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Quantum-well states of InAs/A1Sb resonant-tunneling diodes
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We study transmission resonances associated with the n =1 quantum-well states of InAs/A1Sb
resonant-tunneling diodes using an empirical tight-binding model. We find that the transmission tends
to be fairly sensitive to the wave vector in the plane of the interface, indicating that the usual expression
for the tunneling current (which neglects this explicit dependence) is most likely not a good approxima-
tion. We show how this behavior is related to the E(k) relation for the InAs conduction band. Finally,
we examine the envelope functions associated with the quasibound states, and discuss how their appear-
ance relates to the orbitals of which they are composed.

I. INTRODUCTION

Resonant-tunneling diodes (RTD's) fabricated in the
InAs/A1Sb materials system are of interest from both ex-
perimental and theoretical viewpoints. On the experi-
mental side, these devices have demonstrated high peak-
to-valley current ratios (PVR's) and large current densi-
ties, properties which result in superior high-frequency
devices. ' A diode composed of an InAs quantum well
and electrodes and AlSb barriers has supported oscilla-
tions at 712 GHz and demonstrated a power density vast-
ly superior to that of GaAs/A1As RTD's. Carnahan
et al. , have recently reported interesting results on tun-
neling in a magnetic field in these devices. The small
InAs electron effective mass, along with the large I - and
X-tunneling barriers presented by A1Sb makes these de-
vices very attractive for high-frequency operation. '

Because of their large I - and X-tunneling barriers
these devices are interesting candidates for theoretical
study as well. At low temperatures, the I and X valleys
of A1Sb lie about 2.1 and 1.5 eV, respectively, above the
InAs conduction-band minimum. In contrast, the I and
X valleys of AlAs, respectively, lie approximately 1.0 and
0.2 eV above the GaAs conduction-band minimum, the
low A1As X-valley barrier being highly undesirable for
device design. In the GaAs/AIAs system, then, even
moderately low-lying states in the quantum well of an
RTD may be above the A1As X-valley minimum and
hence show significant "leakage" into the barriers, com-
plicating the interpretation of more complete calcula-
tions. Determination of how much of this deviation from
a simple envelope-function picture is due to this "leak-
age" as opposed to other effects, such as conduction-band
nonparabolicity, for example, can be difFicult. The large
barriers in the InAs/A1Sb system, however, render such
"leakage" a minor concern, even for fairly high-lying
quantum-well states. Thus, deviations from "ideal"
(elfective-mass) behavior often can be traced back to the
band structure of InAs itself.

It is essential to study these deviations because many

calculations of the tunneling current, the quantity most
readily compared with experiments, assume some
effective-mass behavior. Typically, this involves ignoring
the explicit dependence of the transmission coe%cient on

k~~~
(wave vector in the plane of the interface) in order to

make the computation more tractable. Tunneling in sin-
gle A1As barriers by electrons with nonzero kII is exam-
ined by Boykin and Harris and more recently Kiledjian
et al. , have demonstrated the importance of including
k

I
in tunneling current calculations for interband tun-

neling diodes. It is of interest to examine this effect for
electron tunneling double-barrier structures as well. For
simplicity, we will restrict our study to kII lying in the x
direction. We examine both the transmission as a func-
tion of bias for electrons of different energies and the Hat-

band quantum-well states from which the transmission
peaks arise. In Sec. II we briefly review our method and
set out the assumptions made in the calculations. Section
III presents our results and Sec. IV our conclusions.

II. METHOD AND ASSUMPTIONS

We employ the 10-band nearest-neighbor tight-binding
model of Vogl, Hjalmarson, and Dow' in our study of
InAs/A1Sb RTD's. We consider devices grown on
[001]-oriented substrates and write the wave function as a
linear combination of Bloch sums centered on layers, I.

where L indexes layers, n indexes orbitals (s,p,
p,p„s*), and t indexes atom type (a for anion or c for
cation). The Bloch sums are themselves linear combina-
tions of atorniclike orbitals

1 II
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The transfer matrix, " which relates the coefficients in
layer I. to those in layer (I. —1) is generated by taking
matrix elements of the tight-binding Hamiltonian with
states (1) and (2). Due to the presence of evanescent
transfer-matrix eigenstates it is necessary to use some
type of numerical stabilization scheme in calculating the
coefficients CL' for all but the shortest of structures. The
details of our method may be found elsewhere; other
methods' are also possible. From the coefficients CL' we
find the transmission and refIection coefficients for tun-
neling.

