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A systematic theoretical study of the electronic properties of pseudomorphic (100)-strained Si& Ge
alloys grown on unstrained Si& ~Ge~ substrates is presented. Based on nonlocal empirical pseudopoten-
tial calculations with spin-orbit interactions, realistic estimates of the conduction- and valence-band-

edge energies, higher-energy-band minima, effective masses, deformation potentials, and heterostructure
band offsets for the whole range of alloy compositions x and y and strain are presented. The theory pre-
dicts that the band edges of weakly stressed Ge fall within the wider gap of the Si& ~Ge~ substrate for
0.7 &y & 1 (type-I alignment), in contrast to any Si-rich combination of active layer and substrate.

I. INTRODUCTION

The successful fabrication of Si/Ge strained layer su-
perlattices and multiple-quantum-well systems has
opened the prospect to fabricate both optoelectronic and
electronic devices using the highly advanced Si technolo-
gy. Through the advent of molecular-beam epitaxy, the
properties of the SiGe system can be varied substantially
in a controlled fashion. By selecting proper amounts of
strain, number, and type of Si/Ge layers, alloy composi-
tions, or growth directions, exciting new properties that
drastically differ from pure Si have been demonstrated
experimentally in strained-layer superlattices' and in
heterostructures. These experiments have been com-
plemented by extensive theoretical studies of band align-
ments and optical properties' ' of strained layer su-
perlattices.

In most Si/Ge devices such as modulation-doped field-
effect transistors, the electrically active material is a
(100)-strained lattice-matched Si, „Ge layer that is ei-
ther grown on top of a thick Si& Ge substrate or is em-
bedded in between such substrates that determine the la-
teral lattice constant and consequently the strain. In the
regime of high electric fields that is relevant for all sub-
micrometer devices, the electron and hole distribution
functions depend critically on the alloy and strain depen-
dence of the valley separation energies, minimum and
higher band gaps, deformation potentials, and the hetero-
structure band offsets.

The energy gaps and masses that are relevant for trans-
port applications are still only crudely known as a func-
tion of x and y in strained Si, „Ge~:Si

& „Ge alloys.
First insights into the interplay of strain and alloying in
these materials were given by Abstreiter and co-
workers' ' and by People. ' More recently, k p calcula-
tions of optical properties' and Monte Carlo calculations
of the hole transport' were performed for strained Si on
Si& Ge, using Si and Ge averages for the k.p parame-
ters. Empirical tight-binding calculations in strained
SiGe alloys have allowed valuable qualitative insight into
symmetry-related properties however, conduction
bands and their masses can be accurately modeled in this
approach only if a very large number of fitting parame-

ters is introduced. Pseudopotential calculations of the
parabolic hole masses were done by Gell for lattice-
matched Ge on Sif yGey. '

The main goal of this paper is to provide a consistent
and complete set of band parameters that are needed for
quantitative transport calculations in SiGe alloys.
Specifically, this paper presents realistic estimates of
several conduction- and valence-band-edge energies,
effective masses, deformation potentials, and heterostruc-
ture band offsets for the whole range of alloy composi-
tions and strain in the lattice matched (100)-strained
Si& „Ge„:Si& Ge system. The calculations are per-
formed in the framework of the empirical nonlocal, rela-
tivistic pseudopotential theory. We derive explicit ex-
pressions for the effective-mass tensors for electrons in
terms of the nonlocal pseudopotentials and Bloch func-
tions, employing k p theory. Within the rigid-ion ap-
proximation, explicit expressions are also given for rela-
tive strain deformation potentials.

The paper is organized as follows. The pseudopoten-
tial Hamiltonian is defined in Sec. II. We have deter-
mined the various mass parameters of the conduction and
valence band by means of a nonlocal variant of the k.p
method. In Sec. III, explicit expressions for the
conduction- and valence-band masses and deformation
potentials are given. The numerical results for the energy
gaps, effective masses, deformation potentials, and band
offsets are summarized in Sec. IV and the major findings
concisely summed up in Sec. V.

II. THE EMPIRICAL PSEUDOPOTENTIAL METHOD

Ideally, one would like to calculate electronic band pa-
rameters with ab initio methods such as the local-density
functional schemes. While these methods are quite accu-
rate for ground-state properties and some excitation ener-
gies, they still do not meet the accuracy needed for
transport parameters. Ge, for example, is found to be a
metal in the framework of local-density theory. While
quasiparticle band structures are generally more satisfac-
tory, recent calculations of this type still predict Ge to
possess a direct and underestimated or even almost van-
ishing energy gap. Consequently one is forced to intro-
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duce some empirical element in the calculation. Here we
wi11 employ the empirical pseudopotential approach in its
nonlocal relativistic version as developed by Chelikowsky
and Cohen. This method is known to reproduce with
fair accuracy many electronic-structure properties of
semiconductors including the principal energy gaps,
electron-phonon matrix elements, and optical response
functions.

