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Nondivergent calculation of unwanted high-order tunneling rates in single-electron devices
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Recently developed single-electron devices are based on the control of electron tunneling across each
tunnel junction of the circuit. However, unwanted higher-order tunneling processes, referred to as co-
tunneling processes, modify this simple picture and reduce the accuracy of the devices. We calculate the
cotunneling rate in a linear array of tunnel junctions beyond the lowest order of perturbation theory by
partially resumming the infinite perturbation expansion for the energy of a metastable state. We apply
this calculation to the transition between two difFerent tunneling regimes in various single-electron cir-
cuits.

I. INTRODUCTION

In recent years the Coulomb blockade of tunneling has
opened a new field of electronics referred to as "single
electronics. "' The first realizations are ultrasensitive
electr ometers or charge-transferring devices such as
turnstiles and pumps, ' the latter being a potential can-
didate for a dc current standard. A single-electron device
consists of small metallic islands separated by ultrasmall
tunnel junctions with tunnel resistance R, larger than the
resistance quantum Rz =h/e . Control voltage sources
are also applied to the islands through gate capacitors.
Each island has a total capacitance C;,&,„„such that the
electrostatic energy of a single excess electron e /2C;», „d
is larger than the characteristic energy kz T of the
thermal fluctuations. Under these conditions, the num-
ber of electrons inside each island is a good quantum
number with negligible thermal fluctuations. Single-
electron tunneling through each junction can be forced or
blocked by setting the control voltages to suitable values.
However, higher-order tunneling processes can directly
transfer a single charge across two or more tunnel junc-
tions and therefore compromise the proper operation of
the device. This phenomenon, discovered by Averin and
Odintsov and called here cotunneling, allows one elec-
tron charge to be transferred through k tunnel junctions,
although single-electron tunneling across each junction is
forbidden. The simplest circuit which exhibits cotunnel-
ing is the single-electron transistor which consists of two
tunnel junctions in series. Cotunneling is responsible for
the leakage current which is observed when this circuit is
biased inside the Coulomb gap. ' For the sake of com-
pleteness, let us mention that a single junction biased by a
current source should also exhibit a Coulomb gap. ' In
this case, subgap leakage can arise from imperfect
current biasing or from the transient electronic rear-
rangement during the tunneling process. '

In a linear array of X tunnel junctions biased with a
voltage source V, a cotunneling event that transfers one
electron across the whole array in the direction of in-
creasing potential is always possible (see Fig. I). In this

paper we will consider the case where another tunneling
transition of lower order becomes energetically allowed.
A second tunneling process at the Pth order, with P &N,
takes place in the array. Both transitions start from the
same initial state and transfer one electron in the same
direction, but the final states are different. Because it is a
perturbative approach, the original cotunneling theory
can only give an expression for the rate of the lowest-
order decay process which is energetically allowed in the
array. In order to describe the behavior of the array
when another tunneling transition can occur, we have de-
rived a nondivergent expression of the quantum decay
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FIG. 1. (a) Schematic of a linear array of N tunnel junctions.
The rectangular symbols represent ultrasmall tunnel junctions.
(b) Energy states of the circuit when the electrostatic energy of
the Pth intermediate state of an Nth-order cotunneling transi-
tion is equal to the initial-stage energy. n, is the number of elec-
trons which have passed through the array. The arrows indi-

cate cotunneling events through N or P junctions.
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rate of the initial state by partially resumming the pertur-
bation expansion. We will consider here three physical
devices where the crossover between two tunneling tran-
sitions with different orders currently appears: (i) the
single-electron transistor consisting of two tunnel junc-
tions in series, the simplest example of a linear array
(P=1, N=2). Our calculations are in good agreement
with results obtained by other approaches; " ' (ii) the
more general case of a linear array of 2V tunnel junctions,
for which we aim at describing the effect of a finite trans-
port voltage (P =N —1,N )2); and (iii) the charge-
transferring devices such as turnstiles and pumps. In
that kind of circuit, every step of a transfer cycle is ex-
posed to an unwanted cotunneling event through the ar-
ray (P=l,N)2) and the accuracy of the transfer is
affected by the rate of this leakage process.

