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Defect interactions in metallic glasses: Acoustic probes
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If the low-temperature properties of glasses are determined by strongly interacting defects, then in a
superconducting metallic glass the apparent density of two-level-system (TLS) glass should be greater in
the superconducting than in the normal state. This difference affects the acoustic properties of the ma-
terial. Published measurements of sound attenuation and velocity in Pd30Z170 exhibit anomalies con-
sistent with an increased density of TLS s in the superconducting state, but further experiments are need-
ed to distinguish the effects caused by changes in the interactions between TLS's as opposed to changes
in the coupling between each TLS and the conduction electrons.

The striking similarity of the low-temperature proper-
ties of a wide class of amorphous materials has led to the
proposal that strong strain-mediated dipolar interactions
between defects in the material play a crucial role. '

However, this view has gained limited acceptance, in
large part because of the enormous success of two-level-
system (TLS) theory in explaining a wide variety of ex-
perimental observations. Though it is plausible that TLS
theory describes the low-energy excitations of an interact-
ing defect model, the argument that such a model is
necessary to understand glasses would be strengthened
substantially by experimental observations that cannot be
explained using standard TLS theory.

Experiments to test the idea that defect interactions
are important are difficult to design, partly because the
point of the defect-interaction idea is to explain universal
properties that are independent of the microscopic de-
tails. Previous proposals have involved comparing the
properties of different samples of an insulating glass sys-
tem with different geometries; ' they have the inherent
difficulty that the effects of changing the interactions on
the density of TLS's must be distinguished from other
geometry-related effects.

Here the aim is to test the hypothesis that the TLS's
determining the low-temperature properties of glasses are
the low-energy excitations of a model of strongly in-
teracting defects, where the density of TLS P is deter-
mined by the interaction coupling constant. To this end,
it is pointed out that if interactions determine P, then in a
metallic glass P should be larger in the superconducting
state than in the normal state. This observation is of in-
terest because experimentally one can drive a supercon-
ductor into the normal state by applying a magnetic field
larger than the upper critical field H, 2. One can then
make a direct comparison between the low-temperature
properties in the presence and absence of electron-
mediated interactions between TLS's. A major advantage
of examining the superconducting metallic glass system is
that one can change the interactions between TLS's in a
single sample at Gxed temperature.

Measurements on the superconducting metallic glass
Pd3QZI7Q (Ref. 11) show behavior that is consistent with a
larger P in the superconducting state than in the normal
state. However, these measurements are not conclusive

because the strong coupling of the conduction electrons
to the TLS causes a renormalization of each TLS tunnel-
ing matrix element, which for the standard distribution
of TLS's leads to a renormalization of the apparent P in
the normal state that depends on the coupling strength
between the electrons and the TLS.' ' Superconductivi-
ty causes the normal carriers to freeze out and removes
this renormalization. The experiments in Ref. 11 were
not done at temperatures low enough that this effect
could be distinguished from a change in P from interac-
tions. Nonetheless, definitive experiments are possible
because the fermionic nature of the electron bath con-
strains the magnitude of the renormalization. For in-
stance, if the change in P is large enough, then this can be
demonstrated without reference to the details of the
theory of the coupling between TLS's and conduction
electrons by measuring the attenuation in the limit
%co/k+T &)1 (where co is the sound frequency and T is
the temperature) in the normal and superconducting
states. Alternatively, unambiguous evidence that P has
changed can be obtained by doing measurements over a
broad enough temperature range that the electron-TLS
coupling constant in the normal state can be determined
independently, as outlined below.

The idea that defect interactions dominate the low-
temperature properties of disordered materials is based
on the nearly universal value of the ratio of the phonon
mean free path I to the thermal wavelength k at tempera-
tures T & 1 K that is observed for many different disor-
dered materials (1/A, -150).' A natural explanation for
this universality arises from a model of defects with
strong dipolar interactions, so that the interaction decays
with the defect separation r as g/r Universa. l features
are expected to arise from such a model because in three
dimensions interactions of this type give rise to a density
of states per unit energy and volume of 1/g, independent
of the number of interacting objects. '

In insulators the g h/r interactions are phonon medi-
ated; the coupling constant g h is estimated to be y /pv,
where y is the deformation potential, p is the mass densi-
ty, and v is the transverse sound velocity. In metals, in
addition to the strain-mediated interaction, one expects
the TLS's to have an interaction mediated by the conduc-
tion electrons. This RKKY-like interaction also falls off
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like gaz~v/r . The scale of the interaction constant

gR~KY is E~/k~, where E~ is the Fermi energy and kF is
the Fermi wave vector. ' ' Fortuitously, both g~h and

gRz~~ are of order 10 KA for a typical metallic glass.
One would expect the interactions to add, so that the to-
tal is described by an effective interaction strength
geff (g ph +g RKKQ )