We solve the electronic Schrodinger equation with the
pseudo-Hamiltonian

V...(G)=S(G)V;.';-( ~G (),
where

V;,'; (G)= dr Vf,'; (r)exp( iG r—)1

cell

(2)

(3)

is normalized to the primitive unit Q„&& and the structure
factor S(G) contains a sum over the N atomic positions
I in the primitive cell,

1S(G)= g exp( —iG x ) . (4)

Analogously, Eq. (1) includes a nonlocal, angular-
momentum-dependent pseudopotential,

V„i„(K,K') =S(K—K') V'„I',, (K,K') . (5)

With P& denoting the angular momentum projector, the
nonlocal part of the atomic potential is written as

V'„'„', (r)=g A,f((r)PI,
I

e(R& —r) in Si

exp( r /RI ) in Ge—.I(r) =
(6)

H = — b + V), + V„i„+V„,
2m

which is represented in a plane-wave basis
~Ko ) = ~exp[i(k+G) rJ ) ~0 ) with K=k+G and spin
states ~cr ). Here k is the reduced wave vector and the G
are reciprocal lattice vectors. In Eq. (1), V&„(r) is the lo-
cal pseudopotential operator of the crystal and is here as-
sumed to consist of a superposition of spherical, screened,
local atomic pseudopotentials V(r) of one atomic species.
This leads to the Fourier representation

V,.(K~, K ~ )= — „"2i (&„s/2)' '

XS(K—K')B (K)B(&')

xKxK' (~~S~~ ),
5 (K /g)

5[1+(IC/g) j"

where we have used an analytical representation for the
overlap integrals B(IC). ' All pseudopotential parame-
ters are summarized in Table I and basically agree with
those of Ref. 25. In Ge, only the spin-orbit parameter p
has been slightly adjusted to account for the differences in
B (X), but for Si we dropped the energy dependence of
the weight factors A&(E) in the nonlocal part of the pseu-
dopotential altogether, since the expression for A&(E) in
Ref. 25 [Eq. (11) in their paperj, taken as a function of k,
has discontinuous second-order partial derivatives. Even
though this effect is sma11, it translates into undefined
masses of the energy bands at k=o. We have therefore
slightly readjusted the remaining potential parameters so
as to reproduce as closely as-possible the previous results
of Ref. 25.

This paper focuses on the properties of (100)-
tetragonally distorted Sii Ge alloys with a lateral lat-
tice constant a~~(x) equal to the bulk lattice constant
ao(y) of an unstrained substrate Si& Ge~ alloy that has a
different composition y. The strained Si& Ge„ layer is
considered thick enough to exhibit bulk properties. The
lattice constant aj(x) of the strained alloy in the direc-
tion perpendicular to the interface is adapted so as to
minimize the elastic energy, '

T

c&2(x) a~~(x) —ao(x)
a~(x) =ao(x) 1 —2, (9)

cy) x ao x

where c» and c,2 are the elastic constants. For pure Si
(Ge), we have used c» =1.675 (1.315) Mbar and

c,z =0.650 (0.494) Mbar, and linearly interpolated these
constants for the alloy.

A biaxially strained Si, Ge crystal has a face-
centered tetragonal lattice. Consequently, the six X
points in the Brillouin zone split into four X points and
two Z points. Correspondingly, there are four A~I and

Following Ref. 25, the core form factor f&(r) is represent-
ed by a Heaviside step function [e(x)= 1 for x ~ 0 and 0
otherwise) in Si and by a Gaussian function in Ge. For Si
only the l =0 contribution whereas for Ge only the l =2
contribution is included explicitly in Eq. (6). The spin-
orbit interaction

V, =g VI „I,SPI
I

is taken into account only for Ge (and the Si& „Ge„»-
loys, see below) and only the dominant / =1 core states
are included in Eq. (7). In a plane-wave basis, Eq. (7) has
the form

Parameter

V(&3)
V(&8)
V(&11)
Ap

A2
Rl (A)

p
g(A )

—0.221
0.019
0.056
0
0.275
1.22
0.000 965

10.091 1

—0.2241
0.0520
0.0724
0.03
0
1.06
0
0

TABLE I. The pseudopotential parameters used in this
work. All parameters are in rydbergs, except where specified
otherwise.
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+ [ao(Ge) —ao(Si) ]x (10)

The pseudopotential calculations in the strained crystal
are performed by invoking the rigid-ion approximation.
This implies two modifications in the pseudopotentials.
First, the normalizing volume changes with the strained
unit cell volume. Second, the local pseudopotential form
factors enter the calculation at the strained reciprocal lat-
tice vectors. These values have been obtained by per-
forming a cubic spline interpolation through the atomic
pseudopotential form factors, V(0) = 2EF /3—, V(&3),
V(&8), V(V11), and V(3kF)=0, where EF and k~ are
the Fermi energy and wave vector of the free-electron gas
appropriate to the electron density in the cubic crystal.
We have included about 180 plane waves in the diagonal-
ization of the Hamiltonian matrix which gives results
converged to within approximately 1 meV.

two A~ axes. The four L points remain equivalent and
are conventionally labeled by X in a tetragonal lattice.

