chem-
ical potential Ep(n) in Eq. (1). In this paper we study
only the two-level screening problem, when there is one
discontinuity of Ep(n) in the range of electron densities
under consideration. In this situation, only particles in
the higher Landau level (LL) and holes in the lower LL
are responsible for the screening. Thus, we have metallic
regions of particle or hole types, and dielectric regions
with neither particles nor holes. The electron gas in the
dielectric regions has a quantized density, is incompress-
ible, and cannot screen the external potential.

Suppose that without a magnetic field the electron den-
sity of an inhomogeneous system varies in the interval
n;„& n(r) & n „. If the magnetic field is so strong
that ne ——eB/27rhc ) n ~„, it does not affect the elec-
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tron distribution at all. Actually, the perfect screening
approximation is valid in a magnetic Geld if the chem-
ical potential E~{n) has no singularities at all electron
densities. ' The only specifics of this case is that all
electrons are in the lowest LL and that they have a neg-
ative screening radius q, . The magnitude of q, is of the
order of n ~, and in a smooth confinement potential
the variation of the first term in Eq. (1) can still be ne-
glected. Thus, the distribution of an electron density in
a strong magnetic field is the same as without a magnetic
Geld.

Assume now that no ( n . Then in all points, where
the density n(r) without a magnetic Beld is greater than
no, electrons either occupy the next LL or move to re-
gions with lower electron density. To occupy the next
level, they must overcome a gap. Thus, at small values
of n —no the second way is preferable: electrons are
pushed out of the regions with high density, so that no
becomes the maximum density in the system. Figure 1
demonstrates this behavior for the case of a dot. How-
ever, now the confinement potential is not completely
compensated by electron screening. The resulting elec-
trostatic potential attracts electrons to the regions where
the electrons have been pushed out of. This potential in-
creases with n —no. When it becomes larger than the

gap in the chemical potential, electrons occupy the next
LL in the regions where the density was highest with-
out a magnetic Geld. These regions are surrounded by
strips, where the density is exactly equal to no, and the
potential is not large enough to overcome the gap. With
decreasing magnetic Geld these strips move toward low
density regions [Figs. 1(c) and l(d)]. The spatial width
of a strip has been estimated by E&os for the case of a
smooth random potential in the approximation of a small
gap. Chklovskii, Shklovskii, and Glasman found an ex-
act expression for this width in the same approximation
for a one-dimensional smooth potential.

In this paper we find the redistribution of the electron
density caused by a magnetic Geld, in a periodic confine-
ment potential. These results are applied to magneto-
transport in antidot and dot lattices with large periods.
We explore an idea that the plateaus of the quantum Hall
effect in a periodic system occur when saddle points in
the electron-density distribution are occupied by the in-
compressible phase of the liquid. ' For a periodic sys-
tem with a square lattice, the saddle points are in the
middle of the line connecting neighboring dots or anti-
dots. Thus, the interval of magnetic Geld corresponding
to a plateau can be found from the condition that the
density in the saddle point is equal to Mno, where M is

0 q

e

FIG. 1. The electron charge density in a unit cell of a dot lattice. The external charge density is given by Eq. (4) with
P = 5000 A. (a) High magnetic field, np ) n „, screening is complete. (b) no/C „= 0.96, electrons are pushed from
the central dielectric region, where n(r) = ns, to the regions with lower density. (c) n /C 0= 0.83, the appearance of the
electrons at the higher LL. (d) no/C „=0.47, the dielectric region occupies the saddle point.
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an integer. Using this idea we show that the plateaus in

p „ for the antidot-type lattice are mostly above the line

p „=B/en, c, where n, is the density in the saddle{0) (o) (o) .

point without a magnetic field. This is confirmed very
nicely by the experimental data of Ensslin and PetroK
For the dot-type lattice plateaus should be located below
this line.

2

4e re L' dr rdr

t & rd, (.7)

The integral in the first term of Eq. (7) can be expressed
through the Dawson function:

II. ANALYTICAL SOLUTION
FOR A SINGLE DOT

2

1 re L~ Qr

J p gt2 r2

Thus,

t/L
= e ~ e" d2: = Daws(z) . (8)

0

cr(r) = e [Z(r) + n —n(r)], (3)

where Z(r) is an e~ternal charge density, n stands for
the positive background density, which is equal to the
average electron density, and n(r) is the local electron
density. We choose the external density in the form of a
Gaussian function with two parameters, C „and I:

The analytical solution for a single dot in a magnetic
field is very instructive for understanding the redistribu-
tion of electron charge in a magnetic field. . Such a solu-
tion can be obtained for the case of an electron distri-
bution with axial symmetry and only one incompressible
region, using the method proposed in Ref. 23. The total
charge density of the dot is