' . These considerations lead one to
expect metallic glasses to have a density of TLS's that is
somewhat lower, but still the same of order of magnitude,
than insulating glasses. This expectation is consis-
tent with thermal-conductivity measurements for
Pdp 775Sip i65Cup p6 which yield a slightly higher thermal
conductivity than the "universal" curve, ' as well as
acoustic measurements, which yield values of P an order
of magnitude smaller for metallic glasses than for silica. '

Because both the phonon-mediated and electron-
mediated interactions decay as 1/r, at first glance it is
unclear how their contributions can be separated. How-
ever, the long-range character of the RKKY coupling
arises because the Fermi sea has arbitrarily low-energy
excitations. In a superconductor, the RKKY interaction
cuts off exponentially at separations larger than the su-
perconducting coherence length g. ' Thus, well below
the superconducting transition temperature T„ for TLS
separations greater than g the interactions decay as
g~h /r Since . g~h (g, ff and the density of TLS's,
P ~ 1/g, this implies that P in the superconducting state
should be greater than in the normal state.

At a temperature T, one naively expects to probe
length scales of order —(g/k~T)'~ . Therefore one
must change the interactions on the length scale of 100
A if one hopes to see observable effects at 0.1 K. For-
tunately, metallic glasses tend to have very short elec-
tronic mean free paths and hence short enough coherence
lengths in the superconducting state that this condition is
satisfied.

The most natural way to compare the normal and su-
perconducting states is to compare the behavior at a fixed
temperature below T, in the presence and absence of a
magnetic field H greater than the upper critical fieM H, 2.
Determination of P in the normal state using either
specific heat or thermal conductivity is difficult because
in a normal metal the electrons contribute significantly to
these quantities, especially at low T. ' However, it is be-
lieved that TLS's determine the acoustic properties of
both normal metals and superconductors at temperatures
T 5 1 K. ' Therefore acoustic measurements in super-
conducting metallic glasses provide a good candidate for
testing this prediction. Typically, experiments measure
how the sound attenuation and velocity at a given fre-
quency m/2m depend on the temperature, and so we
focus on that situation.

Interpretation of acoustic measurements is nontrivial
because in the normal state most experimentally measur-
able quantities depend not only on Pz but also on the
electron-TLS coupling constant EC. This complication is
not insuperable and can be addressed in two ways. The
first is to use the fact that the fermionic nature of the
electron bath constrains the renormalization from the
TLS—normal-electron interaction. Measurements of
the low-temperature attenuation can be used to demon-

2

a„,~(T~O) & PJv(1 —K) .
pU

Equations (1) and (2) imply that

(2)

P a atot, X ~ tot, X

~sat, sc( +) ~.at:, sc

where the last inequality follows because E, which deter-
mines the change in the apparent P caused by TLS-
electron interactions via Eq. (A6), is bounded above by —,'.
Thus, if as T~O the saturable attenuation in the super-
conducting state is more than a factor of 2 greater than
the total attenuation in the normal state, then the change
cannot arise entirely from the TLS-electron interaction.

We now discuss how ultrasonic data can be analyzed to
extract both the TLS-electron coupling constant E and
the density of TLS's, P. A discussion of the acoustic
properties of normal and superconducting metallic
glasses summarizing the key results in Refs. 13 and 25 is
given in the Appendix; here, we focus on the experimen-
tal quantities needed to determine P in the normal and
superconducting states P& and Psc. The relevant experi-
mental quantities as well as which parameters they help
determine are summarized in Table I. Assuming that
metallic glasses have TLS's described by the standard dis-
tribution function, the most direct means of comparing
P& and Psc involves three measurements: the low-
temperature (%co/kz T» 1) saturated attenuation in the
superconducting state, the low-temperature linear (low-

strate a change in P without reference to the details of the
theory of TLS-electron interactions. The second ap-
proach is to fit measurements over a broad temperature
range to TLS theory and extract both P and E. This ap-
proach assumes the validity of the theory of TLS-electron
coupling as well as the standard TLS distribution func-
tion; these assumptions can be checked because several
measurements can be used to determine the three quanti-
ties Psc, P~, and K redundantly.