The alloys are treated in the virtual-crystal approxima-
tion by linearly interpolating the form factors of the indi-
vidual constituents. The lattice constants for the bulk
Si& Ge„alloys are measured values from Ref. 29, which
can be represented in the form

ao(x) =ao(Si)+0.200 326x(l —x)

located at wave vectors k is given by

1 vaiieys 1 vaiieys 1
( «»d)ij =

N g ™~~j N ~ 2 gk Bk
E~(k~)

V

+ V„,(r ) + U„i„,2m
(12)

where all nonlocal contributions such as Eqs. (6) and (7)
have been lumped together into U„&„. Furthermore, let
the wave vector k and band index n correspond to a non-
degenerate (or only Kramers's degenerate) band ex-
tremum associated with valley v. By expanding the
plane-wave representation

H(K+ic, K'+a)= IK+aI 5icic+ Vi„(K—K')
2m

and determines the low field mobility. The most efficient
and accurate method to calculate these effective masses is
provided by the k.p theory, which will be employed in
this paper. As the pseudopotentials in Eqs. (6)—(8) are
nonlocal, a few amendments to the conventional k p
theory, which assumes the commutability of exp(ik r)
and the potential operator, have to be added. ' Let us as-
sume a Hamiltonian

III. k-p EXPRESSIONS FOR BAND PARAMETERS + U„i,(K+a, K'+ic), (13)

A. Conduction-band masses in strained alloys

The conductivity mass tensor M„„d for a nondegen-
erate band edge of energy E, with X equivalent m.'.nima

with K=k+0 and K'=k+Cs' to second order in the
small wave vector sc, one obtains the following expres-
sions for the inverse effective-mass tensor:

+
m tan, ~'

& nk~ I~; I
&k~' &

= & & nk~ IK~ )~;(K~,K'~')(K'o'IIk~'),
KK'

1 1 c) U„i„(Ko,K'cr)
(M '); = 5; + g (nko IKcr) (K'cr nko).

m ' &' KK J

& nk~
I ~; I~k~' & & Ik~'I~j ink~ & +c.c.

E„(k)—Ei(k)
(14)

(15)

ir; (Ko,K'o') =%K;5Kic5 + U„i„(Kcr,K'o ') .
l

In these equations, (Ko. nko ) is the Fourier coefficient
of the Bloch function solution ~nkcr ) of Eq. (12). The
terms proportional to U„i„ in Eqs. (14) and (15) represent
corrections originating in the nonvanishing commutator
of U„&„with r; we found these terms to contribute up to
20% to the calculated masses. Nevertheless, these
corrections, as far as they contain nonlocal pseudopoten-
tial terms other than spin-orbit coupling, have not been
taken into account in previous works.

For a tetragonal strain, M„nd is diagonal but contains
two distinct elements m IIon and m~ ", determining the
conductivity mass parallel and perpendicular to the inter-
face plane. In contrast, the individual valley mass tensors m cond cond

mll (16)

I

can have three distinct elements when transformed to
principal axes, namely a longitudinal mass m& and two
generally different transverse masses m, &

and m, 2. Qn the
b~~(N) axis, m, 2(m„) lies in the interface plane. The
conduction-band minimum in strained Si, „Ge„alloys
turns out to lie either on the Ai axis near
k=(0, 0,0.85)(2ir/ai ), on the b,

~~

axis near
k = (0.85, 0,0)(2~/a

~~

), or on the N point at
k=(vr/ai, vr/ai, n/a~~ ). The explici. t relation between the
individual valley masses and the conductivity mass for
these three situations is given by



48 ELECTRONIC-BAND PARAMETERS IN STRAINED Si& „Ge„.. . 14 279

1 11 =1
II'

m cond
II

I m, 2

cond-
my —mt)

1
& 2 1 1 1 1=—'(1+—'c,,„) + +—(1—4 c,,„)cond " m 2m 6 " m

II
I t1 t, 2

(18)

spin-orbit effects are small and can be treated as additive
perturbations. ' Consequently, the Hamiltonian that
defines the conventional valence-band k p parameters is
that of the unstrained cubic Si, Ge alloy with the spin-
orbit interaction set to zero, i.e.,

1 ] 4 1 2 1=—'(1 ——'E,„) +—(1+—'s )
cond 3 3 ax 3 3 ax

mg mg t2

g2H'" "=— 6+V +V
2m loc nloc (19)

Only in the latter case does the conductivity mass depend
explicitly on the amount of strain, in terms of the axial
strain parameter c,,„=(ai—a~~ )/ao.

B. Valence-band parameters in unstrained alloys

In the conventional k-p approach, the valence-band
parameters of tetrahedral semiconductors are defined for
unstrained cubic materials and in the absence of spin-
orbit interaction by taking the position that strain and

But we emphasize that all results for band gaps, effective
masses, and band offsets presented in Sec. IV of this pa-
per have been obtained by taking fully into account the
strain and the spin-orbit interaction that are contained in
the Hamiltonian Eq. (1).

In this section, we focus on the top of the valence
bands at the I point in Si& „Ge„alloys. The k p Hamil-
tonian for the three topmost valence bands in the form of
Dresselhaus, Kip, and Kittel is given by

~CUblC( )U 2m 2m

L»„+M(» +», )

XK~ Ky

XK K,

L» +M(» +», )

L», +M(» +»~ )

(20)

The eigenvalues of Fq. (20) are the heavy- and light-hole energies E,(»), relative to the top of the valence band. In Ref.