4e
f(t) = ——((np —n)t+ C „Daws (~)), t & rd. (9)

The derivative df/dt can be found from Eq. (9):

df 4e t ft )
(rrs —rr) +D 1 —2 —Dsws

~

—
~ ) .

dt L L

(10)

Substituting this expression into Eq. (5) we can write the
final result for the charge density:

~r

xDaws (x)—2 dx, r ) rg. (11)
Z(r) =C „e (4)

dt df
cr(r) = 2~

p i/r' —t' dt ' r)rd)

4 ' ro(r)dr
p Qt2 —r2

t &rd. (6)

Substituting Eqs. (3) and (4) into Eq. (6) and taking into
account that n(r) = np for r & rg, we obtain

Actually, such a solution can be obtained for any function
Z(r) with axial symmetry.

The charge density cr(r) must tend to zero at r m oo.
Thus, lim ~ n(r) = n. Without an applied magnetic
field, in the perfect screening approximation o (r) = 0
everywhere. Then n(r) = Z(r) + n It also f.ollows that
the maximum electron density is n = C „+n. For
a large magnetic field, when no ) n „, the electron dis-
tribution will be the same as it was without a magnetic
field, i.e., the external charge of the dot will be com-
pletely screened. But at lower B, when n ( no ( n
the electron density n(r) is altered from that of perfect
screening. The 2DEG in this case will consist of a cir-
cular dielectric region of radius rp and density no and. a
metallic region with density n(r) & np that extends over
the rest of the 2DEG. We choose the electrostatic poten-
tial P(r) for this problem to be zero at infinite distance
&om the center of the dot. Then p = 0.

The solution of this electrostatic problem can be found
&om the equations

Using Eqs. (5) and (10), one can show that it has a sin-
gularity at r = rg.

x —" —1 r —rg (& rd, .Td

no —n
&max

Daws(rg/L)
rg/L

(13)

The electron density n(r) can be found now from
Eqs. (3)—(5), (13), and (11). Figure 2(a) shows the de-
pendence of n(L)/C „on np/C „.To compare the an-
alytical solutions with the results of our computer mod-
eling of a dot lattice (see Sec. IV A), we put n = 0.
For high magnetic fields, when no ) t „, the elec-
tron density n(r) is independent of magnetic field and
equal to E(r). Thus, n(L)/C „=e at np/C~ „)1.
The density n(L) increases with decreasing magnetic field
due to the push-out of electrons &om the central re-
gion of the dot. Eventually, as np is lowered, n(L) be-
comes equal to no, and remains equal to no at lower
magnetic fields. Figure 2(b) shows the local resistivity
p „(r) = (h/e2)np/n(r). At small magnetic fields, it has
an integer plateau, and then it increases with magnetic
field; this increase becomes linear at np/C „)1. This

The dependence of rd upon no is determined &om the
condition f(rg) = 0, which takes the form
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B. Computer program

A solution of the above electrostatic problem cannot
be obtained analytically for a periodic arrangement of
dots (or antidots), even for the case of no magnetic field.
We have solved this problem by performing a computer
modeling. In our model we actually calculate the electron
distribution within one square unit cell, and the periodic
array was simulated by using the quasiperiodic boundary
conditions (for details see Ref. 27). The side of the square
is equal to the period of the system P. The continuous
charge distribution was approximated by point charges
on the sites of a square lattice. This approximation is
valid if variations in the charge distribution and the po-
tential occur over distances much larger than the lattice
constant.

Our computer program Grst generates the external
charge on the lattice, and then calculates the resulting
potential at each point. After this, the program goes
through each lattice point, and compares the total po-
tential, created by both the external and the electron
charges, with the chemical potential u. If the potential
at a point is greater than p and nz is nonzero, a small
particle charge is removed &om the lattice point, but if
the potential is below p, charge is added. At the same
time, if the potential at the lattice point is greater than
p+ 4, a small hole charge is added to the lattice point,
and if the potential is less than p+ 4 and the hole charge
nh is nonzero, a portion of the hole charge is removed.
Every time we change a charge of a lattice site by some
amount, we also change the background charge density
in such a way that the neutrality of the whole system is
maintained in each step. These iterations continue un-
til the conditions (17) are satisfied everywhere within a
given accuracy.

