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Morphology of monatomic step edges on vicinal Si(QQ1)
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The roughness of monatomic A- and B-type step edges on 0.5' misoriented Si(001) has been analyzed
on an atomic scale with scanning tunneling microscopy. On small length scales, measured along the step0
edge ((200 A), one-dimensional random-walk behavior is observed for both types of step edges. For the
rough B-type step edge we also found evidence for waviness of the edge. The period of this wave is about0
100 dimer-row spacings (=750—800 A). The energetic step-step interaction and entropic repulsion,
which both scale as 1/L (L is the average terrace length), are estimated to be about 0.03—0.06 and 0.2
meV per dimer-row spacing, respectively, for a 0.5 misoriented surface. These interactions are approxi-
mately three orders of magnitude smaller compared to the kink formation energies which are 0.1 —0.2
eV. Despite the weak strength of energetic and entropic step-step interactions, these long-range interac-
tions have a profound e8'ect on the step-edge morphology, e.g., the distribution of terrace lengths and the
long-range waving of the rough B-step edge.

I. INTRODUCTION

A real surface always shows steps due to the fact that it
is virtually impossible to cut a crystal exactly along one
of its low Miller indices planes. The number and height
of step edges on a surface is a reflection of this macro-
scopic misorientation. Step edges play an important role
in several surface processes. In epitaxial growth, for ex-
ample, the presence and amount of step edges is very im-
portant for the growth mode that occurs on the surface.
If the growth parameters are chosen such that the step
edges act as sinks for incoming atoms the crystal will
grow smoothly in what is called the step-Aow mode.
Another technical important example where step edges
may play an important role is gas adsorption. Again the
step edge can act as a preferentia1 adsorption site. From
a more fundamental point of view, the energetics and
morphology of step edges are also challenging because
there often exists a competition between strong short-
range interactions, i.e., step-edge energies, and long-range
energetic and entropic step-step interactions. Currently
vicinal Si(001) surfaces are being studied intensively. The
Si(001) surface reconstructs to form rows of dimerized
atoms, yielding a (2X1) unit cell. A slight misorienta-
tion with respect to the [001] direction in the [110] or
[110] direction (the [110] and [110] directions corre-
spond to the directions of the dimer rows) results in a vi-
cinal Si(001) surface with monatomic steps. Proper
cleaning of this surface leads to a regular step distribu-
tion that rejects the macroscopic misorientation of the
sample. Due to the symmetry of the silicon lattice (dia-
mond structure), two types of steps can be distinguished
on the Si(001) surface: steps running parallel and perpen-
dicular to the dimer rows of the upper terrace. Steps
parallel to the dimer rows of the upper terrace are

straight (A-type steps ), whereas the others are ragged
(B-type steps ), i.e., they exhibit a high density of
thermally excited kinks. For small miscut angles
(8 (2'—3') the surface consists of two rotationally
equivalent reconstruction domains, (2X1) and (1X2).
The monatomic step edges are hence alternating rough
and straight; see Figs. 1 and 2 for a schematic representa-
tion and a scanning tunneling microscopy (STM) image,
respectively. It is interesting that at both large and small
miscut angles the step edge morphology of Si(001) is
determined by a competition of step-edge energies and
step-step interactions (surface stress). For large
(8) 2' —3') miscut angles biatomic steps have been
found, 7 whereas for very small (8(0.1') miscut angles
wavy (sinusoidal) step edges coexist with straight steps.

In this paper the step structure is interpreted in terms
of a simple equilibrium statistical mechanical model.
Kink formation energies, step-step interaction energies,
entropic repulsion, the deviation-deviation correlation
function of the step edges, and the distribution of terrace
lengths are determined from room-temperature STM im-
ages. All of the main features in the deviation-deviation
correlation function of the rough 8-type step edge can be
understood if a comparison with a wandering step edge
trapped between two fixed walls is made and if entropic
repulsion and waviness in the step edge are taken into ac-
count. The important aspect at which temperature
thermal equilibrium of the step edges is achieved will be
addressed with the aid of high temperature STM data of
vicinal Si(001).