Space-charge regions are included in our calculations
of transmission versus bias. The charge term in the Pois-
son equation arises from the 'donors (which are assumed
to be fully ionized) and the electrons, which obey Fermi-
Dirac statistics; the density of states used in the Poisson
equation assumes a parabolic conduction band. The re-
sulting potential profile is used in the tight-binding solu-
tion of the Schrodinger equation; the Schrodinger and
Poisson equations are not solved self-consistently. (The
Poisson solution is incorporated into the Schrodinger
equation as a stepwise-constant potential. ) Last, when we
study devices under "hatband" conditions we assume
zero charge and zero electric field.

There are two further important considerations for
InAs/A1Sb devices which do not arise for GaAs/A1As
RTD's. The first is lattice matching. While InAs and
A1Sb are not grossly mismatched, neither are their lattice
constants nearly identical as is the case with GaAs and
A1As. We assume that the A1Sb in-plane lattice constant
is that of bulk InAs and because we are primarily con-
cerned with quantum-well (InAs) states, we ignore strain.
The second issue is the nature of the interface; because
there are no common atoms between the two constituent
materials, InAs and AlSb, the interface can be either
InSb- or A1As-type. We assume that there is associated
with each barrier one of each type of interface. The re-
sulting structure then in general has less symmetry than a
similar GaAs/A1As RTD. For example, under Aatband
conditions a GaAs/A1As RTD with identical barriers is
invariant under rotation by +7r/2 about the z axis fol-
lowed by a z reQection about the center of the device,
where z denotes the growth direction. In contrast, under
our assumptions in similar InAs/A1Sb devices one of the
barrier-quantum well interfaces is A1As-type while the
other is InSb-type, destroying this symmetry. Neverthe-
less, as we shall see in the next section, the wave func-
tions of the quantum-well states often display approxi-
mate symmetry.

III. RESULTS

Our first topic is the variation of the transmission with
k~~=k x+k y. As stated in the introduction, one typi-
cally replaces the exact current density expression,

J, ( V) = f [f,(E)—f, (E)]T(E,kii, V)dkiidE,
(2m) iri

(3)

where V is the applied bias, f, and f, are the bulk
emitter and collector Fermi-Dirac functions, respectively,

1+exp[(p, , —E) /k~ T]
Xln

1+exp[(p, E ——e V)/k~ T]

XdE . (4)

In going from (3) to (4), it was necessary to make the re-
placement

T(E,kll, V)~ T(E —E, (kll, O), 0, V) . (5)

We examine the validity of the replacement, (5), by calcu-
lating the transmission versus bias for electrons with the
same values of E,:E —E—, (k~~, O) but diff'ering k~~.

The device under consideration consists of InAs bulk
regions, with both emitter collector N doped to 10'
cm; there is also an undoped emitter spacer and an un-
doped collector space, each 33 monolayers thick. The
InAs well is 15 monolayers wide and each of the two
A1Sb barriers is 13 monolayers wide; neither the barriers
nor the well is doped. The temperature is taken to be 77
K, and the emitter and collector Fermi levels lie about
159 meV above their respective conduction-band minima.

Figures 1 —3 present the transmission versus applied
bias for electrons of various k~t with E, approximately
equal to 14, 50, and 157 meV, respectively. Due to the
Fermi-Dirac functions in (3) it is only necessary to con-
sider fairly small values of ~k~~~. For example, the elec-
tron with k~~=0. 05x A ' in Fig. 1 lies about 231 meV
above the InAs emitter conduction-band minimum; even
the electron with k~~=0. 01x A ' in Fig. 3 is about 171
meV above the InAs conduction-band minimum. Before
examining the validity of (5), let us first comment on
some general features of the transmission graphs of Figs.
1 —3. Note that all of the resonances are Fabry-
Perot —like, indicating that a single-state mechanism is at
work; there are none of the notches' or Fano-type reso-
nances' ' associated with multiple-state wave propaga-
tion. As each graph has but one Fabry-Perot —like reso-
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and T is the transmission coefficient, the integration be-
ing over the incident electron, with the familiar form'

em k~ T
J,(V)= f T(E,O, V)

2m A
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FIG. 2. Base-10 logarithm of the transmission vs applied
bias for electrons with E,=50 meV (see text). Solid line: kii =0;
dashed line: ki=(0.01 0) A; dotted line: kiI=(0.02,0) A
dotted-dashed line: kii =(0.04,0) A

FIG. 3. Base-10 logarithm of the transmission vs applied
bias for electrons with E, =157 meV (see text). Solid line:

kii =0; dashed line: kii
= (0.01,0) A '; dotted line:

II
(0.03,0) A

nance, we expect that these peaks are associated with the
respective n =1 InAs quantum-well states. Later we will
show that this is indeed the case.