II. THE PERTURBATIVE THEORY OF COTUNNELING

Before examining the case of the single-electron
transistor, it is worthwhile to describe the general pertur-
bative theory of cotunneling. Following Averin and
Odintsov, a cotunneling transition that transfers one
electron through a linear array of N tunnel junctions can
be described by an arbitrary sequence of N single tunnel-
ing events Ij„.. . , jk, . . . , j&I where jk denotes the po-
sition in the array of the kth tunneling event. When a
tunneling event occurs on the jkth junction, one electron
leaves a filled state at c, I below the Fermi level on one side
of the junction and occupies an empty state at c.„above
the Fermi level on the other side. It creates an
"electron-hole" excitation of energy c =a„+c&. Note,

however, that here the electron and the hole are not in
the same piece of metal. In the following, such an excita-
tion will be referred to as a "tunneling exciton" of energy
s; the tunneling exciton density of states is p( s ) =A, s.
Within the tunnel Hamiltonian approach, A, and the tun-
nel matrix element t are related to the junction tunnel
resistance R, by

Xt =R~/4m R, .

Since the final expression of the cotunneling rates de-
pends on the parameters A, and t of each junction only
through the combination kt, we use, for the sake of clar-
ity, the same k for all junctions. The conservation of en-

ergy implies that the sum of the energies of all the tunnel-
ing excitons involved in a cotunneling process must be
equal to the electrostatic energy difference AE between
the initial and the final state of the transition. Therefore,
at T=0, only transitions bringing the system in a state of
lower energy than the initial one are allowed. Let us as-
sume that the energetically allowed transition with lowest
order is a cotunneling transition across M junctions. For
a given sequence tj„.. . , j~I of M single tunneling
events there are M —1 intermediate virtual states
I s„.. . , sM, I. After IC steps in the sequence

Ij„.. . , j~ I the system is in the state sk and its energy is
given by the sum of the electrostatic energy E (sk ) rela-
tive to the energy of the initial state and the energies of
the tunneling excitons created by previous tunneling
events on junctions jl, . . . , jk. The M cotunneling rate
I M calculated by the perturbative theory of cotunneling
is given by

2n R~
4m RII

l

f + oo M
S (s„.. . , s~)5 bE —g s;

0 i =1

M

II s, dc, ,
i=1

where S(s„.. . , s~)=
M —1 k

E(sk)+ g s;
i =1

(2)

where 5'= M —1

X II ~E(sk)~ '

I j&' ' ' '

'HAMI

k =1

We now consider a linear array of X tunnel junctions
biased with a voltage source V. Gate voltages V are also

applied to the X —1 islands of the array through gate
capacitors C . In such a circuit an Xth-order cotunnel-

E

ing transition, hereafter called an N tunneling transition,
is always possible. Even in the Coulomb blockade regime

This integral cannot be analytically calculated except for
two junctions in series. In the limit where AE is much
smaller than the intermediate state energies E (sk ), a use-
ful approximation is obtained by setting the tunneling ex-
citons energies in the energy denominators to zero. In
this approximation the M cotunneling rate takes the form

2 M RK QE2M —1

S t2

(2M —1)!

the transition can occur because the change of electro-
static energy due to the transfer of one electron across
the whole array is —eV. If under the effect of the gate
voltages one of the intermediate state energy E (sp ) with

P &X vanishes, then a P tunneling transition becomes
possible (see Fig. 1). The perturbative expression (2) can
only be used to evaluate the rate of the lowest-order tran-
sition, i.e. , an N tunneling rate if E(sp) )0 or a P tunnel-

ing rate if E (sz) (0. But the crossover between N and P
tunneling is not properly described. Moreover, in the
particular case P= 1, the X tunneling rate diverges at the
threshold while the single tunneling rate is zero at the
threshold.