The algorithm, described above, allows one to Gnd the
electron charge distribution for given values of p and L.
However, one must use some additional criteria to choose
the chemical potential for each magnetic field. We have
assumed that the total electron density in the system is
independent of magnetic field, and, therefore, is always
equal to the average electron density N without a mag-
netic field:

where Z is much larger than the average electron density
¹ Without a magnetic Geld, this large charge repels the
electrons of the 2DEG and forms a depletion region with
zero electron density in the center of each antidot. In a
strong magnetic field, the electron distribution will be the
same as it was without a magnetic Geld, and all electrons
will belong to the lowest LL. The depletion region exists
also at lower magnetic Geld, when the electrons of the
two LL's participate in the screening. In this situation
one can still use the conditions (17), but the hole density
nh must not exceed no. The program described above
can be easily modified to include this restriction.

IV. RESULTS OF COMPUTER MODELING

A. Dots in a magnetic field: Results of modeling
and comparison with analytical theory

Our results for the density distribution in a periodic
array of dots are shown in Fig. 1 at diferent magnetic
fields. These results are discussed qualitatively in the
Introduction. Using the analytical theory (see Sec. II),
we can find the magnetic field when electrons first ap-
pear in the higher LL. This occurs when the electrostatic
potential in the center of the dot P(0) becomes equal to
A/~e~. The way to find the corresponding np/C „ is
shown in Fig. 3. For a dot lattice period 5000 A this
gives np/C „=0.84, while computer modeling gives
np/C „=0 83.

It has been proposed in Ref. 23 that the plateaus of
the Hall resistivity p & in a periodic system occur when
the incompressible liquid occupies saddle points of the
electron-density distribution. Chklovskii, Matveev, and
Shklovskii and Ruzin have argued that the density
in the saddle points n, determines p» even between
plateaus, namely

2.5—

Mnp + n(p) = K, (18)

where n(p) is an average electron density n(r) for a given
value of p. The condition (18) defines p as a function
of L. Note that L is also related to no. For the gaps
with even filling factors np ——mA/2+5, where m is an
electron mass.

In our computer modeling of a dot lattice the external
charge density inside a unit cell has the form of Eq. (4),
where L equals the half period of the dot lattice P. The
average electron density N was chosen to be equal to the
average external charge density, so that the whole system
is always neutral.

For an antidot lattice, we use the model proposed in
Ref. 23. In this model, the external charge distribution
within a unit cell of the lattice of antidots is assumed to
be a disk of a radius a and constant charge density Z,

1.5—

0.50.2
I I I

0.6

0 max

0.8

FIG. 4. Hall resistivity p „vs np/C „ for a dot lattice
for different periods: P = 5000 A. for crosses, P = 2500 A
for squares, P = 500 A for triangles. The solid line shows
the analytical result for a single dot. The dashed line is the
classical Hall resistance p „.
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Q np
~ &= e&n (19)

We use Eq. (19) to find the Hall resistivity from the sad-

In our arrays of dots and antidots the saddle points are
in the middle of the lines connecting neighboring dots (or
antidots) .

e the is lot tedOur results are shown in Fig. 4, where the p „is p o e
against n0/ max&y'C f three lattice periods. The dashed
line shows p~y = e no n~
point density without a magnetic field. Thus, this line
corresponds to the classical Hall effect in a strong mag-
netic field. The most important feature of our results is
that all points, obtained by computer simulation, are be-
low this classical line. This effect is discussed in the next

The solid line shows the result of our analytical t e-
ory of one-level screening in a single dot (see Sec. II).
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FIG. 5. The electron density ln a unit ce l o

~ ~ t cell of an antidot
lattice. The external charge density Z =Z = 4x10 cm is
uniform within a ls o ra iu
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h d k f d sa = 40 nminthe center ofthe

antidot. The lattice period P = 200 nm. ~, g gl', b~ n,~o- = 0.077, thefi ld ) n screening is complete. &b~ np, o = . , e
q np nmaxy

d' l t t separating two metallic regions, ls orme . ,c
ns/Z = 0.058, the dielectric region occupies the sa e porn .

FIG. 6. Hall resistivity p „as a function of m gof ma netic field
for antidot lattice. The experimental results by Ensslin an
Petroff (Ref. 32) are shown by the solid lines. Squares are
the results of our calculations. Dashed lines show the clas-
sical Hall resistivity p „=(h/e no n, . a
n, = 2.5x10 cm Z = 1.15x10 cm, a= 40nm;

