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Exponentially narrow current dip for resonant-tunneling structure of three quantum dots
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We have found a resonance of an alternative type in the current-voltage curve of the non-one-

dimensional resonant-tunneling structure with three quantum dots. It is an exponentially narrow dip
with an exponentially small minimum that appears independently of the width of the energy spectrum of
incident electrons. The structure considered is the simplest two-lead structure that has such a property.

In several recent papers' it was shown that the con-
ductance of non-one-dimensional ballistic structures can
have narrow backscattering resonances. For the
resonant-tunneling structures (RTS's) these resonances
can look much similar to the well-known Breit-Wigner
resonances (having, however, the overturned peak direc-
tion), their width being exponentially narrow and their
minimum being exponentially small. Thus, the non-
one-dimensional RTS's have two types of transmission
(conductance) resonances: (i) the conventional Breit-
Wigner and (ii) the backscattering ones.

On the other hand, we know also that the RTS's can
have exponentially narrow current Breit-Wigner reso-
nances similar to the indicated conductance resonances of
the first type. The simplest structure that exhibits such a
property is a double quantum dot (well) structure (see,
e.g., Ref. 9 and, for the model calculation in the Breit-
Wigner approximation, Ref. 10). The narrow current res-
onance appears in such a structure when a level in the
first quantum dot intersects, with changing the applied
voltage, the level in the second quantum dot.

Though the existence of the first-type current reso-
nances could be foreseen with use of the physically clear
picture of level intersection, up to now it was not clear if
there exist structures which have the current resonances
of the second type, i.e., the exponentially narrow dips in
the current-voltage curve, for the arbitrary width of ener-

gy spectrum of incident electrons.
This paper aims to show that the non-one-dimensional

RTS with two (or more) leads can possess the second-type
current resonances as well as the first ones. Recently, we
have shown that such resonances appear for the three-
lead double quantum dot RTS shown in Fig. 1(c) and un-
like the second-type conductance resonances, they can-
not exist for the double quantum dot structure with two
leads. " However, Ref. 11 remains unsolved whether or
not there exists the conventional RTS with two leads that
has current resonances of the second type. Here we
demonstrate the second-type current resonance for the
three quantum dot structure with two leads shown in Fig.
1(b).

Below we study the three quantum dot RTS assuming
at first that it has several leads, as shown in Fig. 1(a). In
order to simplify the consideration we propose that all
the resonant levels of this structure correspond to the

filled states of lead 1 and to the empty states of other
leads (see left insets in Fig. 1). In this situation the
Biittiker equations' for the current I, from lead 1 to
lead j, j =2, 3,4, take the simplest form:

I, = f dET, (E),

where the integration is performed over the energies of
incident electrons. We define the transmission
coe%cients T,~

from lead 1 into lead j by the generalized
Breit-Wigner formula. ' Let I '. ' be the partial width of
level j connected with decay from quantum dot j into
lead k, and let 5;& be the Aux overlap integral between
quantum dots i and j (see Ref. 13 for more detailed
definitions). It is proposed for simplicity that the only
non-negligible decay widths are I ' ' with j =k =2, 3 and
with j =1, k =4 [they correspond to the decay from
quantum dots to the nearest leads, see Fig. 1(a)]. Then, as

a particular case of results, ' we find
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FIG. 1. Quantum dot RTS: (a) three quantum dot structure
with four leads, (b) three quantum dot structure (in the inset:
two quantum dot structure) with two leads, and (c) two quan-
tum dot structure with three leads. The couplings between
quantum dots and leads that are taken into account are denoted
by straight segments. In the left insets: the sketches of energy
diagrams along the paths connecting leads via quantum dots.
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where I . is the total width of level E. in quantum dot j.
The transmission coefficient T,3(E) could be found from
Eq. (2) with use of substitution 2~3. It is proposed that
the level differences E; E[whi—ch are linear in applied
voltages V „=e(1M —p„) for V „small enough] and the
level widths I j ' are small so that, for the energies giving
the main contribution into the integral of Eq. (1), we can
consider parameters 5,. and I '."' as constants. Under this
assumption we have calculated the integral of Eq. (1)
with transmission coefficients (2) and (3) with the residue
theory. The result of these cumbersome calculations is as
follows:

CX1
=E1+C2+ E3

2 2 2+2 ~12+ 1~3+ ~2~3 512 513 523

2 2 2
3 ~1~2~3 512513523 512 3 5132 523~1

In Ref. 7 it was shown that the RTS of two quantum
dots, like in the inset of Fig. 1(b), can have exponentially
narrow second-type (backscattering) conductance reso-
nances. Evidently, such a resonance could also show it-
self in the current-voltage curve if the current-carrying
electrons were monoenergetic to a good accuracy with
the energy varying by the applied voltage near the energy
of the backscattering resonance. In order to ensure a
monoenergetic electron Aux falling on such a structure
with exponential accuracy we add the third quantum dot
in front of these two as shown in Fig. 1(b). That is a
physical reason why we expect the appearance of the
current resonance of the second type for the three quan-
tum dot RTS of Fig. 1(b).