Table I lists, by figure, the values of kii, E (energy rela-
tive to the InAs I -valley minimum); E,=E —E( k~i, 0);

approximate peak bias, Vz, and difference between the in-
cident electron energy and that of the middle of the quan-
tum well, b,E. For the replacement (5) to be valid, all
transmission graphs in each figure should nearly coincide
since the values of E, for each figure are almost identical.
Evidently, then, the replacement (5) appears rather poor
for low-, medium-, and high-E, electrons. Although we
have studied transmission only for kii of the form (k„,O),
the large magnitude of the discrepancy between actual
behavior and that necessary for (5) to be well justified
suggests that (4) is probably not a good approximation to
(3). Since the graph of current density versus bias may be
envisioned as a weighted sum of transmission graphs like
those in Figs. 1 —3, it appears that (4) likely overestimates
the peak current density. ' We note that Kiledjian
et al. have drawn similar conclusions for interband tun-
neling devices.

Having noted the significant departure from ideal
behavior exhibited in Figs. 1 —3, we now analyze the fac-
tors behind it. The task is most easily accomplished by
examining the Qatband quantum-well states from which

the transmission peaks under bias arise. Table II lists the
energies of the transmission resonances for a double-
barrier RTD with 13-monolayer A1Sb barriers, a 15-
monolayer InAs well, and InAs bulk regions for various

kii relative to the InAs conduction-band minimum along
with E,=E —E,(k 10) and the z wave vector of the
Bloch state resonating in the well. (At these energies
there are but two Bloch waves, one each at +k, .) The
electron is incident from the I valley of the InAs emitter.
As expected, there is close agreement between the values
of hE in Table I and the values of E in Table II. Note
that even under hatband conditions the lowest resonances
for different kii occur at very different values of E, . On
the other hand, the z wave vectors of the Bloch states
resonating in the well are all similar. This should not be
surprising: resonance is a wave phenomenon. Therefore,
we ought to consider k, to be the more fundamental
quantity. The differences in E, under hatband conditions
should hence arise from the InAs E(k) relationship; this
is illustrated in Fig. 4, a plot of the InAs conduction band
for the values of kii in Table II versus k, . Finding the in-

0
tersection of the line k, =0.055 A ' (approximate reso-
nance condition for all kii considered here) with each of
the curves E(k) clearly shows the large differences be-
tween the E, at the various resonances. Thus, the shifts
in the transmission graphs for different ki~ are seen to be

TABLE I. Quantum-we11 resonances under bias. See text for explanation of symbols.

Figure
kii

—(k,0)
(A-')

0.00
0.02
0.05
0.00
0.01
0.02
0.04
0.00
0.01
0.03

(meV)

13.8
13.7
13.8
S0.1
50.3
50.2
50.1

1S6.9
156.8
156.9

E
(meV)

13.8
63.8

231.3
50.1

64.1

100.3
207.0
156.9
170.6
256.8

AE
(meV)

241 ~ 3
264.2
368.4
242.2
248. 1

265.3
326.1

244.4
250.2
293.8

Vp

(v)

0.723
0.643
0.458
0.619
0.596
0.543
0.420
0.341
0.322
0.225
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TABLE II. Flatband quantum-well states. See text for
explanation of symbols.

kii =(k,0)
(A-')

0.00
0.01
0.02
0.03
0.04
0.05

E,
(meV)

243.5
235.5
215.8
192.0
168.7
l.47.4

E
(meV)

243.5
249.2
265.9
291.9
325.6
365.0

k,
(A ')

0.05419
0.05431
0.05465
0.05517
0.05581
0.05651
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FIG. 4. Conduction-band energies of InAs vs k, for various
k~~. Solid line: k~~=0; long dashed line: k~~=(0.01,0) A ', dot-
ted line: k~~

= (0.02,0) A ', long dotted-dashed line:
k~~=(0.03,0) A '; short dashed line: k~~=(0.04,0) A '; short
dotted-dashed line: k~~ =(0.05,0) A

due to the dispersion relation of the InAs conduction
band. Last, note that the application of bias will magnify
these shifts.

