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Structure of persistent current in the presence of a magnetic Aux
and an electrostatic potential
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We present a calculation of persistent current in an ideal misoscopic ring coupled to an energy and
electron reservoir. In this system, elastic scattering and energy dissipation in the ring occur only at the
junction coupled to the reservoir. We consider the case where a magnetic Aux and an electrostatic po-
tential are applied simultaneously. It is demonstrated that an electrostatic potential modulates the
period, amplitude, and phase of the persistent current vs magnetic-Aux oscillation. In some electrostatic
potentials, we find an h/2e oscillation in the persistent current vs magnetic-Aux relation. The current
density and density of states in such a system is also derived. The electrostatic potential causes reso-
nance peaks of the current density and density of states vs magnetic-Aux oscillations if the magnetic
phase shift approaches n~. For c.=0.5 (maximum coupling between the ring and wire), we also derive
an analytical expression for the peak height of the current density and density of states vs magnetic Aux

under constant electrostatic potential.

I. INTRODUCTION

During the past few years, there has been considerable
interest in quantum phenomena in mesoscopic rings. The
nature of the quantum oscillation induced by an external
field (magnetic ffux, ' electromagnetic field, etc )has.
been studied. Recently the electrostatic Aharonov-Bohm
(AB) eff'ect in a mesoscopic ring has been studied in rela-
tion to the Aharonov-Bohm Aux effect, and the period of
electrostatic AB oscillation and the effect of temperature
investigated. More recently, the effects of an elec-
tromagnetic field and spin-orbit interaction in a normal
metal ring threaded by Aharonov-Bohm Aux have been
discussed. This paper investigates the inhuence of an
electrostatic potential and a magnetic Aux in an ideal
one-dimensional normal meso scopic ring present, by
varying each in turn while holding the other constant.
The model adopted in this paper is the extension of Ref.
2, where a normal conductor is coupled to an energy and
particle reservoir. In this system, elastic scattering and
energy dispersion in the ring occur only at the junction
coupled to the reservoir. It is shown that the electrostat-
ic potential modulates the period, amplitude, and phase
of the persistent current vs magnetic-Aux oscillation.
This paper is organized as follows. In Sec. II, we give the
description of the model and derive the persistent current
in a ring as a function of magnetic Aux and electrostatic
potential. In Sec. III, we investigate the effect of varying
magnetic Aux on ihe persistent current, current density,
and density of states under different constant electrostatic
potentials. In Sec. IV we study the effects of varying the
electrostatic potential with difFerent constant magnetic
cruxes. In Sec. V the effect of scattering by the edges of
the gate electrode is discussed briefly. The main con-
clusions are summarized in Sec. VI.

II. DERIVATION OF PKRSISTKNT CURRENT

In this section, we derive the persistent current in the
mesoscopic one-dimensional normal conductor ring as a

function of the magnetic Aux and electrostatic potential.
The model we consider is shown in Fig. 1. The magnetic
Aux threads the ring, and electrostatic potential is applied
to the semicircle of the ring. The ring is coupled via a
one-dimensional lead to the reservoir that simulates its
dissipation by exchanging energy and particle with it. In
this model, electrons in the ring are a grand-canonical en-
semble with fixed Fermi energy, and obey a Fermi-Dirac
distribution function. Elastic scattering arises only at the
junction between the lead and the ring. The junction is
described by the S matrix:

a' —(a +b)
P' = &e a b P

,y'. , &E b a y

a =
—,'(&1—2e —1),

b =
—,'(&1—2e+1),

where c, is a coupling constant between the ring and the
wire. For c=O, the loop is perfectly isolated from the
wire. a, p, y and a', p', y' are the amplitudes of incoming
and outgoing waves, as shown in Fig. 1. The Hamiltoni-
an in the loop is described by

H =1/2m (p —eA/c) +eV,
where m is the effective mass of an electron, p is the

RES.