, the parameters L, ~, and & have been defined in terms of the Bloch eigenfunctions associated with the three degen-

erate r~5 valence-band states at k=0 that transform as lyz ) ~ lzx &, and lxy &. Since the pseudopotential Hamiltonian

Eq. (19) contains nonlocal potential contributions, we have to take care of corrections analogous to tho se in Eq. (14).

Let us define the matrix J in Cartesian coordinates,

8 V„i„(K,K') ~,.(G,G")&
G"lnr) & nr lG" )m. (G"',G')+c.p.

Bk, BkJ E,(r) —E„(r) (21)

where C. Strain-deformation potentials

~(K, K') =iriK5K~ + Vqv„i„(K,K'), (22)

L = / &yzlG&J, (G, G')&G'lyz&,

and c.p. stands for cyclic permutation of i and j. By ap-

plying a unitary transformation, the solutions of the
Hamiltonian Eq. (19) associated with the I states can
be transformed into states that transform as lyz ), lzx ),
and

l xy ) . In terms of these Bloch functions, the
valence-band parameters L, M, and 1V are then found to
be

EII 0 0

0 cII 0

,
0 0 Ei

(24)

The strain deformation potentials as formulated by Bir
and Pikus are also defined in terms of the eigenstates of
a cubic crystal Hamiltonian such as Eq. (19). In this sec-
tion we write down the expressions for the conduction-
and valence-band deformation potentials as valid for non-

local pseudopotentials.
We assume that the wave vector k denotes an ex-

tremum of the conduction or valence bands. For a biaxi-
al (100) strain, the symmetric strain tensor is

M= g &yzlG&J (G, G')&G'lyz&,

X= y &yzlG&J (G, G')&G'lzx & .

(23) where E
~~

= ( a
~~

—ao ) /ao and ei = ( a i —a 0 ) /a o. To first

order in the strain, the band energies at k in the deformed
crystal are the eigenvalues of the matrix

%'e have evaluated these expressions by summing over all
bands (181 in this case) included in the Hamiltonian ma-

trix at the I point.

'(kH)=g (nt

v„.= I av[(1+8)r]/aE, , I, , (26)

I J + V

(25)
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V is the pseudopotential in the strained crystal including
both local and nonlocal parts and n, n' label a set of de-
generate eigenstates. By assuming the ionic pseudopoten-
tial itself not to be affected by the strain (i.e., the rigid ion
approximation), Eq. (2S) can be evaluated explicitly. Us-
ing Eq. (2), the strained local crystal potential reads

V„,i(I+s)r]=g S(G) V„,[(1—E)G]exp(iG. r),
G cell

where Q'„&& is the strained cell volume and we have made
use of the fact that S(G) is invariant under strain. The
nonlocal potential has an analogous form. We note that
the strain dependence of the average crystal potential,
i.e., the G =0 term in Eq. (27), drops out in the interband
deformation potentials that we solely focus on in this pa-
per (Sec. IV). By expanding all potential terms to first or-
der in the strain, one obtains

2. Valence ba-nd deformation potentials

For the triply degenerate I valence-band states that
transform as ~yz), ~zx ), and ~xy ), the Hamiltonian ma-
trix Eq. (25) is diagonal and takes the form

ls()+ m (E((+Et) 0 0

0 0H„'(r) = ls„™s„+s,)

0 leg+2m E)(

I = yz—Px + V„„yz

Py
Pl —yZ + Vyy yZ (31)

(30)

With the Hamiltonian Eq. (19) and using Eq. (28), the de-
formation potentials l, m, and n are

:-,,(k)= y &«IK) — Z, IC, 5„„,+V,, (K,K')
KK' Vl

X(K ~n k),
V; (K,K') = Vt„;,(K—K')+ V„„,;1(K,K'),

G G dVIttom(q )
V„, ; (G)= —S(G)

dg

—
5;J Vt„(G),

V„t„;.(K,K') = —S(K—K') .E +IC' 8
J gq J gq

X V'„',;, (q~q )lq=rc, q =~

—5; V„t„(K,K') .

In the following subsections, we consider separately the
cases of nondegenerate and degenerate band edges.

1. Conduction band defor-mation potentials

5&,(&„)=(:- + —,':-„)T ( ) ——,':-„(,—„),
5F.,(L)=:-dTr(E) .

(29)

For nondegenerate conduction-band edges, the defor-
mation potential tensor = in Eq. (28) transforms in the
same way as the effective-mass tensor, Eq. (14). There-
fore, " is diagonal along the 6 axis and has two indepen-
dent components "I and =, . At the L point, there is
only one independent component = since the cubic axes
are equivalent with respect to I..

In general, the strain-induced shift of a conduction-
band edge 5E, has a hydrostatic and a traceless com-
ponent. These shifts are conventionally expressed in
terms of the potentials =„==&—=, and:-d = ", and are
given by

5E, (b~) =(:-d+—,':-„)Tr(E)+—,':-„(Et—E~~),

Ex'n=tyz — +V zx) .
m xy

We have calculated these quantities employing Eqs. (28)
and using the same Bloch functions as in Eq. (23).