II. EXPERIMENT

Recently, Dijkkamp, van Loenen, and Elswijk
developed an ultrahigh vacuum (UHV) high-temperature
scanning tunneling microscope (STM) for the observation
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FIG. 1. (a) A ball and stick model of a tilted Si(001) surface
with two nonequivalent monatomic steps [following the nota-
tion of Chadi (Ref. 3) these steps are denoted 2- and B-type
monatomic step edges, respectively]. The surface reconstructs
to form rows of dimerized atoms. The dimer row directions are
perpendicular (B-type) or parallel (3-type) to the step edge.
E ~ refers to the nn interaction energies between dimers. (b) A
schematic representation of the tilted Si(001) surface. Each rec-
tangular block corresponds to a single dimer. The average ter-
race length is L and the monatomic step height (ao/4) is 1.36 A.
Kink lengths are always multiples of a dimer row spacing (=7.7
0

A). h; is the length of a dimer row measured from an 3-type
step edge to the B-type step edge of the lower terrace.

of surfaces at elevated temperatures. The general design
of this instrument and its modifications are described else-
where. In general, both room temperature as well as
high-temperature STM images were taken with a sample
bias of —2 or —1.5 V and a typical tunneling current of
0.5 —1 nA. The Si(001) samples were cut from commer-
cially available wafers (Wacker, Qoating zone B-doped
8 —12 Qcm) and ultrasonically rinsed in ethanol before
loading them into the vacuum system. The misorienta-
tion of the surface with respect to (001), as determined by
x-ray diifraction, is about 0.5 in the [110]direction. In-
side the UHV chamber, which has a base pressure below
1 X 10 ' Torr, the samples were heated resistively. The
temperature was measured with an infrared pyrometer
(calibrated against a NiCr-NiA1 thermocouple) with an
absolute accuracy of about 25 K. After outgassing the
sample and holder for several hours the sample was
thermally cleaned at 1500 K for several seconds. During
cleaning the pressure was maintained below 1X 10
Torr in order to avoid contamination of the sample sur-
face. This procedure results in a two-domain (2 X 1)
reconstructed atomically clean Si(001) surface with an
average terrace length of about 150 A.

III. RESULTS A.ND DISCUSSIQN

A. Distribution of kinks and kink lengths:
Roughness on the atomic scale

In Fig. 3 two typical large-area images (100X 100 and
80X80 nm ) of a 0.5' misoriented Si(001) surface, taken
at room temperature, are shown. Figure 3(a) displays an
atomically clean Si(001) surface whereas the surface in
Fig. 3(b) has a slight Ni contamination (( l%%uo of a mono-
layer), which gives rise to the characteristic dark dimer-
defect rows. It is remarkable that the Ni contamination
does not seem to have any eItect on the roughness on an
atomic scale of the monatomic step edges, i.e., the distri-
bution of kinks and kink lengths. The step edges are al-
ternating rough (B-type step edge) and straight (3-type
step edge) and the average terrace length (L = 150 A) cor-
responds to about 20 dimer-row spacings (=7.7 A). In
order to analyze the roughness of the step edges on an
atomic scale Swartzentruber et al. ' originally introduced
the idea to measure the distribution of kinks and kink
lengths. By assuming that all the kinks are thermally ex-
cited, which is usually a good approximation for relative-
ly rough step edges, they were able to extract the kink
formation energies from these measured distributions. In
a similar study we" have explicitly included the presence
of forced kinks (caused by a misorientation of the step
edge with respect to the [110]or [110]direction). Fol-
lowing the theory of Burton, Cabrera, and Frank, we
have used the thermodynamic relation

F&G. 2. An STM image (28 X 28 nm ) of Si(001) 0.5
misoriented towards the [110]direction, obtained at —2-V sam-
ple bias and 0.5-nA tunneling current.