FIG. 1. A mesoscopic one-dimensional normal conductor
ring coupled with an energy and electron reservoir via an ideal
one-dimensional lead. Magnetic Aux threads the ring and elec-
trostatic potential is applied to the semicircle of the ring.
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momentum operator, e is the electron charge, c is the ve-
locity of light, and we take the vector potential 3 to be
N/L. L is the path length of the loop, @ is the magnetic
flux that threads the ring, and V is the electrostatic po-
tential applied to the semicircle of the ring. The wave
function in the lead is written as

/=a exp(ikx)+a'exp( ikx—), (3)

where a is the amplitude of the wave that travels toward
the reservoirs, a' is the amplitude of the wave traveling
toward the junction, and x is the coordinate axis along
the wire. For simplicity, we take the junction to be at
x =0. If both a magnetic Aux and an electrostatic poten-
tial are present, the wave function in the loop is of the
form

P = exp( i 8y /L ) [ y 'exp [iky + i g(y ) )

+y exp[ iky —ig(y—)]},
g(y) =2y Qadi(L /2 y)/L +—Pq(y L /2) .—

(4a)

(4b)

Here the effects of a magnetic Aux and an electrostatic
potential are considered in terms of phase shift as in Ref.
7. y and y' are the amplitude of incoming and outgoing
waves at the junction as shown in Fig. 1. y is the coordi-
nate axis along the ring, and ri(y) is a step function,
namely g(y) = 1 for y )0, ri(y) =0 for y & 0, and ri(y) =

—,
'

for y =0. g(y) is the phase shift due to the electrostatic
potential that exists at 0 &y & L /2. 8 and P are the phase
shifts due to a magnetic Aux and an electrostatic poten-
tial, respectively, and are of the forms

0=' (5)

where f (E) is the Fermi-Dirac distribution function.
Equation (9) indicates that at the weak-coupling limit

(s—+0) the numerator of the current density tends to
J=0. To obtain a nonzero persistent current at this lim-
it, the denominator of Eq. (9) must vanish as well. This
condition yields the relation

8+P+kL =2n7r .

In the absence of electrostatic potential, this equation
reduces to the Auxoid quantization condition that is ad-
vocated by London. This equation can also be derived
using the Bohr-Sommerfeld quantum condition

gpds=nh .

In our model, the left-hand side of Eq. (13) is

(13)

Ak+ A d = [~2m ~(E+eI')+~2mE]L e
2A C

(14)

Then, setting the right-hand side of Eq. (14) equal to nh,
we get Eq. (12).

(9) is actually the true current density
J =u(~P'/a~ —~P/a~ ) multiplied by the factor 1/u in
the state density. In the absence of electrostatic poten-
tial, our results reduce to Eqs. (6) and (7) of Ref. 2, and
Eq. (7) of Ref. 8. The circulating current I(8,$) in the
loop at finite temperatures is given in terms of Jof Eq. (9)
by

I =e/h J dE f (E)J($,8,E),

&2m (t E + e V —t E )L
(6)

where E is the electron energy in the ring. P and P' are
the amplitudes of another set of incoming and outgoing
waves at the junction as shown in Fig. 1. Inserting y =L
into Eq. (4a) yields two terms, the first being P and the
second P'. Thus we have the following relation:

y =P'exp [i ( 8+P+ kL )],— (7)

P=y' epx[i (8+P+ kL ) ], (g)

Eliminating y and y' by Eqs. (7) and (8), and a' by Eq.
(1), we can calculate the ratio P/a and P'/a. Then we
find the current density J(8,$,E) and density of states
DOS(8, $,E) to be

J=2s sin(kL +P)si n8/D(8, Q, E),
DOS=2s[1 —cos(kL +P)cos8]/D (8, Q, E),
D (8, (5, E)=(1—s+t/I —2s)[cos(kL+P) —cos8]

(9)

(10)

+(1—s —v'I —2e)sin (kL+(t ) . (10a)

Here we have used the relation J= ~P'/a —~P/a~ and
the density of states (DOS) = ~P'/a + P/a~ . In the
figures shown below, the current is normalized by
J0 =eve/L, where v~ =hkz/m and k~ is the Fermi wave
number. In the one-dimensional free-electron case, the
density of states is given by 1/hu, where v is the electron
velocity. The current density J= ~P'/a

~

—~P/a
~

of Eq.