We first discuss experiments that can demonstrate a
change in P independent of the details of the
TLS—conduction-electron coupling. These experiments
rely on the fact that in metals K must be less than —,',
which in turn constrains the renormalization of P from
the TLS-electron interaction to be less than a factor of 2.
One experiment that can demonstrate a change in P is
measuring the low-temperature (fin/k~T &&1) attenua-
tion in the normal and superconducting states. In the su-
perconductor the resonant attenuation is entirely satur-
able, but in the normal state, even as T~O, the attenua-
tion is partly unsaturable. Therefore it is important to
determine independently the attenuation zero, which can
be done by measuring the saturated attenuation as T~0
in the superconducting state. The saturable attenuation
in the superconducting state, a„,sc, is related to Psc by

2

~. t, sc(+ O)
3 Psc . (1)

pU

In the normal state, the low-intensity attenuation de-
pends on both P& and K, but it satisfies the inequality
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TABLE I. Summary of experimentally measurable quantities that can be used to extract information
about P~ and Psc.

Useful quantities
Phase Quantity Gives information on

Superconductor

Normal
metal

Kr Emax

PQ r Kr Emax

PN

P~,K
need to fit P~,K,E,„

Au/v (low T) Psc
a„, (T~O) attenuation zero

Psc
relaxational parts have significant phonon contributions,

and so not easy to extract useful information
o.„, (T~O)

O plateau

Au/v (high T)
Au/v (low T)

intensity) attenuation in the superconducting state, and
the normal-state attenuation in the "plateau" region.
The saturated attenuation of the superconductor as T~0
can be used to determine the zero of attenuation. (As is
discussed ir. the Appendix and Ref. 25, the saturated at-
tenuation in the normal state cannot be used to set this
zero. ) The difference between the linear attenuation and
saturated attenuation as T—+0 in the superconductor is
7r(~/v)Csc where Csc=Pscy /Pv, y is the deforma-
tion potential, p is the mass density, and v is the sound
velocity. The value of the attenuation in the plateau re-
gion in the normal state (which is all unsaturable) is
(7r/2)(co/v)C~. Thus, assuming the attenuation zero is
the same in the normal state as in the superconducting
state, then these measurements are sufficient to determine
Psc /PN'

Other measurements can be used to check the con-
sistency of this determination. For example, at low
enough temperature the variation of the relative velocity
shift Av/v with T in the superconducting state yields
direct information about Csc,' in particular, there is a
temperature range where b,v/v is linear in ln(T) with
slope Csc. In the normal state, the coupling between
TLS's and electrons leads to more complicated behavior;
other measurements tend to involve not only C&, but also
the TLS-electron coupling constant K. There is a tem-
perature region where the velocity shift Av/v in the nor-
mal state is linear in ln(T) only when K is not too large
( (0.2 or so). If this regime exists and if the relaxation-
al contribution can be neglected, the slope is
C~(1 IC). ' If K —is not too large, at temperatures
where the relaxational contribution is important Av/v is
linear in ln(T) with slope C7v( ,' lC) over a sub—st—antial
temperature range. In the normal state, the resonant at-
tenuation that is dominant at low temperatures has a
magnitude that depends on K, Cz, as well as a high-
energy cutoff parameter for the TLS distribution function
E,„(though the dependence on E,„ is logarithmic).
For E ~0.2, the value of the attenuation as T~O is
C&(co/v)(1 —K). The attenuation as T~O is partially
unsaturable; the ratio of saturable to unsaturable depends
on K, C~, and E,„.

Assuming that metallic glasses have TLS's described
by the standard distribution function, then detailed fits

can be made to both the attenuation and velocity temper-
ature dependences over a broad temperature range, so
that E, C~, and Csc can be determined reliably.

Previous measurements" of 620-MHz sound in
Pd30Z170 show that the slope of b.v /v is greater in the su-
perconducting state than in the normal state by a factor
of about 4 over the temperature range 0. 1 —0.5 K. How-
ever, it is likely that the measurements in the normal
state are in the regime where the slope of Av/v is
C~( —,

' —K), so that the results are consistent with P
remaining unchanged and the change in the slope arising
entirely from TLS—conduction-electron coupling effects.
Extraction of E or C& from attenuation measurements
reported in this reference is difficult: The plateau is not
well enough developed to determine C&, and the temper-
ature range does not extend low enough to probe the res-
onant attenuation. Therefore one cannot extract the
T~0 behavior or do a detailed 6t to determine C& and K
including both resonant and relaxational processes.