In light of the foregoing discussion, the difFiculties with
the replacement (5) become clear: the replacement
breaks down whenever there is non-negligible in-plane
dispersion and the bands are nonparabolic. Note that it
is sufficient for the effective mass to depend on E
alone —an isotropic, but nonparabolic, conduction band
will render (5) invalid. The error in (5) is most easily stat-
ed in effective-mass language: it assumes that E and
k

~~

/m * are good quantum numbers whereas E and k~I are
the actual conserved quantities. The electron effective
mass in a device under bias having an isotropic conduc-
tion band is then a function of (E E, '"[z]),—where
E, '"[z] is the energy of the conduction-band minimum at
the point z. (In a tight-binding description one substi-
tutes the discrete layer index, L, for z.) Since under nor-
mal operating conditions the well of a RTD typically lies
at least a few tens of millivolts below the bulk emitter
conduction-band minimum, two electrons having
different E and k~~ ~

but similar k, in the ernt'tter will usu-
ally have very different k, in the mell due to the nonpara-
bolicity. It is thus no surprise that their transmission
peaks will tend to occur at rather different biases.

It may be helpful to comment briefly on the foregoing
results in the context of a two-band tight-binding mod-
el' ' (one having only s-cation and p, -anion orbitals).

While the two-band model can, for example, closely
reproduce the above k~~

=0 hatband results, calculations
for k~~&0 tend to differ significantly from those of the
ten-band model, as expected from the lack of p and p
orbitals in the former. Indeed, for the ranges of k„and
k, considered in this work, the conduction band varies so
little with k that in a plot like Fig. 4 all six curves lie
nearly atop one another. Not surprisingly, in the two-
band model the Aatband resonances for the six values of
k~~ listed in Table II all occur at nearly identical values of
E. Therefore, the preceding discussion of nonparabolici-
ty and the conservation of k~~ versus k

~~

/m *, which as-
sumes non-negligible in-plane dispersion, does not apply
in the two-band case.

We may confirm that the Aatband resonances just dis-
cussed are indeed the n = 1 states by plotting a layer-wise
sampling of the probability density in the well for each
state. From (1) and (2), then, the density in each type of
plane (anion or cation) is just

where the sum is again over orbital types and t is either a
or c. Thus, the sets [CL'] represent a layerwise sampling
of the various orbital envelope functions while the densi-
ties (6) are roughly the square magnitudes of the total
anion and cation envelopes. In Figs. 5 —7 we present the
graphs of the anion and cation densities for the cases
k~~ =(0,0), (0.03,0), and (0.05,0) A ', respectively, under
Hatband conditions. The peak density in the well tends to
be higher for larger ~k~~ ~

in this regime, but the main bar-
rier state (A1Sb I valley, evanescent) decays more rapidly
for states of larger ~k~~ also. In these figures, the first bar-
rier extends from monolayer 22 —34; the quantum well
from monolayer 35—49; and the second barrier from
monolayer 50—62. We note that the envelopes decay rap-
idly within the barriers, showing no significant oscillation
or other signs of a barrier state at these energies. Thus,
these are truly quantum well states, as we surmised ear-
lier from the Fabry-Perot —like transmission resonances.

The shapes of the envelopes merit some discussion.
Those for the k~~=(0. 05, 0) A ' state look much as we
might expect an n =1 level to appear, given the nonsym-
metric interfaces —approximately even about the center
of the well. For the k~~=0 state (Fig. 5), however, the
anion envelope has two peaks and for the k~~

=(0.03,0) A ' state (Fig. 6) it is nearly fiat. [For
k~~=(0. 028, 0) A ' —not shown —it is very fiat indeed. ]
Because in each case the quantum-well state is essentially
composed of but one pair of Bloch waves and due to the
k~~ considered here the interpretation is not too difficult.
Recall that since zinc blende is invariant under a twofold
rotation about the I axis, this operation will relate the
forward- and reverse-propagating states with k~~=(k, 0).
In particular, this rotation changes the signs of the p„
and p, coefficients relative to the others. Therefore, if we
construct a linear combination of these two states in
which the s envelopes are even about some point z0 we
wi11 find that the s* and p envelopes of the combination
are likewise even about this same point but that the p~
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FIG. 5. n = 1 flatband quantum-well state for the 15-
monolayer well device, k~~