III. THE PERSISTENT CURRENT
AS A FUNCTION OF MAGNETIC FLUX

UNDER CONSTANT ELECTROSTATIC POTENTIAL

A. Jvs 8/=const(e=0 5, kL =5. m)

Now we investigate the effect of an electrostatic poten-
tial on the relation between the persistent current density
and static magnetic Aux threading the ring. Figure 2
shows the calculated results for the current density J in
the ring as a function of 8 for given P's. For P+kLWO,
the current density J exhibits positive and negative peaks
in the vicinity of 8=(2n +1)~. If P+kL =nm, Eq. (9)
shows that the current density vanishes independent of 0.
To obtain the positions of 0 and the extremum values
where the positive and negative peaks occur, we set [see
Eq. (AI)]

dJ/d8=0 . (15)

Equation (15) yields the polynomial equation for x =cos8
of order 3:

Under the basic formula described in Sec. II, we make
numerical calculation for J, DOS, and I as a function of 0
and P. Unless otherwise, we assumed a=0. 5, T=0.0 K,
and kL =5m throughout this paper. The last equality
means that at T=O.O K, five states are occupied in the
ring. Hereafter we write the wave number at the Fermi
level as k.
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FIG. 2. The current density in the ringrin as a function of 0 for
various P'(E=0. 5, kL =Sir)

FIG. 3. c dependence of the current density (current density
vs H, g=m. /2).

z —3z+2cosg=0 (g=P+kL, z =cos8) .

r z =cosOThere are in general three solutions for z =cosO:

z=cos8= —2cosco [co=g/3, (2~+g)/3, g=kL+P] .

0~ +1 must be satisfied, only one of theSince —1 cos
e z's ives the solutions for 0, and then ~ as w

solutions in every period of 2~. nser ing
ensit Jinto Eq. (9), we find the peak height of current density

to be

C. DQS vs 8, P=c nost( e= .0 ,5Lk=5m).
We now consider the density of states (Fig. 4). Puttmg

the derivative of the DOS of Eq. (10) with respect to 0 to
0, we have [see Eq. (A2)]

sin0=0, (21)

For small but finite c, the peak height and width are pro-
portional to 1/c and c, respectively.

+2+1—4cos co singJ
(1+4cos co+4 cosco cosg)

(19a)

(19b)

These divergences correspond to pthe eaks in the J vs t9

relation in Fig. 2.

sg. = 1 or —1, the two roots of the three solutionsWhen cosy. = or —, e
denoted by Eq. (17) coalesce to the root: z =cos
—1 respectively. In the limit g~0 or g'~~ 5, the—
current density J diverges as

limJ ™lim ( I/V'g)~ oo,
$~0 $~0
limJ ~ lim (1/&5)~ ao .
~n —5 g —+n.—5
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B. J vs 8, P=const( s ~0)
Next we consi er e E'd th dependence of the current en-

namelFi . 3). For the limit of an isolated ring, name ysity see ig. . o
11 a roaches aE—+0, the current density J asymptotica y app

5 function as

lim J(O, Q, E) ~5(0—P —kL —nm) .
e~O

FIG. 4. The density of states in the ring aas a function of 0 for
various P'( E =0.5, kL = Sm.).



STRUCTURE OF PERSISTENT CURRENT IN THE PRESENCE. . . 14 321

cos8=secg —tang for sin(&0,

cos8=secg+tang for sing(0 (g=kL+P) .
(22)

IV. THE PERSISTENT CURRENT
AS A FUNCTION OF ELECTROSTATIC

POTENTIAL UNDER CONSTANT MAGNETIC FI.UX

Equation (21) shows that the DOS is minimum when
0=n m. independently of electrostatic potential. Then
substituting Eq. (22) into Eq. (10), we find the peak height
of the DOS to be

DOS~„k= 1+1/sin(g') . (23)

D. Ivs 8, /=const(a=0. S,kL =5m.)

Finally, we investigate the inhuence of electrostatic po-
tential on the persistent current I driven by a magnetic
Aux. Figure 5 shows the calculated persistent current as
a function of 0 for various constant electrostatic poten-
tials (E=0.5). The electrostatic potential modulates the
amplitude, phase, and frequency of the oscillation in the
persistent current vs magnetic-flux relation. In particu-
lar, if P is around m/2, the oscillation with a period of
h /2e can be seen. This double-frequency oscillation
(h/2e) cannot be explained from the current density
since the frequency of the oscillation in the current densi-
ty J vs fiux density relation is h /e for every electrostatic
potential (see Fig. 2). Equation (9) indicates that
the numerator of the current density J has opposite
sign for P+kL =(2n+1)m. +5 and P+kL =(2n+1)vr
—5(m »5 & 0). For this reason, as shown in Fig. 5, the I
vs 8 oscillation has the opposite phase. For P=m/2, the
superposition of those Fourier components of opposite
sign reveals the double frequency h /2e.