4 x 10 cm, g = 9.6 x 1012 CIIlL=360nm, n, = . x
a = 40 nm; (a) L = 200 nm, n, 2.4 x 10 cm
Z = 4 0 x 10 cm, a = 40 nm.
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To adjust this result to a periodic array of dots, we put
n = 0 and L = P/2 in Eqs. (7)—(ll) and calculate n(L)
as a function of a magnetic field. The analytical theory
corresponds to an infinite L, so it does not describe the
low-field ending of the plateau. However, it gives a rea-
sonable description of the high-Geld part of the curve. It
can be seen from Eqs. (13) and (11) that the analyti-
cal result for n(L) is independent of L, while the results
of the computer simulation show that the plateau width
increases as P decreases. This discrepancy occurs be-
cause the analytical theory does not take into account
two effects which shift the high-Geld end of the plateau
in opposite directions. First, in the analytical calcula-
tions we consider only one dot, while in a dot lattice the
electrons are pushed into the saddle point by two neigh-
boring dots. The second effect is that the analytical the-
ory assumes that the dielectric region forms a disk inside
the dot. In the simulation, the dielectric region becomes
a narrow ring before the quantized density reaches the
saddle point.

B. Antidots in a magnetic Beld: Results of modeling
and comparison arith experiment

In modeling an antidot lattice we choose the parame-
ters to fit the experimental data by Ensslin and Petroff.
The values of the external charge density E were taken
from Ref. 23. The average electron density N has been
found from the condition that the saddle point density
n, without a magnetic field coincides with the density
obtained by Shubnikov —de Haas Ineasurements.

Figure 5 shows the electron-density distribution in a
unit cell of the antidot lattice. The distribution without
a magnetic field or in a very large magnetic field, when
all electrons are In the lowest LL, is shown in Fig. 5(a).
Figure 5(b) demonstrates the appearance of the quan-
tized density with decreasing magnetic field. The situa-
tion when the saddle point density becomes quantized is
illustrated in Fig. 5(c).

Figure 6 shows p „as obtained from data by Ensslin
and Petroff for periods of 200 nm and 300 nm. The
dashed line shows the classical Hall resistivity p~„
(6/e )no/n, , where n, is the saddle point density
without magnetic field. Contrary to the case of the dot
lattice (see Fig. 4), the plateau is shifted toward lower
magnetic Geld with respect to the classical line both in
our calculations and in experimental data for the small
periods.

The shift of the plateaus in the opposite directions for
dot and antidot lattices can be explained qualitatively in
terms of the electron density distribution near the saddle
point without a magnetic field. One can see from Figs. 1
and 5 that the two curvatures of the density distribu-
tion at the saddle point are very different. The curva-
ture along the line connecting two neighboring dots or
antidots is much greater than the curvature in the per-

pendicular direction. Then, in the first approximation,
we can consider the vicinity of the saddle point in the dot
lattice as a long parabolic trough with its axis perpendic-
ular to the line, connecting neighboring dots. The mini-
mum electron density without a magnetic field is equal to
n, . The magnetic Geld always depletes the regions with
n(r) & no and enhances the density in the regions with
n(r) ( np [see Figs. 1(c), 1(d), 5(b), and 5(c)j. In our
approximation the density at the bottom of the trough
is the lowest density in the system. If np ( n, and
2no & C „, the chemical potential E~(n) has no singu-
larities for all values of n(r) in the dot lattice. Then we
have perfect screening and the density at the bottom of
the trough is independent of magnetic field and equals
n( . With increasing magnetic field the density at the
bottom becomes equal to no only when np reaches n,(p)

Therefore, the low-field end of the plateau of p „ is ex-

actly on the classical line p „= (h/e )no/n, , and all(o) 2 (o)

the plateau is below this line (see Fig. 4).s4

For the case of the antidot lattice, the vicinity of the
saddle point can be approximated as an inverse parabolic
trough with maximum density n, . The same consider-
ation shows that in this case the plateau must be above
the classical line.

The trough approximation is valid in the limit of a very
large ratio of the curvatures in a saddle point. At a Gnite
ratio, the plateaus are just shifted with respect to the
classical line.

One can see from Fig. 6 that our results are in good
quantitative agreement with the experimental data of
Ref. 32 for the lattice periods 200 and 360 nm. For the
512 nm period the classical line crosses the experimental
plateau nearly in the center, while our simulation gives a
large shift. We think that at such large periods all cur-
vatures of the regular density distribution are small, and
that they are strongly affected by random fIuctuations.
Then the situation becomes more or less the same as in
homogeneous disordered systems, where the plateaus are
usually not shifted with respect to the classical line.

Finally, we considered the redistribution of electron
density, caused by a magnetic field, for periodic systems
of dots and antidots. We show that this redistribution
results in a shift of the plateau of the integer quantum
Hall effect in different directions for dots and antidots.
Our results are in good agreement with the experimental
data of Ensslin and Petroff.
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