III. PARTIAL RESUMMATION OF THE
PERTURBATION EXPANSION IN THE

CASE OF THE SINGLE-ELECTRON TRANSISTOR

The simplest example of linear arrays that exhibits the
crossover between two tunneling transitions at different
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FIG. 2. Circuit diagram of the single-electron transistor
which consists of two small tunnel junctions of capacitances C&

and C2 biased with a voltage source V. A control voltage
source U is capacitively coupled to the island formed between
the junctions.

orders is the single-electron transistor (Fig. 2). This de-
vice consists of two tunnel junctions in series of capaci-
tances C, and C2 and tunnel resistances R, and R, con-

1 '2

nected to a transport voltage source V. A gate voltage U
is also capacitively coupled to the central electrode by a
capacitor C . The state of the device is completely de-
scribed by the number n of excess electrons on the central
island and the number n, of electrons having passed
through the voltage source V. For a given state the ener-

gy of the whole system including the voltage sources
is E(n, n, )=(ne —C U) /2Cx —(C U) /2Cz n, eV—,
where C&=C& +Cz+C . For 0& V &e/C& and
0& C~U &e/4, we can limit the state space to four states
which we denote (0), (1), ( —1), and (0)*. The initial state
(0) corresponds to n =n, =O. The states (1) and (

—1)
differ from the initial state (0) by a tunneling event on the
first and the second junction, respectively. The state (0)*
differs from (0) by one electron having passed through the
device. The energy of (0)* is —eV and the energies of (1)
and (

—1) are equal to E& =E(1,0) and E2=E( —1.0),
respectively. For V & V,h, where V,h is a threshold volt-
age dependent on the voltage U and the capacitances C„
C2, and C, E& and E2 are positive and the tunneling of
one electron across each junction is suppressed. Never-
theless, there is a finite current through the device due to
the decay of (0) to (0)*. The cotunneling transition
(0)~(0)* can take place through two channels:
(0)~(1)~(0)' or (0)~( —1)~(0)* (Fig. 3). At
V = V,h, one of the intermediate energies E, or E2 van-
ishes. The cotunneling rate calculated using Eq. (2)
presents at the threshold a logarithmic divergence which
can be regularized. "' Above the threshold, electrons
can be transferred by a sequence of allowed single tunnel-
ing transitions. The limiting single transition rate is pro-
portional to E& or E2 and therefore starts from zero. In
order to properly obtain the crossover between the cotun-
neling and single tunneling regimes, we calculate directly
the decay rate of the initial state (0) without specifying
the final state. This decay rate is a good approximation
of the tunneling rate across the whole array if the occu-
pancy probability of the intermediate states (1) and ( —1)
is much smaller than 1. This condition corresponds to
0& V~1.5V,„. At higher voltage, one can use the
simplified master equation approach, ' which only con-
siders single tunneling events on each junction and which
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FIG. 3. Energy states of the single-electron transistor when
the circuit is in the Coulomb blockade regime. The arrows indi-
cate cotunneling transitions. A cotunneling transition between
the initial (0) and the final state (0) can take place through two
channels (a) and (b).

becomes sufficiently accurate.
To express the quantum decay rate of the (0) state we

use the formalism of the energy displacement operator
R (z). ' The decay rate of the initial state ~i ) is related to
R(z) by

1 = ——Im[PR (E, +i')P], .2

where P =
~i ) (i, E, is the energy of the initial state, and

i)~0+. The perturbative expansion of R (z) is

R (z)=Hz+Hr Hr
Ho

+H~ H~ H~+
z —Ho z —Ho

where Q = 1 P, Huis the tun—ne.l Hamiltonian and Ho is
the sum of the electrostatic Hamiltonian of the whole cir-
cuit and of the tunneling exciton kinetic-energy Hamil-
tonian. Each term in the PRP series corresponds to a
path in the state space and can be represented by a dia-
gram (see Fig. 4). The construction rules of such a dia-
gram are as follows: an upward curved line represents a
tunneling exciton excitation on the first junction and a
downward curved line a tunneling exciton on the second
junction. Each vertex corresponds to a transition be-
tween two different states of the system by absorption or
emission of a tunneling exciton. In the calculation associ-
ated with the diagram, each section, i.e., portion of a dia-
gram contained between two dotted lines, contributes by
an energy denominator and each vertex by a tunnel ma-
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E,

FIG. 4. General form of a diagram. An upward (downward)
arc represents a tunneling exciton excitation on the first
(second) junction of the single-electron transistor. The solid
dots correspond to the absorption or the emission of a tunneling
exciton. Each section of the diagram contained between two
dashed lines corresponds to a given state of the device.