E, ~
= kbT ln[n+, n, /n—o],

where kb=1. 38X10 JK ' and T is the temperature
in Kelvin. The symbol n+,

„

is used to denote the prob-
ability that there is a "jump" (+ kink) or a "drop"
(
—kink) of length r perpendicular to the step edge in the

surface plane at a given position in the step edge [see Fig.
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1(b)]. The probability of finding no kink at all at a certain
position in the step edge is given by no. E refers to the
nearest neighbor (nn) interaction energy between dimers
in the same dimer row and E refers to the nn interaction
energy between dimers in adjacent rows [see Fig. 1(a)j.
Formula (1) can be understood as coming from a compar-
ison of several diA'erent situations of the step edge, for ex-
ample a n

&
and n+, kink pair versus a straight step

edge, that result in the same overall displacement of the
step edge (the principle of detailed balancing ).

It is of major importance to note that no difference be-

tween forced kinks and thermally excited kinks has to be
made; Eq. (1) is always valid. A large misorientation of a
step edge corresponds to a large amount of forced kinks
in one direction and, hence, to a low amount of thermally
excited kinks in the opposite direction.

In Refs. 10 and 11 slightly extended models were used
in order to interpret the data: in Ref. 10 a kink corner
energy was introduced, whereas Ref. 11 included an iso-
tropic next nn interaction energy. Nevertheless, if only
kinks with length zero and one (no, n&, and n+, ) are
counted one can, using Eq. (1), determine the nn interac-
tion energies. In this context it is very important to note
that Eq. (1) doesn't alter if next nn interactions are taken
into account. " In order to interpret the distributions of
kinks and kink lengths in terms of nn interaction energies
the temperature at which the roughness of the step edges
is frozen in, Tf, should be known. In the room tempera-
ture images of vicinal Si(001) no changes were observed
as a function of time, so Tf should certainly lie above 300
K. Scanning tunneling microscopy images of vicinal
Si(001) recorded at 725 K (Ref. 12) (Fig. 4) show that the
step edges change very slowly on a time scale of minutes.
At 800 K the movement of the step edges becomes, as ex-

pected, significantly faster. In our preparation method
the samples were radiation quenched from 1500 K to
about 500 K in a few seconds; therefore, the step struc-
ture observed at room temperature is typically frozen in

at a temperature between about 725 and 825 K. As an
estimate we have used a temperature of 775 K. This re-
sults in the following interaction energies: 0.38 eV be-
tween adjacent dimers within the same dimer row and
0.24 eV between sets of two dimers (the minimum kink
length is 2a) in adjacent dimer rows. If one breaks one
bond along a step edge two kinks are created and thus the
kink formation energies are 0.19 and 0.12 eV for a
straight 3-type and a rough B-type step edge, respective-
ly.

In the next section the observed behavior of the step
edges will be compared with an isolated step edge and a
step edge trapped between two fixed walls. Particular
beautiful theoretical work in this context has been pub-
lished by Bartelt, Williams, and Einstein' ' as well as
Gruber and Mullins' and Fisher and Fisher. Below a
brief outline of the relevant characteristics is given, for
more theoretical details we refer to the foregoing refer-
ences.

B. An isolated step edge: The random walker

FIG. 3. (a} Large-area (100X 100 nm ) STM image of Si(001)
0. 5 misoriented towards the [110]direction, obtained at —2-V

sample bias and 0.5-nA tunneling current. (b) Large-area
(80XSO nm ) STM image of Si(001}slightly contaminated with

Ni ( & 1% of a monolayer as determined with Rutherford back-

scattering spectroscopy). The Ni contamination gives rise to
dimer-defect rows (visible as dark rows in the image} perpendic-
ular to the dimer rows.

We will start with the most simple case: an isolated
step edge on a surface. The roughness of this step edge
can be analyzed in more detail if we introduce the
deviation-deviation correlation function of the step edge,
G(r) = ( (ho —h„)), where r is a distance measured paral-
lel to the step edge (the timelike axis) and h; is the devia-

tion of the step edge in the direction perpendicular to it
(see Fig. 1). Assuming equilibrium there is a random dis-

tribution of positive and negative kinks for an isolated
step edge and hence G(r) is proportional to r. Following
Refs. 17 and 21 one can write
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(b}

(c)

FIG. 4. (a) STM image of a vicinal Si(001)
surface at 725 K (60X60 nm ). (b) —(d) Three
subsequent images (30X30 nm ) of the pro-
truding part of the step edge in (a). Time lapse
between images (b) and (c) and (c) and (d) is 69
and 134 s, respectively. The tunneling current
was 0.5 nA and the sample voltage was —1.5
V.