IV. RESULTS

In this section, we summarize our findings for various
band gaps, masses, and deformation potentials for (100)-
strained Si

&
Ge bulk alloys. The results in this section

are based on the full diagonalization of the strained, rela-
tivistic Hamiltonian Eq. (1). As discussed in the Intro-
duction, the strain is thought of as originating from the
lattice matched growth of a Si, Gex alloy on top of a
thick, unstrained substrate that consists of a bulk
Si, Ge alloy. In order to clearly distinguish between
these alloys, we will refer to the strained Si, Gex alloy
with the lateral lattice constant a~~(x) =ao(y) and a verti-
cal lattice constant given by Eq. (9) as the "active" ma-
terial. The unstrained Si& yGe alloy will be called sub-
strate. The gaps and masses reported in this section al-
ways refer to the active material.

A. Energy gaps

Figure 1 depicts the calculated minimal-energy gap,
relative to the top of the valence band, as a function of
the active alloy composition x and the substrate composi-
tion y. The lines bounding the graph in the x direction
represent strained alloys grown on a pure Si (y =0) or
pure Ge (y =1) buffer, whereas those along the y direc-
tion correspond to strained Si (x =0) or strained Ge
(x =1), grown on a thick alloy buffer. The gap is largest
in unstrained Si (x =0 and y =0) and smallest in fully
strained Si (x =0 and y =1). It remains Si-like for most
compositions and strains and is Ge-like only for weakly
strained alloys with high Ge content. In the latter case,
the conduction-band minimum lies at the N point (i.e.,

the L point for pure Ge). For a Si-like gap, on the other
hand, it lies on the twofold Az axis as long as the active



ELECTRONIC-BAND PARAMETERS IN STRAINED Si& „Ge„.. . 14 281
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FIG. 1. Calculated fundamental gaps in eV of (100)-strained
Si, Ge„alloys (active material) grown pseudomorphically on
unstrained Si, „Ge~ alloys (substrate material).

G; =
G;~ e(y —x )+G; e(x —y) . (33)

These elements are given in Table II for the energy mini-
ma on the 6 axes and on N. In strained Ge, i.e., for

alloy has a higher Si content than the substrate, and on
the fourfold A~i axis otherwise, in accordance with previ-
ous results. ' ' For high field transport calculations,
not only the minimum gap but also higher conduction-
band minima need to be known. We have therefore
parametrized the energy gaps as

1

Es ~(x y)=[1,(x —y), (x —y)'].G. (x+y), (32)

(x +y)
where Cx is a 3 X3 matrix. Each element of this matrix is
represented as

FIG. 2. Comparison of theoretical (full lines) and experimen-
tal (dashed lines) data for the fundamental gap in unstrained
Si

&
Ge alloys and for pure Si grown on a Si, Ge„substrate.

The experimental value for the bulk alloy (thick dashed line) are
taken from Ref. 34. The strained alloy data are from Ref. 35 for
0&x (0.22 and from Ref. 36 for 0.22(x (0.26 (thin dashed
line).

x = 1, the conduction-band minimum at the I point can
also play a role in electronic transport. The energy gap
(in eV) of this band edge may be represented in the
form Ez,z(x =1)=g, +gzy+g3y with g, =1.13098,
g2 = —0. 101 06, and g 3

= —0. 139 19.
Table II reveals that the linear deformation potential

theory widely employed in the analysis of data in SiGe
systems does not adequately predict the energy gap of
Si& Ge alloys for all degrees of strain. This is particu-
larly true at the N point where Cx contains large quadra-
tic components.

In Fig. 2, we compare the calculated gaps of unstrained
Si, Ge alloys and of strained Si, „Ge alloys on a Si
substrate (i.e., with y =0) with the experimental data.
The overall agreement is quite good even though some
shortcomings of the present theory are also visible. First,
the calculations yield a fundamental gap of 1.07 eV in
pure Si (in accord with the previously calculated value
of 1.05 eV) whereas the standard experimental value is

TABLE II. Parametrized energy gaps (in eV) of the three lowest conduction bands in (100)-strained
Si& Ge:Si& ~Ge~ alloys in terms of the 3X3 matrix G as defined by Eq. (32). The first column gives
the band edge to which the gap refers. Each table entry contains the Cartesian components G;J and

G;;, as defined by Eq. (33).

G(

1.077 900
0.052 736

—0.061 851

1.078 000
0.052 405

—0.061 595

2.185 300
—0.604 800
—0.059 545

0.806 320
—0.170260

0.036 626

0.195 980
—0.271 220

0.051 422
—0.016767
—0.363 530

0.106 320

0.052 413
—0.170 560

0.058 282

0.029 780
—0.154490

0.058 774
—0.114550
—0.286 170

0.137 330

1.078 100
0.047 577

—0.059 023
1.077 500
0.048 883
0.059 722

2.183 200
—0.603 940
—0.059 809

0.253 620
0.072 361

—0.043 058
—0.346 010
—0.048 859
—0.018 944
—0.648 110

0.012 404
—0.038 687

0.030001
—0.120 630

0.056 297
0.001 446

—0.076 355
0.039 134

—0.114770
—0.116090

0.067 260
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1.17 eV at 4 K. ' ' In Ge, on the other hand, the cal-
culated gap agrees very well with experiment. Second,
the present model does not reproduce the bowing of the
energy gap as a function of x in the unstrained alloys.
This bowing is known to be an effect caused by disorder
and is not captured by the virtual crystal approximation
which is employed in this paper.