E2

trix element. Finally there is an integration over all the
tunneling exciton energies E &, . . . , c,; of the diagram with
densities of states A, c.&, . . . , kc, . Only paths starting from
the (0) state and coming back to (0) solely at the end give
nonvanishing terms in the series (5). Each diagram con-
taining one tunneling exciton [Fig. 5(a)] gives, at V ) V,h,
the single tunneling rate through the corresponding junc-
tion of the single-electron transistor. The set of diagrams
containing two tunneling excitons depicted in Fig. 5(b)
give, at V & V,h, the perturbative expression of the cotun-
neling rate. A horizontal segment, which is located un-
der or over one tunneling exciton arc, corresponds, re-
spectively, to the (1) state or the (

—1) state (see Fig. 4).
In the upper left diagram of Fig. 5(b), a segment (1) ap-
pears twice under the tunneling exciton denoted c,. The
same situation is reproduced in the upper right diagram
of Fig. 5(b) with a segment (

—1) over the tunneling exci-
ton Ez. In these two diagrams, the horizontal segments
corresponding to the ( —1) or (1) state are the origin of
the cotunneling rate divergence because the correspond-
ing sections contribute by the square of energy denomina-
tors which vanish at the threshold. More generally, for a
given number of tunneling excitons the divergence order
of a diagram is proportional to the number of ( —1) or (1)
segments located under the same tunneling exciton arc.
In order to remove the divergence we will now proceed to
a partial resummation of the perturbation series (5) by

FIG. 5. (a) Lowest-order diagrams in the perturbation expan-
sion (5) with one tunneling exciton arc. (b) Two tunneling exci-
tons diagrams which give the perturbation expression of the co-
tunneling rate across the single-electron transistor.

taking into account the most diverging diagrams at each
order in H~. They are obtained when all the diverging
segments belong to the same tunneling exciton [Figs. 6(a)
and 6(b)]. However, we want to include in our resumma-
tion the four diagrams depicted in Fig. 5(b) in order to re-
cover the perturbative expression of the cotunneling rate
in the limit of small transport voltages. Hence it is neces-
sary to keep also the diagrams with two different possible
tunneling excitons for the ( —1) and (1) segments [Figs.
6(c) and 6(d)]. One can classify these diagrams in four
different types analogous to the four diagrams of Fig.
5(b). The integral corresponding to the first type of dia-
grams [Fig. 6(a)] is

2At&c, + oo

o z —(E+E) fo
2 k

A, t z c2d c2

[z —(E, +s, )][z —( —eV+E, +E2)]

With z =0+ ig the resummation yields f (Ei,eV) = A. t it~ —e V+=2~ 22 2

e V kt
& E&dc&g Ik=

k=p 0 —(E)+E,)+inlt2(eV —s, )

This integral can be calculated explicitly. After taking
the imaginary part, we obtain the following contribution
to the decay rate:

(eV+E, )
Xln

Ef +(~At2eV)

2 2——A,t,E) vr/2 —arctan
AtzeV

+O(k'r', r,') .



NONDIVERGENT CALCULATION OF UNWANTED HIGH-ORDER. . . 14 313

The contribution f (E2,eV) of the second type of dia-
grams [Fig. 6(b)] has the same form with E& replaced by
E2, t, by t2, and t2 by t, . In the third and fourth types of
diagrams there are two possible tunneling excitons for the
( —1) and (1) segments. The integrals and the resumma-

tion are performed similarly to the previous case. Since
the third and the fourth types of diagrams [Figs. 6(c) and
6(d)] are symmetric, they give the same contribution to
the decay rate:

(E, +eV)E, (E)+eV)222 lng(E~E2eV)=
&

A t~t 2 eV
2(E +E + V)

n 2 g 2 V2

(E~+e V)E2 (E~+e V)
ln +O(A, t, t, ) .