The experiments proposed here determine the com-
bination C =Py /pv, where y is the deformation poten-
tial, p is the mass density, and v is the sound velocity.
The quantities p and v can be measured independently,
and so the acoustic experiments measure Py, as opposed
to the desired quantity P. The coupling constant y can
be determined in the superconducting state by doing
phonon-echo experiments, but this cannot be done in
the normal state because phonon echoes are not ob-
served. In principle, y can be extracted by Atting the
temperature dependence of the attenuation and velocity
at higher temperatures, " but in practice this Qt has
substantial uncertainty. Nonetheless, y is unlikely to be
much different in the normal and superconducting states
because it is of order 1 eV (Ref. 29) and the supercon-
ducting energy gap is —10 eV.

Unfortunately, a null result (Psc=P~) is not definitive
be~~use P depends on both gph and g«K Y, and so cha~g-
ing the RKKY interaction changes P substantially only if
gRKK& is comparable to or larger than g h. However,
the large difference between the values of P obtained for
insulating and metallic glasses' leads one to expect a
substantial effect if interactions are important in deter-
mining P. If a change in P is observed, this implies that
the long-range nature of the interdefect interaction is cru-
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cial, for superconductivity only affects the RKKY in-
teraction at length scales greater than the superconduct-
ing coherence length g.

Changes in P arising from interactions should exhibit
several systematic trends. The temperature at which
changes in P become substantial should depend on the in-
verse cube of the superconducting coherence length g.
Whether the effect arises because of a change in coupling
strength can also be verified by investigating different ma-
terials and determining the relative sizes of the strain-
mediated and RKKY interactions. The RKKY interac-
tion is more likely to be important in materials with small
values of y /pu and large values of K. Because it is pos-
sible to change the interactions at a fixed temperature by
applying a magnetic field, different arrangements of de-
fects should be obtained if the history of the sample is
changed. For instance, cooling a sample in a magnetic
field and then turning off the field could yield results
different than cooling a sample in zero field.

The experiments described above should provide a use-
ful complement to experiments on insulating glasses.
Watson' has compared the thermal conductivity of vit-
reous silica to that of Vycor glass with pore diameters be-

0
tween 20 and 75 A as well as to low-density silica aero-
gels of density -40% and —10% that of fused silica
down to 70 mK. She found that the thermal conductivity
in the Vycor is substantially similar to that of the vitre-
ous silica, indicating that the presence of holes does not
qualitatively alter the low-temperature thermal conduc-
tivity, though the holes do affect the behavior at tempera-
tures where the thermal wavelength of the phonons is
comparable to the pore size. These results could be con-
sistent with the idea that long-range strain-mediated in-
teractions between defects play a crucial role if the in-
teractions on long length scales are not substantially
changed by the holes. A detailed comparison of the
different systems is difficult because there is some ques-
tion as to whether the deformation potential y is affected
by the presence of holes in the material. Fu has also
proposed experiments in optical fibers because the defect
interactions cut off exponentially at separations greater
than the fiber diameter. However, for a fiber with a di-
ameter of 1 pm, observable effects are only expected for
temperatures below —10 K. The TLS—conduction-
electron coupling in metallic glasses leads to complica-
tions in data interpretation that do not arise for insulat-
ing glasses, but because the experiments can be done on a
single sample at fixed temperature, the metallic glass sys-
tem is a promising candidate to search for a change in P.

To summarize, this paper discusses how experiments
on superconducting metallic glasses can be used to test
the idea that defect interactions are important in deter-
mining the low-temperature properties of glasses. By
comparing the acoustic properties in the presence and ab-
sence of a magnetic field, it should be possible to extract
the density of TLS's, P, in the presence and absence of
RKKY interactions between defects, though the strong
electron-TLS coupling effects in the normal state must be
accounted for when interpreting the data. If defect in-
teractions determine P, then P should be larger in the su-
perconducting state than in the normal state.

The author thanks B. Golding and C. Yu for useful
conversations.

APPENDIX

This appendix discusses the low-temperature acoustic
properties of metallic glasses. We assume, as is usu-
al, "' ' ' ' that at low temperatures the sound attenua-
tion in both superconducting and normal metals arises
predominantly because of the coupling between phonons
and TLS's. Both the sound attenuation and velocity are
affected by the TLS's; these quantities are related by a
Kramers-Kronig transformation.

The sound propagation probes the dynamics of the
TLS's. These dynamics are strongly affected by the con-
duction electrons, ' 2 ' ' ' and so normal metals and
superconductors are expected to exhibit different
behavior.