&. E8'ective masses

Figure 3 compares the calculated with the experimen-
tal values of the effective longitudinal and transverse
masses of the 6 and L minima for unstrained SiGe alloys.
Experimental results for masses in unstrained alloys are,
to our knowledge, only known for the pure materials.
The agreement for these cases is seen to be excellent. It is
plausible that the masses of a given minimum vary only
weakly with the alloy compositions, but a significant
change in the effective mass of the absolute conduction-
band minimum occurs of course when the L minimum
sinks energetically below the 6 minimum. In addition,
we have computed the effective mass associated with the
band minimum at k=0 in bulk Ge and find a value of
0.0478. The experimental values for this mass lie be-
tween 0.0387 and 0.042.

For transport applications, it is particularly useful to
know the conductivity mass since the mobility is inverse-
ly proportional to this mass. Figure 4(a) shows the paral-
lel and Fig. 4(b) the perpendicular conductivity mass as-
sociated with the lowest conduction-band minimum for
all degrees of alloying and strain. The smallest conduc-
tivity mass is seen to occur for a Ge-like gap when the
minimum lies at N. Discontinuities in the masses occur
between the areas of different 1ocation of the conduction-
band minimum, due to the strict application of the
definition Eq. (11). In reality, of course, the finite temper-
ature causes aO energetically close lying minima to con-
tribute to the conduction and thus smoothes out these
discontinuities.

For strained Si grown on Si, ~Ge alloys [this corre-
sponds to the left ordinate in Fig. 4(a)], the mass m~~ =I,

1
m*(x,y)=[1,(x —y), (x —y) ] W. + (34)

Figure 5 shows the calculated valence-band parameters
L, M, and N with varying Ge content x of the alloy. For
the pure elements, the predicted values agree quite well
with experiment. For Si in particular, the present
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is predicted to increase slightly with strain relative to the
bulk Si value. It turns out that this is in excellent agree-
ment with recent cyclotron resonance data for Si on
Sio 7Geo 3, which indeed indicate such a minor increase in
the transverse effective mass.

Table III contains parametrized transverse (m, ) and
longitudinal (m~) efFective masses associated with the
three band minima as a function of alloy composition x
andy in the form

40
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FIG. 3. Calculated longitudinal and transverse effective
masses (in units of the electron mass) at the L and 6 minima in
unstrained Si& „Ge„alloys. For the pure materials, experimen-
tal data have been included for comparison. The Si values are
taken from Ref. 39 (circles) and for Ge from Ref. 39 (triangle),
40 (caret), and 4l (square).
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FIG. 4. Calculated (a) parallel and (b) perpendicular conduc-
tivity mass (in units of the electron mass) in a strained Si& „Ge„
alloy (active material) grown on a Si, ~Gey substrate.
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TABLE III. Parametrized effective transverse and longitudinal conduction-band masses (in units of the electron mass) in (100)-
strained Si, Ge„:Si& ~Ge~ alloys in terms of the 3X2 matrix W as defined by Eq. (34). The first column gives the band edge to
which the mass tensor refers. Each table entry contains the cartesian components W;,

Mass

mI
m)
mt2

0.918000 0
0.197490 0
0.197490 0

W21

0.082 821 0
—0.001 154 3
—0.001 154 3

—0.004 386 2
0.000 976 7
0.000 976 7

0.018 728 0
0.002 828 1

0.002 828 1

Wp2

—0.000 393 0
0.000 799 2
0.000 799 2

W32

0.004 424 9
0.000 375 0
0.000 375 0

0.9179300
0.197480 0
0.197440 0

0.015 733 0
0.004 987 7
0.014 813 0

0.000 530 7
—0.000 733 6
—0.001 250 0

0.018 794 0
0.002 842 1

0.002 860 5

—0.008 054 1
—0.003 482 9
—0.003 466 6

—0.000 888 7
0.000 153 8
0.000 128 8

m,

mt2

1.659 200 0
0.133 1900
0.133060 0

0.054 035 0
—0.054 784 0

0.025 237 0

—0.184 200 0
0.026 876 0
0.002 931 4

0.041 246 0
—0.017 388 0
—0.017 356 0

0.052 626 0
0.016052 0

—0.014 549 0

0.033 581 0
—0.012 321 0
—0.005 1534

P(x) =P(0)+a ln(1 —Sx'),
S= 1 —expI [P(1) P(0))/aI . — (35)

0.0
Co

-5.0',
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co~ -15.0
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0.0 0.4 0.6 1.0
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FIG. 5. Calculated valence-band parameters in an unstrained
Si& Ge alloy. For pure Si (Ref. 43) and Ge (Ref. 44) the ex-
perimental results are shown for comparison. Units are
A /(2m).

0.8

theoretical and the experiment values for L, M, and N
are —6.69 (

—6.64), —4.62 (
—4.60), and —8.56 ( —8.68),

respectively, with the experimental values given in
parenthesis. These theoretical results agree marginally
better with experiment than the previously calculated
values of Chelikowski and Cohen, who found —6.85,—4.23, and —8.41, respectively, but inconsistently
neglected the correction terms in Eq. (21) proportional to
V„&„and used a slightly di6'erent pseudopotential.