Equation (23) shows that the peak height of the density of
states becomes minimum when g=(2n+3/2)m. . Equa-
tion (23) is valid except near the divergent points g =nrr.

A. J vs P, 8=const (s=0.5, kL =5m.)

Figure 6 shows the eA'ect of magnetic Aux on the
current density in the AB ring vs the electrostatic poten-
tial. For 8=(n +1/2)vr, current 'density J shows a sin
curve since J=2sin(P+m). To obtain the position of P
and the extremum values of the current density J where
their extrema occur, we set dJ/d$=0. This equation
yields [see Eq. (A3)]

P =arc sec [—,
'

( cos8+ sec 8) ] kL . — (24)

Substituting Eq. (24) into Eq. (9), we obtain the peak
height of the current density J as

J„„„(8,E)=+2/sin8 . (25)

Equation (25) shows that J~„k is minimum when
8=(n+1/2)vr. Note that Eq. (25) is valid except near
the divergence point. Note that in the limit of O=n~,

In this section, we investigate the persistent current in
the ring as a function of the electrostatic phase shift due
to the electrostatic potential applied to the semicircle of
the ring. In this case, the magnetic Aux threading the
ring is always fixed constant and taken as a parameter.
In the absence of magnetic Aux, there is no current Aow
in the ring irrespective of the electrostatic potential.
However, in the presence of constant magnetic fIux
threading the ring, the persistent current oscillates as a
function of P, and the oscillation is modulated nearly
periodically as a function of the magnetic Aux.

—V = 0.0V((I) = 0) ~ V = 0.0024V((I)=—)5
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FIG. 5. Persistent current as a function of 0 for various elec-
trostatic potentials V.

FICr. 6. The current density in the ring as a function of P for
various 0'(c =0.5, kL =5~).
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the current density J diverges. In other words, the peak
height of current density becomes sharp and high in this
limit. + and —signs denote the positive and negative
peaks.

B. J vs P, 8=const(a~0, kL =5m )

Figure 7 shows the calculated c. dependence of the
current density. In the limit v~0, as shown in Sec. II, a
finite current density develops into a 5 function.

C. DOS vs P, H=const(a=0. 5, kL =5m.)

Figure 8 shows the DOS as a function of P for fixed H.

The peak position of the DOS is obtained by solving
d (DOS)/dP=O [see Eq. (A4)]. This condition gives

30—
CD

CQ

O

20—
U)

CD

Cl

—B=—71'

8
~ oo 7C

4
7Ce=—
2

E = 0.5
kL= 5z

sing=0, cosg=+I (g=kL+P) . (26)

Substituting this equation into Eq. (10), we find the ex-
tremum values of the DOS to be 0 2 4

DOS =cosec (0/2) (cosg= 1 )

=sec (8/2) (cosg= —1) . (27)

Equation (27) means that the extremum value of the DOS
is at a minimum when H=nn (see Fig. 8). Note that Eq.
(27) is valid except near the divergence point 0= n 7r

FIG. 8. The density of states in the ring as a function of P for
various 0'(E =0.S,kL =Sm).

D. I vs V, H=c osnt( =e0. 5, kL =5m.)

Finally we investigate the effect of magnetic fIux on the
persistent current vs electrostatic potential relation. Fig-
ures 9 and 10 show the calculated persistent current as a
function of P for various magnetic fiuxes. The magnetic

flux modulates the amplitude and phase of the persistent
current oscillation, but does not change the frequency
since the magnetic phase shift 0 is independent of the en-
ergy of the electron. As is predicted in the current densi-
ty case, if 0 reaches n ~ the positive and negative peaks of
the persistent current develop sharply.