We make the standard assumptions that an isolated
TLS with asymmetry c and tunneling matrix element 60
is described by the Hamiltonian

HyLs ——Eo z
—Akpo ~ (Al)

where

1 0
0 —1

0 1

1 0

~+Ls- }
=To e (A3)

where e is the strain field at the site of the TLS's and y is
the deformation potential (y =

—,'d E/de).
At high enough temperatures, the TLS-phonon cou-

pling affects the TLS dynamics, but below 1 K one ex-
pects the coupling to electrons affect the TLS dynamics
much more than the coupling to phonons. The coupling
between the TLS's and electrons is described by the Ham-
iltonian

H =HTLS+ zoX Vkk Ck„ck „+H~
kk'g

(A4)

where Vkk describes the scattering potential and ck„
creates a fermion of wave vector k, energy gk, and spin g.
The electrons are described by H„ for noninteracting fer-
mions, H, =gk„gkck„ck„. The coupling between the
TLS's and the electrons is described quite generally by a
parameter IC, which for an s-wave potential ( Vkk, = V)
and a Fermi sea of free fermions is determined solely by
the scattering phase shift of electrons; in the weak-
coupling limit, K= —,'(noV), where no is the electronic

The isolated TLS has two energy eigenstates with ener-
gies +E/2, where E =[(A'bo) +E ]'~ . The number of
TLS's which have given values of c and 60 is described by
a distribution function of the usual form,

P(E, b, o) = P
0

The acoustic properties are used as a probe of the TLS
dynamics; we assume the usual strain coupling between
phonons and TLS's:
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density of states at the Fermi level. It is known that in
metallic glasses K must be less than —,'.

It is customary to divide the effects of the TLS's on
phonons into resonant and relaxational pieces. The form-
er arises from transitions induced by phonons between
the two energy levels of the TLS's, whereas the latter
arises from the phonon changing the TLS asymmetry en-
ergy and the TLS reequilibrating via an incoherent tun-
neling process. Both contributions are substantially
different in the normal state than in the superconducting
state. We first discuss the resonant piece, which is dom-
inant at low enough temperatures.

In insulating or superconducting glasses, the resonant
attenuation is entirely saturable, so that high-intensity
sound is not attenuated. This property is useful because
it is very difficult to measure absolute attenuation, and
one can use the saturated low-temperature value as the
attenuation zero. The magnitude of the saturable at-
tenuation is directly proportional to P: a„,( T~0)
=~coPy /pu, where y is the deformation potential, p is
the mass density, co/2m is the sound frequency, and v is
the sound velocity. Experimentally, one must be sure
that the power is low enough that one is measuring the
linear response as well as that the temperature T is low
enough that the resonant attenuation dominates. This
latter point can be checked by making sure the attenua-
tion depends on T as tanh(fico /2k& T).

In normal metals the resonant attenuation differs from
that of a superconductor in two major ways. One impor-
tant feature of the normal state is that the effective ma-
trix element 6, of a TLS that determines the low-energy
properties is renormalized because of the TLS-electron in-
teraction:

' K/(1 —K)
0

(A5)

P( bE, „)= (1—K) .
P

r
(A6)

Thus one expects the TLS-electron coupling to cause the
apparent value of P to be smaller in the normal state than
in the superconducting state even if P itself is unchanged.
However, since K (

—,', this effect cannot change the ap-
parent P by more than a factor of 2.

The second change is that the resonant attenuation de-
velops an unsaturable component even as T~O. This
occurs because the coupling between the TLS's and con-
duction electrons results in a linewidth that is propor-
tional to the energy splitting, so that TLS's of all energies
contribute to the attenuation at a given frequency. The
ratio of the unsaturable and saturable resonant pieces is
given by

aunsat
0 7+ 1

max
(A7)

where co, is a cutoff frequency expected to be of order the
Debye temperature. Because of this, the distribution
function describing the renormalized parameters be-
comes'

hu res
C + 1 + %co

u 2 k T
%co—ln

k~T
(Ag)

where g is the digamma function. If A'co jk~T((1, the
velocity shift depends logarithmically on temperature:
hu ju =Cscln(T/To), where To is a reference tempera-
ture. Thus the temperature dependence of Au/u yields
Csc, this value can be checked for consistency with that
obtained from the magnitude of the unsaturated attenua-
tion. In the normal state, the relaxational component is
important at much lower temperatures than in the super-
conducting state; in addition, the resonant contribution
to the velocity has a component arising from the unsatur-
able attenuation. Even if %co/kz T ((1, b,u„, lv for 1-
GHz sound is not linear in ln( T) if E is larger than 0.2 or
so. If K (0.2 and the relaxational contribution is negligi-
ble, then one finds the simple result
b, v/v =C~(1—K)ln(T/To), but numerical fitting is
needed to determine whether there is a temperature range
where this form is valid.