((ho —h„)) =(k )r

with ( k ) the local mean square length of a kink.

g k exp( Ek/kb T)—

where n& is the probability of a kink with length k. The
summation g runs over all possible k values. The value
(k ), which is the local mean square length of a kink or
the diffusivity' of a kink, can immediately be extracted
from the distribution of kinks and kink lengths as shown
in Refs. 10 and 11. This analysis' '" results in a value of
(k ) =1.7 and (k ) =0. 1 —0.2 for a B-type and an A-

type step edge, respectively. In Fig. 5 a plot of
((ho —h„)~)versus r for an A- as well as a B-type step
edge of Si(001) is shown. ((ho —h, ) ) (—:(k )), taken
from Fig. 5, is 1.7 and 0.2 for a B-type and an A-type
step edge, respectively. The overall slopes of the curves
are about 2.4 and 0.1 for a 8- and an A-type step edge,
respectively. The experimental data show that for low r
values (r (20) an almost exact random walk behavior is
observed. Both step edges behave as if they were isolat-
ed. As shown in the inset of Fig. 5 this random walk
behavior breaks down ' for larger r values (r )40). The
breakdown of the random-walk behavior, i.e., the de-
crease of the correlation function will be the subject of
the next section.

C. A meandering step edge
trapped between two fixed step edges

Consider now the more realistic case of a meandering
step edge (B type) trapped between two straight step
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FIG. 5. Deviation-deviation correlation function
G (r) = ((ho —h„)) of an A- and a B-type monatomic step edge
vs the position difference r measured along the step edge. Typi-
cal error bars are indicated. Inset: G (r) of a B-type step edge is
shown for r values up to about r =70 dimer-row spacings. The
units of r are dimer-row spacings.

edges (A type) separated by a distance 2L, L being the
average spacing between two adjacent step edges. Repul-
sive interactions between the step edges will tend to limit
the amount of meandering by making closely spaced
steps unfavorable. Restricting step Auctuations, however,
decreases the entropy term (S) and thus increases the free



48 MORPHOLOGY OF MONATOMIC STEP EDGES ON VICINAL Si(001) 14 273

V(x,L)=E„,p„,(L+x)+E„,„,(L —x)

= —2C ln(L /vra ) +Cx /L (5)

The last term in Eq. (5), C/L, refers to the step-step in-
teraction per lattice spacing (the step-step displacement x
is taken as +1 lattice spacing). In general, the problem of
interacting noncrossing steps can be mapped onto the
problem of interacting, spinless fermions. ' The prob-
lem of finding the step distance distribution P (x) is hence
simply the solution of a 1D Schrodinger equation. As-
suming no energetic step-step interactions gives
P(x, L)=(1/L)cos (vrx /2L ), whereas for the case of en-
ergetic step-step interactions

P(x, L)= 1
exp( —x /2w )

w &(2'�)
wi11 be found, ' in which m is the width of the Gaussian

w(T, L)= k, T&k')L'
8C (6)

Figure 6 shows the distribution of terrace lengths (h;),
determined from several STM images of adjacent areas.

energy, F= U —TS. The equilibrium distribution of the
position of the 8-type step edge is therefore peaked near
the middle of the two fixed walls. To illustrate this we
refer to the arguments given by Fisher and Fisher for
the case of a freely wandering wall between two fixed
walls, with the only constraint that the steps are not al-
lowed to cross. Each collision results in a decrease of the
entropy with about kbln(2). The typical distance between
collisions is given by L /( k ). Hence the free energy in-
crease per dimer row spacing along the step edge is about
(k )k&Tln(2)/L . Our experimental data, (k ) =1.7
and L, =20, yields a free-energy increase of only
kb T/340= 0.2 meV per dimer row spacing. Besides
these entropic step-step interactions, however, it is also
very likely that energetic step-step interactions may be
present between the step edges.