=0. Solid line: cation density;
dashed line: anion density.
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FIG. 7. n = 1 flatband quantum-well state for the 15-
0

monolayer well device, k~~ =(0.05,0) A '. Solid line: cation
density; dashed line: anion density.

and p, envelopes are odd about it.
In the present case, the Bloch waves in the well are pri-

marily composed of s-, p, -, and, for the k~~
=(0.03,0) and

(0.05,0) A states, p -like orbitals. Since the barriers
are of equal thickness, we expect that the total wave func-
tion for the n = 1 (fiatband) state ought to be approxi-
mately even about the center of the well. Thus, we
should find that the s- and p„-like envelopes are roughly
proportional to cos[k, (z —zo)] where zo is the coordinate
of the center of the well, while the p, -like envelope should
be approximately proportional to sin[k, (z —zo)]. (The
envelopes do, in fact, manifest this type of behavior. ) The
s and p densities should thus have one peak each but the

p, density should have two. Since by (6) the anion and
cation densities are sums over orbital types, their appear-
ance will indicate the dominant orbital(s) of the Bloch
waves in the well. In all three cases (within our parame-
trization), the major cation contribution to the Bloch
states is s-like, hence the cation envelopes have only one
peak. For k~~ =0, the anion contribution is mainly p, -like,
so there are two peaks, while for k~~=(0. 05,0) A ' the
sum of the square magnitudes of the anion s and p
coefficients of the Bloch waves is larger than the square
magnitude of the anion p, coefficient, leading to a single
peak. On the other hand, in the k~~=(0. 03,0) A ' state

the sum of the square magnitudes of the anion s and p
coefficients of the Bloch waves is about the same as the
square magnitude of the anion p, coefficient, so that the
anion density is approximately proportional to I sin [k, (z
—zo)]+cos [k, (z —zo)]] =1, i.e., fiat.

We briefly note that because the ten-band model has
orbitals not included in the two-band calculation (the s
and p anion being most relevant to the present discus-
sion), wave function results for the latter will not always
resemble those of the former. Considering the n =1
states discussed above as definite examples, we anticipate
the two-band cation envelopes to resemble those of the
ten-band model, whose cation component is s-like. In
contrast, we should find that the purely p, -like two-band
anion envelopes for all six k~~ states will have two peaks
and much lower densities near the well center as com-
pared to the ten-band results. Explicit calculation
confirms our intuition.

Structures with wider wells manifest similar behavior,
as illustrated in Figs. 8 and 9, which are, respectively,
density plots for the n =1 and 2 (fiatband) states of a de-
vice having 13-monolayer A1Sb barriers and a 30-
monolayer InAs well. (Here, the first barrier extends
from monolayer 22 —34, the well from 35—64, and the
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FIG. 6. n = 1 flatband quantum-well state for the 15-
monolayer well device, k~~=(0.03,0) A '. Solid line: cation
density; dashed line: anion density.

FIG. 8. n = 1 flatband quantum-well state for the 30-
monolayer well device, k~~

=0. Solid line: cation density; dashed
line: anion density.
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FIG. 9. n =2 flatband quantum-well state for the 30-
monolayer well device, k~~

=0. Solid line: cation density; dashed
line: anion density.

IV. CONCLUSIONS

We have examined tunneling in InAs/AlSb double-
barrier RTD's for various k~~. Our results indicate that
the simple single-integral approximation for the tunnel-
ing current density, Eq. (4), is likely not very good. In
particular, we have presented evidence indicating that it
likely overestimates the true peak current density. Evalu-
ation of the full expression (3), is thus expected to predict
a more realistic peak current and, hence, PVR. We have
analyzed the reasons for the failure of the replacement,
Eq. (5), and the deviations from ideal (effective-mass)
behavior, tracing them back to the E(k) relation for the
InAs conduction band. Finally, we have plotted the
probability densities for the flatband states corresponding
to the erst resonances in the transmission versus bias
curves and have seen how their shapes are related to the
atomiclike orbitals of which they are composed.

second barrier from 65 —77.) In the lower-energy state
(Fig. 8), the Bloch waves in the quantum well are mainly
composed of s-like orbitals for both anions and cations.
In contrast, in our parametrization the n =2 state (Fig. 9)
is principally composed of s-like cation orbitals and @,-

like anion orbitals, so the two densities show dN'erent
numbers of peaks.
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