2(E, +E2+eV) E2+(nit, eV)

Summing the contributions of the four types of diagrams
and using Eq. (1), the final expression of the decay rate
I =f (E„eV)+f(E2,eV)+2g (E„E2,eV) takes the form

2

r= 2m Rz eV E E2+
(4~')'R, R, 2 E, +E,+eV

1 2

(eV+E; )

g ln
E; +(a;eV)

a)

———arctan
2 7r a;eV

(10)

where a; =Rz/4nR, , jWi. This formula provides an ex-
J

pression of the I-V characteristic of the single-electron
transistor at T=O. In the limit a;~0, Eq. (10) repro-
duces the perturbative expression of the cotunneling rate
across two junctions in series calculated by Averin and
Odintsov. One can also treat second-order tunneling in
any linear array of tunnel junctions if one replaces eV in
Eq. (10) by the correct expression for the energy available
in the transition. Expression (10) has a form similar to
the cotunneling rate expression of Korotkov et al. " The
two formulas, although analytically different, give the
same result, except in the vicinity of the threshold voltage
V,h. Recently, Pasquier et al. ' have explained their ex-
perimental results on a two-dimensional electron gas elec-
trometer by a temperature-dependent cotunneling rate
which agrees with Eq. (10) in the limit T=O.

IV. THE GENERAL CASE OF A CROSSOVER
BETWEEN N TUNNELING AND (N —1) TUNNELING

IN A GENERAL LINEAR ARRAY

More generally, the crossover between N and (N —1)
tunneling in larger arrays than the two junctions elec-
trometer can be described by a similar nondivergent rate
calculation. We now consider a linear array of iV tunnel
junctions with negligible gate capacitances biased with a
voltage source V (Fig. 7). In the case of N identical junc-
tions with capacitance C the set of intermediate energies
(E„.. . , E~, ) is the same for all the sequences. For
V & e/2C, the X tunneling is the only allowed transition.
At V =e/2C, E~, is equal to zero and an N —1 tunnel-
ing transition becomes possible. An N tunneling transi-

FICi. 6. Diagrams that are taken into account in the partial
resummation of the perturbation expansion (5).
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FIG. 7. Cotunneling transition (a) in real space and (b) in

state space for a linear array of X identical tunnel junctions with

negligible gate capacitances biased by a voltage source V when

the energy of the (X—1)th intermediate state of an N tunneling

transition is equal to the initial-state energy.

tion is described at the lowest order in perturbation by
N. different diagrams containing N tunneling excitons.
If V«e/C, the energies of the N —2 first intermediate
states are always positive and larger than eV. Since the
sum of the energies of the tunneling excitons involved in
a cotunneling transition is equal to eV, we will neglect
them in the energy denominators related to the
configuration states of the array except for the (N —1)'"
state and the final one. We can then distinguish only two
types of diagrams (Fig. 8). There are N!(N —1)! dia-
grams of the first type and N!(N —1)!(N—1) diagrams of
the second type. For the first type [Fig. 8(a)] the resum-
mation and integral over cN and EN, is performed in the
same manner as in the first two cases of the single-
electron transistor. Then one gets the contribution y, :

+
y. = . , EN, +o-,ev —o-

E2

XE) ' ' ' EN 28Ei ' ' BEN

where o = g+:i2 E, and where f is the function defined in
expression (8). For the second type of diagram [Fig.
8(b)], which is similar to the third and fourth types of dia-
grams in the single-electron transistor case, the contribu-
tion yb is

f I+~ Ar

X fg(E~, +~,E~ i+~, eV ~)]
X 6) EN —2G E) ' JAN —2

(12)

FIG. 8. Classes of diagrams for a linear array of N junctions
which extend the classification made for the single-electron
transistor. (a) Diagrams analogous to diagrams of Figs. 6(a) and

6(b) ~ (b) Diagrams analogous to diagrams of Figs. 6(c) and 6(d).
The arcs starting from the horizontal line represent the emission
of tunneling excitons labeled c&, . . . , c,». The arcs ending on
the horizontal line represent the absorption of the previous tun-

neling excitons c,&, . . . , c» in an arbitrary order.

where g is the function defined in expression (9). The de-

cay rate of the initial state I N
=y, +y b is written

'N —2 N —2
N!(N —1)! g E, F(E& „eV).,

where

(13)

2N —5

Jo (2N —5)!

x [f(E~,+o,eV —o )

+ (N —1)g (E~,+o,E~

+o., eV —o )]do .