Using elasticity theory Alerhand et al. have shown
that a crystal surface with degenerate phases and aniso-
tropic surface stress tensor can lower its energy with
respect to a uniform one-domain surface by forming an
ordered domain configuration. The reduction in energy
is due to a long-range elastic or strain relaxation of the
surface that is driven by the difference in surface stress of
the domains. Theoretical calculations ' show that the
surface stress tensor of Si(001) is indeed anisotropic: the
surface is under tensile stress parallel to the surface di-
mers and under compressive stress in the direction per-
pendicular to the dimers. This leads to a strain energy re-
laxation energy per unit step length of

E„,p „,= —C ln(L/ma), (4)

where L is the width of the terraces, a ( =3.84 A) is the
dimer-dimer spacing within a dimer row, and C is a con-
stant. The potential V(x,L) felt by a wandering step edge
is in this case given by'

o .32
C)

~ M

0.08M

o.o4-

C
0

30 45

FIG. 6. Terrace width distribution (distance h;, measured
from an A-type step edge to a B-type step edge of the lower ter-
race) for a 0.5' oF Si(001) surface. The average terrace length
corresponds to approximately 20 dimer-row spacings (L„„,g, ).
Bold line: Gaussian centered around h;=21, the width is 5.
Normal lines: Gaussian +2o., o. is the calculated standard devia-
tion for a Gaussian data set with the exact size of our experi-
mental data set. The units of h; are dimer-row spacings.

If the weak but significant shoulders, located symmetri-
cally around the main peak, are neglected the data can be
fitted with a Gaussian of width w =4—5 and hence a C
value of about 10—25 meV/2a (2a =7.7 A is the dimer-
row spacing) is obtained. Hence C/L, the energetic
step-step interaction, has a value of about 0.03—0.06
meV/2a. Bearing in mind that the entropic step-step
repulsion is about 0.2 meV/2a we must conclude that
both interactions are of the same order of magnitude. In
spite of the weak strength of these long-range interac-
tions compared to the kink formation energies, they are
responsible for the very peaked shape of the terrace width
distribution. A recent paper by de Miguel et al. also
shows evidence for a peaked distribution of terrace
lengths of 0.5 misoriented Si(001). Their distribution is
comparable with ours although the shoulders in their im-
age are much weaker. At the moment we still cannot ex-
plain the weak shoulders in our distribution of the terrace
widths. On the basis of the curves plotted in Fig. 6 we
believe, however, that the weak shoulders we observed
are not due to statistical noise.

The inset of Fig. 5 displays an experimental observa-
tion which is in favor of the existence of step-edge wavi-
ness in the rough 8-type step edge at a miscut angle of
0.5'. Moreover, a decrease of the deviation-deviation
correlation function can clearly be observed. For the
straight A-type step edge, however, we did not find any
indication of the existence of step-edge waviness. A de-
crease of the deviation-deviation correlation function im-

plies step-edge waviness. ' To illustrate the foregoing in-

terpretation we have superimposed a sinus wave,
A sin(2mr/A, ), on a meandering step edge trapped be-
tween two fixed walls. The deviation-deviation correla-
tion function, ((ho —h„)), of a wandering step edge be-
tween two fixed walls is given in Ref. 17. If the sinus
wave is also included we find
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For r « (2/3 4/~ —)L /( k ), Eq. (7a) reduces to

((Ii —h„)')=(k')r+ &'[1—cos(2~r/A, )], (7b)
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and for r ))(2/3 4/vr )—L /(k ) Eq. (7a) approaches

( (h o
—h )2 ) = (2/3 4/n )L—~+ 2 [ 1 —cos(2m r /A. ) ] .