In order to verify the indicated presumption we set
I 3=5»=0 and assume that the values I, and IE, E3I—
are small compared with the other energy parameters of
the structure. For the configuration of quantum dots
shown in Fig. 1(b) we have I 11"=I

1 and I 2
'=I 2. Then

as a particular case of the equations found we obtain

e r1,'1r',"[I5„.,+5„5„I'c,
(E, E) +(I—, /I 2)(5,2+523)

(Ei 3 ) + ( rl /r2)(512+ 523) /512
(8)
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e r', "r',"[ I
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—2Re[(E2+e3)(Ezs3 523)]C,
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with

Co =Im(a, ) [Im(a3) + Im(a*, a2) ]—[Im(a2) ]2,

C, =Im(a, )Im(a1a3) —Im(a2)Im(a3),

C2 =Im(a, )Im(a2 a3) —[Im(a3) ]

C3 = Im(a3)Im(aia3 )+Im(a2)Im(a2 a3),
C4 =Im(a3)Im(a2 a3 )

+Im(a1a2)Im(a2a3) —[Im(a1a3 )]
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where

y =2(r, /r, )'"(5',,/5„) (5„«5„). (9)

Equation (8) is valid only if I „ IE, E3I «523. T—here-
fore, it defines the current I&2 everywhere over the region
of the dip if y «523, i.e., if (I,/I 2)' (523/5, 2) « 1. In
Fig. 2 we plot the I,2(E, —E3 ) dependence using Eqs. (4),
(6), and (7) for I"1/I"2=0.01, 0.001, and 0.0001, and
5 12 /523 0. 1 . In good agreement with the exact calcula-
tions, Eq. (9) gives, for these cases, the width of the dip
y=2523, 0.66523, and 0.2523, respectively, and Eq. (8)
shows that the minimum value of the current in the dip is
then approximately 5&3/512=100 times smaller than its
value aside from the resonance.

Let us verify if the current vs (E, E3)/523 curves in-
Fig. 2 are proportional to the conductance vs
(E, E3)/523 curves —found for the device in Fig. 1(b)
with quantum dot 1 taken away (in the latter case E,
stands for the energy of incident electrons). Then, evi-
dently, quantum dot 1 would play the role of energy filter
and the physical mechanism of narrow current dip could
be reduced to the mechanism of the backscattering con-
ductance resonance studied earlier. ' Consider the indi-
cated two quantum dot structure with dots 2 and 3. As-
suming, as for Eq. (8), I'3=0, we have for the conduc-
tance of this structure'

Consider the current I12 as a function of level difference
E1 E3. It is —not difficult to see from Eq. (8) that this
function has a narrow current dip near the point E1 =E3
for 512«523. According to Eq. (8), the position of this
dip is independent of the value of level E2, and its width
1S
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FIG. 2. Dimensionless current I&2A/2eI I as a function of di-
mensionless level distance (EI —E3)/5» for the RTS shown in
Fig. 1(b) found by Eqs. (4), (6), and (7) (solid lines) for
6, /6 3=0.1: (a) I, /1 =0.01, (b) I,/I =0.001, and (c)
I I/I 2=0.0001. The dashed lines are the same dependencies
found by Eq. (8).

2
G= (~ E )21 (1)l (2)

Z, —E, +—r, (Z, —E, ) —5»
2 . (10)

Though the minima of both I,2 and 6 correspond to
E, =E3, we see that Eqs. (8) and (10) are different in gen-
eral. Proposing for simplicity E2=E3, we find that a
narrow dip appears in 6 vs E& —E3 dependence for
523 « I 2. The width of this dip is

The common feature of y and y is that these values are
proportional to 5&3. However, the dependence on the

other parameters of the structures is different. In partic-
ular, the width y, not like y, vanishes as the coupling I,
with lead 1 tends to zero. Also, notice the existence of
conductance zero for E, =E3, that in no case appears for
the current I,2. Thus, the current curves for the three
quantum dots considered are not similar to the conduc-
tance curve of the two quantum dot structure shown in
the inset of Fig. 1(b). Evidently, this is due to the in-
terference phenomenon coming from additional multiple
reAections of tunneling electron between dots 1 and 2.
Hence, we have to conclude that the interference
phenomenon that is responsible for the effect found is
more complicated and it cannot be simply reduced to the
effect of narrow backscattering conductance resonance
for the two quantum dot structure.

In the case of the two quantum dot RTS with three
leads shown in Fig. 1(c), Eqs. (4)—(7) become very simple
and coincide with the ones obtained in Ref. 11. It was
found" that the second-type resonance (exponentially
narrow dip) can appear in this structure for the current
I,4 between leads 1 and 4. Simultaneously, current II&
has the first-type (Breit-Wigner) resonance. In the ab-
sence of lead 2 the dip of the current I&4 disappears.
Thus, interestingly, the RTS shown in Fig. 1(c) could
serve as a sensitive 7-branch switch based on the effect
discovered. "

In the present paper we disregarded the charging and
the inelastic-scattering processes inside the RTS. These
processes are essential for resonant-tunneling structures'
and the study of their inAuence on the conductance and
current resonances of the second type could be an impor-
tant problem for the further consideration.

In summary, the current through the non-one-
dimensional RTS, similar to the conductance, can have
resonances of the second type, i.e., the exponentially nar-
row dips with an exponentially small minimum, in the
current-voltage curve. The two-lead RTS can have
current resonance of the second type starting from the
three quantum dot structure. The result obtained makes
clear that the existence of the current resonances of the
second type, as of the first one, is a quite general feature
of the non-one-dimensional RTS.
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