Noticeably, the present theory predicts the k p param-
eter M to vary practically linearly with x, whereas L and
N are predicted to show a highly nonlinear variation. We
cannot, of course, rule out that this result is an artifact of
the virtual-crystal approximation. We note, however,
that the known failure of this approximation to fully
reproduce the bowing of the conduction band (see Fig. 2)
cannot account for such a dramatic nonlinearity. If we
assume that m* ~1/E, , the bowing in the conduction
band of Si& „Ge„gives a much weaker nonlinearity for
the parameters L and N.

We found the following expression to give an excellent
fit to the calculated values; P stands equally for L, M, or

The parameters are a=6.7064, P= 1.35, L(0)= —6.69,
M(0)= —4.62, N(0)= —8.56, L (1)=—21.65,
M(1)= —5.02, and X(1)= —23.48.

C. Deformation potentials

Employing the pseudopotential expressions given in
Sec. III C, we have calculated several interband deforma-
tion potentials of unstrained Si& Ge alloys. Note that
these quantities do not depend on the average crystal po-
tential, which is somewhat uncertain in the empirical
pseudopotential method.

Figures 6(a)—6(d) summarize the calculations and also
show several experimental results for Si and Ge. Unfor-
tunately, the available data scatter too much to provide a
stringent test for the theory. Previous calculations are
summarized in Table IV and also reAect the appreciable
uncertainties in these quantities.

In order to evaluate the accuracy of linear deformation
potential theory, it is instructive to compare its predic-
tions with the full calculations that include strain and
spin-orbit effects to all orders (given in Sec. IVA). In
strained Si, for example, the conduction-band minimum
lies on the A~ axis for any substrate Si& „Ge composi-
tion y. To first order in the strain, it changes according
to the relation

5Es,p(E Si)=(:-d+—,':-„—a)Tr(E)+( —,':-„—2b)s,„,
(36)

where a=(I+2m)/3 and b=(I —m)/3 contain the
valence-band deformation potentials and e,„=(a~
—a~~)/ao. For maximum strain (y=1), this equation
gives a gap of 0.31 eV. This is in good agreement with
the gap of 0.34 eV that is predicted by the full calculation
(Sec. IV A).

In highly strained Ge with substrate composition
y (0.4, the conduction-band minimum lies on the h~~ axis
and changes according to

5E.,„(~c,Cxe) =(:-d+—,':-„—a)Tr(E) —( —,':-„b)E,„. —

(37)

For y =0, this equation yields Eg p 0 65 eV whereas
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the complete theory gives 0.62 eV. For other combina-
tions of active material and substrate, however, the
higher-order strain effects included in the full calculation
have somewhat larger effects. This is particularly the
case in the alloy regime near Ge, as discussed in Sec.
IV A.

TABLE IV. Calculated strain deformation potentials (in eV)
in bulk Si and Ge.

FIG. 6. Deformation potentials in Si, Ge alloys from the
present calculations pertaining to band shifts and splittings un-
der biaxial (100) strain. The experimental results for the pure
materials are also indicated. (a) References 45 —48 for Si and
Refs. 44, 48, and 49 for Ge; (b) Refs. 45, 47, 48, and 50; (c) Refs.
48 and 51; and (d) Refs. 47 and 48 ~

D. Energy-band ofBets

An exceedingly relevant electronic property for both
transport and optical device applications is the band
alignments across heterointerfaces. Particularly op-
toelectronic applications require both electrons and holes
to be confined within the active layer, i.e., a type-I align-
ment of the band edges with b.E, =E, (Si, „Ge, )—E, (Si& Ge ) (0 and bE, =E, (Si& Ge )—E,(Si, Ge ))0.

The experimental values for the band offsets are still
somewhat uncertain. Early measurements ' indicated
rather small valence-band offsets between Si and Ge of
AE, =0.4+0. 1 eV, but did not account for the effects of
strain on the valence-band edge. This was done only re-
cently by Schwartz et al. , who supplemented their pho-
toemission data with deformation potential calculations
and found a valence-band offset of b E,(x = l,y =0)
=0.74+0. 13 eV for strained Ge on cubic Si(100) and
b,E„(x=O,y =1)=—0. 17+0.13 eV for Si on Ge(100).
These values are in excellent agreement with recent cal-
culations of Colombo, Resta, and Baroni, who predict
b E„(x=O,y = 1 ) =0.74 eV and b E„(x= l,y =0)
= —0.21 eV.

We have made use of our calculations to give a
comprehensive survey of the valence- and conduction-
band offsets at the interface between a cubic and a
strained layer of SiGe alloys of differing Ge content.