(7c)

FIG. 7. Solid line: measured deviation-deviation correlation
function of the B-type step edge. Dotted line: calculated
deviation-deviation correlation function of the B-type step edge
using Eq. (7a} with L =20, A, =100, A =5, and (k ) =1.7.

For small r values (r «A, ) the linear term in Eq. (7b)
dominates, whereas for r ) A, /2 a decrease of the
deviation-deviation correlation function will be found.
The slight increase of the slope of the curve of the B-type
step edge from Fig. 5 at small r values is also in agree-
ment with Eqs. (7a) and (7b). Taking (k ) =1.7, A, =100,
L =20, and A = 5 ( A and A, are the only free parameters)
the inset of Fig. 5 can be fitted very nicely (see Fig. 7).
Although Eq. (7a) is not an excellent fit (see Fig. 7) it con-
tains all the main features described above including a
correct value for the maximum of ((ho —h„)) at
r =A, /2. Very recently, Tromp and Reuter found step-
edge waviness for Si(001) surfaces which are misoriented
less than 0. 1 . This wavy phase is stabilized by a reduc-
tion of surface-stress-induced strain energy and coexists
at a miscut angle of 0. 1' with a phase of straight step
edges. The period of the waviness for very flat Si(001) is
about 1 —2 pm and cannot be immediately compared with
the period of about 750—800 A we found for 0.5' off
Si(001). Despite the much smaller period of the waviness
(and amplitude) we may speculate that the waviness we
found in the rough 8-type step edge has also its origin in
long-range step-step interaction. Following Tersoff and
Pehlke we can give a crude estimate for the period of the
waviness (for the sake of simplicity we have taken a rec-
tangular wave with period A, ) in the rough 8-type step
edge. The step-edge energy of equally spaced A-type step
edges is given by E„,=E„—Cln(L/era), where E„is
the step-edge formation energy of a single A-type step
[=85 meV/2a (Ref. 11), if next nn interactions are in-
cluded] and the definition of C is given by Eq. (4). The
energy per area, E„,/L„has a minimum at the step sepa-
ration

L*=ma exp(1+E„/C),
taking C =25 —10 meV/2a, gives L *=250a —4. 10 a
(=125—2. 10 dimer-row spacings). This strong variation
of L is due to its exponential dependence on the ratio
E„/C.The lower limit of L* is in reasonable agreement
with our own experiments, whereas the period observed

by Tromp and Reuter (1—2 pm) is of the order of the
upper bound of L*. In contrast to the observation that
at small miscut angle both types of step edges exhibit
waviness, we only found evidence for waviness in the
rough B-step edge and not in the straight A-type step
edge. This last result is in agreement with microprobe
diffraction studies performed by Tong and Bennett.
Due to the limited field of view of our STM we are not
able to say anything about the morphology of the step
edges which go beyond a length scale of 0.2 pm.

Finally, we want to note that on the basis of the STM
images we have analyzed so far and which were all taken
from the same area of the surface, we cannot rule out the
possibility of coexistence of regions with wavy and
straight step edges for 0.5' misoriented Si(001).

IV. CONCLUSIONS

We have analyzed the roughness of monatomic step
edges on 0.5 misoriented Si(001) from an atomic scale up
to a scale of about 0.1 pm. Besides kink formation ener-
gies also energetic and entropic step-step interactions are
extracted from room temperature STM images. Both en-
ergetic and entropic step-step interactions scale as 1/L
and are for our 0.5' rnisoriented samples about three or-
ders of magnitude smaller compared to the kink forma-
tion energies which are in the range 0. 1 —0.2 eV. It is re-
markable that these relatively weak step-step interactions
have such a profound effect on the morphology of the
step edges. Two examples are given in this paper: the
peaked terrace width distribution and the waviness in the
rough 8-type step edge. We found, however, no evidence
for waviness in the straight A-type step edges.

Note added. After the submission of this work a paper
by Swartzentruber et al. [Phys. Rev. B 47, 13432 (1993)]
came to our attention. These authors also determined the
strength of the step-step interactions from the distribu-
tion of terrace lengths. Their results are in very good
agreement with ours.
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