Fquation (13) allows us to describe any kind of crossover
between two tunneling regimes in a linear array of X tun-
nel junctions under the effect of a finite transport voltage.
Thus one can estimate the I-V curve of the array from
the X tunneling regime until the single tunneling regime.
In the simplest case X=3, a quantitatively more accurate
calculation can be done if one keeps in the energy denom-
inators of expressions (11) and (12) the contribution of the
first tunneling exciton energy E, , ~ One obtains the follow-

ing expression of the 3 tunneling rate:
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1/2&CV/e&1 the matching between I 3 and 3I 2 is
sufficiently good to obtain a continuous estimate of the
tunneling rate across three junctions over the Coulomb
blockade range. Calculation of the tunneling rate across
three junctions is shown in Fig. 10 for several values of
the tunnel resistance. The crossover between successive
tunneling regimes gets smoother when the tunnel resis-
tance R, decreases and is hardly noticeable when

R, &2R~.

V. THE CROSSOVER BETWEEN N TUNNELING
AND SINGLE TUNNELING

FIG. 13. Diverging diagrams involved in the resummation of
the perturbation series in the case of the crossover between N
tunneling and single tunneling in the %junctions pump.

The last application of the nondivergent cotunneling
rate calculations we shall consider deals with the accura-
cy of single-electron pumps. A pump consists of a linear
array of X identical tunnel junctions of capacitance C
where each island Ik) of the array is connected through a
gate capacitor to a time-dependent voltage source Uk

(Fig. 11). Each gate capacitance is equal to Cs with
C «C. The controlled transfer of one electron across
the device is achieved by successively applying to the is-
lands triangular voltage pulses as shown in Fig. 12.
These pulses induce a sequence of single tunneling events
on the successive junctions of the array: one-electron
charge follows the pulse propagation through the array.
However, an unwanted X tunneling transition is possible
at any stage of the transfer cycle. All steps of a transfer
cycle in the X pump are equivalent, ' but, for simplicity,
let us assume the pump is placed at the beginning of a cy-
cle. There is no excess electron on any island of the array
and at small transport voltages (V((e/2C) the N tun-
neling across the array is the only tunneling transition al-
lowed. As in the single-electron transistor, the perturba-
tive expression of this X tunneling rate diverges when the
energy of the first intermediate state of a cotunneling se-
quence becomes equal to zero. This is exactly what hap-
pens when, under the effect of the first gate voltage U„
the pump reaches the threshold of the first step in the cy-
cle. This step will be a single tunneling event across the
first junction which puts one excess electron on the first
island of the array in the sense of the transfer (Fig. 1 1).
The perturbation theory cannot therefore be used directly
to calculate the pump error rate. Using the partial
resummation technique we can remove the divergence of
the X tunneling rate. The general form of the diverging
diagrams is represented in Fig. 13. Introducing the same
approximation as in the case of the X linear array of tun-
nel junctions we neglect the tunneling exciton energies in
the energy denominators except for the first intermediate
state. After the resummation and the integration over
the tunneling exciton energies c2, . . . , cN, we obtain the

following upper bound of the N tunneling rate y„,:

2m

(2N —3)! A'

N —1

1=2

2
l

X
e,(ev —E, )'~ 'dE,

2 2 4N —6(E, +ei) +a~(eV —E, )

Ã 1N i

IIE '
1=2

Rz
(2N —3)! 4m-~R

Using this expression, we have calculated in the particu-
lar case of the five junctions pump an upper bound of the
X tunneling leakage during a transfer cycle. We have
found that this contribution is negligible in the particular
parameter range for which metrological accuracy is
achievable. ' ' '

VI. CONCLUSION
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In conclusion we have shown that in a linear array of
tunnel junctions the problem of the crossover between
two tunneling regimes at different orders can be solved by
a partial resummation of the perturbation expansion. In
the case of the single-electron transistor, we have ob-
tained an analytical expression of the cotunneling rate
that remains finite at the conduction threshold. More
generally, this approach can be used to calculate the I-V
characteristic of an array. Finally, nondivergent calcula-
tion of the cotunneling rate provides a rigorous upper
bound on the X tunneling leakage through charge-
transferring devices such as the N junctions pump.
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