We now discuss the relaxational attenuation, which
arises from incoherent tunneling of the TLS's. In the su-
perconducting state near T„ the behavior is complex be-
cause the normal carrier freezeout affects the renormal-
ization of Ao (Ref. 13) as well as the density of quasiparti-
cles; ' roughly speaking, in the superconducting state the
elimination of the renormalization of the tunneling ma-
trix element tends to increase the attenuation, while the
quasiparticle freezeout causes the relaxation rate of the
TLS's to decrease, which tends to decrease the attenua-
tion. Detailed calculations of the temperature depen-

where K is the TLS-electron coupling constant and E „
is the upper cutoff of the TLS distribution function.
(This expression is valid when K is not too large. ) If
one assumes that the attenuation zero is given by the sa-
turated attenuation in the superconducting state, then
one can estimate K fairly accurately because the depen-
dence of this ratio on the (unknown) upper cutoff is
weak —changing E ax from 200K to 300K changes the
logarithm by less than 10% for a sound frequency of 1

GHz. It might be possible to determine E ax itself by
measuring the attenuation at two different frequencies.

In the normal state, as T~O the total attenuation is
bounded below by mC&(l —K). The 1 —K factor arises
because of the renormalization of A0 by the conduction
electrons described in Eqs. (A5) and (A6). If K(0.2,
then the attenuation is within a few percent of this lower
bound; if E )0.2, a(T~O) has a nontrivial (but mono-
tonic) dependence on K. Nonetheless, if the attenuation
zero and K have been determined, then C& can be deter-
mined by numerical fitting of the total attenuation.
Thus knowing both the amount of total attenuation as
well as what fraction of the attenuation is unsaturable is
sufficient to determine both K and P to reasonable accu-
racy.

The resonant contribution to the velocity shift also
provides important information. In the superconducting
state, the resonant contribution to the velocity, which
dominates at low temperatures, has the form
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dence of the attenuation near T, are dificult. When the
quasiparticles have frozen out, one must also consider re-
laxation via coupling to phonons, but one expects all
sources of relaxational attenuation to be very small well
below T, .

In the normal state, the detailed temperature depen-
dence of the relaxational attenuation is complex, but at
high enough temperatures it saturates at the value' '

2
wm Per

V U2
(A9)

This result follows because the (1 EC) fac—tor renormaliz-
ing the TLS distribution function in Eq. (A6) is canceled
by a factor of (1—K) ' that arises from the dependence
of the incoherent relaxation rate on the renormalized tun-
nel splitting 5,. ' ' If this asymptotic value is reached
at a temperature low enough that other contributions to
the attenuation are unimportant, then one has a direct
measure of P„.

We now discuss the relaxational contribution to the ve-
locity shift. In superconductors this contribution is not
expected to be important well below T, because quasipar-
ticles freeze out; at higher temperatures one needs to con-
sider the detailed nature of the coupling between phonons
and TLS's (including phonon-assisted tunneling). There-

fore simple extraction of Psc from this contribution is
not possible. In the normal state, the relaxational contri-
bution is much more likely to be dominated by the cou-
pling to electrons and also should be substantial down to
much lower temperatures than in a superconductor. It is
important to determine whether the changes in the veloc-
ity arise from both resonant and relaxational processes or
from resonant processes only. If the relaxational contri-
bution to the velocity has saturated and K is not too
large, then hvlv =C„(—,

' —K)ln(T/To) for fico jk'T &(1.
Determination of the temperature range where this form
applies as well as extraction of values for C& and K re-
quires numerical fitting of the data.

In summary, extracting information about P in the
normal and superconducting states can be done using
acoustic measurements over a broad temperature range.
If the standard TLS distribution function applies to me-
tallic glasses, the necessary parameters can be extracted
with confidence, both the resonant and relaxational con-
tributions to both the velocity and attenuation are deter-
mined by the same parameters, and so E, Psc, and Pz are
determined redundantly. Even if a modified distribution
function is necessary to fit the data, ' it should be pos-
sible to fit numerically the resonant attenuation in the
normal and superconducting states and extract P& and
Psc-
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