The empirical pseudopotential method by itself is not
suited to produce energy levels on an absolute scale reli-
ably but gives only relative positions of the bands. Once
we know, however, the alignment of just one reference
point on the energy scale at both sides of the interface,
the alignment of the individual bands can be derived
from the present calculations. In Ref. 9, the offset of the
average energy of the uppermost three valence bands has
been calculated for a strained Si/Ge (100) interface with
ab initio methods. The findings there indicate, as did the
earlier calculations of Van de Walle and Martin, that the
offset is nearly independent of the strain conditions, apart
from a weak, linear variation of the offset with the lattice
constant parallel to the interface. To obtain values for
the offset for all situations considered in the present
work, we assume furthermore the offset to vary linearly
with alloying, in agreement with Ref. 8, and thus arrive
at the formula

Deformation
potential

Present
work

Previous
theories & V,„=(0.47 —0.06y)(x —y) (38)

Si

Ge b
~u
(:"d+:-„/3) —a
(=-, +=-.'/3)'-.

'Reference 52.
Reference 8.

'Reference 53.
dReference 54.

b
~u
(:-d +:-„/3) —a
(:-d +:-„/3) —a

—2.33
9.29
0.29

—3.65

—2.08
10.20

—1 ~ 90
—5. 17

—2. 18,' —2.35, —3.0'
8 0a9 16b

1.2, '1.72, 1.6
.3, ' —3. 12, —3.8

—2.30, ' —2.55, —3.1'
8 9 942b

0.32,a].31 b1. 1
—4.2, ' —2.78, —3.5

for the offset between the average of the valence-band
edge in a strained Si& Ge layer and an unstrained
Si& Ge layer. (Positive values refer to higher energies
in the strained layer. )

By employing the complete Hamiltonian Eq. (1) for
both sides of the interface and using Eq. (38) to set the
band alignment, we get the data for Figs. 7(a) and 7(b)
that depict the valence- and conduction-band offsets.
These figures reveal that Si& Ge:Si& Ge is a type-II
heterostructure for most alloy compositions: the offsets
have the same sign for conduction and valence bands. In
accordance with the previous estimates of Ref. 15, we
find very small conduction-band offsets for Sij Ge on
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Si substrate for x (0.3. Whereas People and Bean sug-
gested a marginal type-I heterostructure for these compo-
sitions, the present calculations always give a marginal
type-II alignment if the substrate is unstrained Si. This is
also in agreement with the conclusions of Ref. 15.

Importantly, however, the present theory does predict
a range of compositions where the lattice-matched alloys
manifestly show type-I band alignment: Figures 7(a) and
7(b) show the energy gap of weakly strained Ge-rich ac-
tive material with 0.75+x ~1 to fall within the wider
gap of a Ge-rich substrate with 0.6 ~y + 1. Especially for
(100)-strained Ge with a substrate composition of 85%
Ge, the conduction- and valence-band offset is —0. 13
and 0.10 eV, respectively, allowing a weak confinement of
both electrons and holes in the active layer.

In Figs. 8 and 9, we provide a survey of the band
offsets and relative energy gaps in the pure strained ma-
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FIG. 8. Symmetry and relative energetic positions of the
band-edge states in (100)-strained lattice matched Si (left part of
each depicted heterostructure) and in unstrained substrates
(right part). The fundamental band gap in strained Si is indicat-
ed by full circles, which are interconnected to guide the eye.
The second lowest conduction-band minima and the top
valence-band states in Si are also indicated. The grey shades in
the pictures indicate the Ge content.

terials. The depicted combinations of active material and
substrate correspond to the bounding vertical lines in
Figs. 7(a) and 7(b). The series of pictures in Figs. 8 and 9
gives an overview of the band-edge states in the active
and substrate materials. The Ge content is indicated by
shades of grey and ranges from light (pure Si) to dark
grey (pure Ge). The left part in each picture shows the
symmetry and energetic position of the lowest and second
lowest conduction-band minimum, and the heavy-hole
(hh), light-hole (lh), and split-off (so) valence band at the
I point. The right-hand part in each 6gure depicts the
conduction- and valence-band-edge state in the un-
strained substrate. The full circles indicate the funda-
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mental band gap in the active material; they have been
interconnected by dashed lines only to guide the eye. In
Fig. 8, the conduction- and valence-band edge in strained
Si is seen to lie always lower than in the substrate. This
corresponds to a type-II alignment. In the case of Ge
(Fig. 9), the band minima lie generally higher than in the
substrate. However, the conduction- and valence-band
edges of strained Ge lie within the gap of the substrate for
Si& Ge„alloys with y -O. 85, giving a type-I interface.

V. SUMMARY AND CONCLUSION

We have systematically investigated the electronic
properties of (100)-strained Si, Ge„:Si, Ge alloys
that are relevant for device applications, namely effective
masses, band gaps, deformation potentials, and band
offsets. The main results of this paper can be deduced
from Figs. 8 and 9 that give a survey of the conduction-
and valence-band states in (100)-strained Si and Ge near

the fundamental gap, and the band offsets between the
strained and unstrained lattice-matched materials.

Noticeably, Ge is predicted to possess a type-I
heterointerface with Ge-rich Si, Ge substrate materi-
al. This implies that both types of carriers can be simul-
taneously con6ned in the active Ge layer, in contrast to
any Si-rich combination of active layer and substrate.
Both this fact and the small effective masses in Ge-rich
material indicate that weakly strained Ge-rich SiGe lay-
ers possess very promising properties for both electronic
and optical applications.
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