(f)

CD 5-
C3

1—c. = 0.01 ~ ~ ~ c =—
4

~ ~

~ 4

JXC
~ ~
~ ~

kL= 5z
'Re=—
2

0

)
II
C)

0
V) 05—

CD

C3

jc K
~ ~ ~

4

c= 0.5

~ ~

~ ~
~ ~

CD

(f)
V)

CD~ -0.5

0
I

0.02 0.04 0.06

FIG. 7. c dependence of current density (current density vs
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FIG. 9. Persistent current as a function of V for various
0'(0& 0& ~).
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FIG. 10. Persistent current as a function of V for various
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FIG. 12. The influence of scattering at the edge of the gate
electrode (current density vs P, s =0.5, 0=vr/8, 0. 1 & 8 & 0.5 ).

V. THK INFLUENCE OF SCATTERING
AT THK EDGE OF THE GATE ELECTRODE

connect outgoing and incoming waves in this region, we
choose the S matrix as follows:

In this section, we briefly discuss the effect of scatter-
ing due to the elastic scattering at the edge of the gate
electrode to which the electrostatic potential is applied.
For simplicity, we consider the situation where the elastic
scattering occurs on one side of the gate electrode. To

Q = 0.5 ~ ~ ~ 6 = 0.9 —6 = 1.0

E = 0.5
kL= 5T(:

e= —"
8

0

(28)

Here &5 and i '(/1 —5 denote the transmission and
reflection amplitude that transmit and reflect into the
gate electrode. Figure 11 shows that increasing the
scattering on the gate electrode decreases the amplitude
of the current density. For a small transmission in the
gate electrode (see Fig. 12), the current density shows a
clear stepwise change. This is the result of strong scatter-
ing at the edges of the gate electrode. We also extend our
calculation to include the effect of scattering at both sides
of the gate potential. The results are similar, particularly
for the current density and density of states vs the mag-
netic Aux under constant electrostatic potential. In this
calculation, we assumed that the electrostatic potential
varies slowly in the gate electrode. We have also investi-
gated the situation where the electrostatic potential
varies suddenly at the edge of the gate electrode, and
found that both results are qualitatively similar.

VI. CONCLUSION

0

FIG. 11. The influence of scattering at the edge of the gate
electrode (current density vs (t, s=0.5, 0=rr/8, 0.5 &5 & 1.0).

We calculated the persistent current, current density,
and density of states associated with mesoscopic ring
coupled to the energy and electron reservoir. We con-
sidered the case where the magnetic flux and electrostatic
potential are applied simultaneously. The amplitude and
phase of the oscillation in the AB current density vs
magnetic-flux relation are modulated by the electrostatic
potential, and the current density shows a sharp reso-
nance peak where the electrostatic phase shift P is about
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n~. In particular, the double-frequency oscillation with a
period h/2e is predicted near P=(n + —,')n. The ampli-

tude and phase of the AB oscillation in the persistent
current and its current density vs electrostatic phase an-

gle relation are modulated by the magnetic fIjux. The per-
sistent current and current density show sharply resonant
peaks where the magnetic phase 0 is around n~. A fuller
description of the effect of scattering at the edges of the
gate electrode will be given in a future publication.
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APPENDIX

In this appendix, we present a detailed calculation of
dJ/d8, (d(DOS)/d8), and dJ/d(t(d(DOS)/dP}. For
simplicity, we consider the case only for E=0.5 (strong
coupling between ring and wire):

dJ 2sin(kL+P)[ —cos 8+3 cos8 2—cos(kL+P)]
dO F(8,Q, E)
F(8,P, E)=[1—2cos(kL+P)cos8+cos 8]

(Al)

The condition dJ/do=0 yields the extreme value of J.
These solutions provide the peak height and minima of
current density (J). d (DOS) /d 8, dJ/dP and
d(DOS)/dP are also calculated similarly and shown in
Eqs. (A2), (A3), and (A4), respectively:

dJ
dP

d(DOS)
dP

d(DOS) —2sin8[cos(kL+P) —2cos8+cos 8cos(kL+P)]
dO F(8,Q, E)

2 sin8[2 cos8 —cos(kL +P)(1—cos 8)]
F(8,Q, E)

—2sin(kL+P)cos8(1 —cos 8)
F(8,Q, E)

(A2)

(A3)

(A4)
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