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Phase diagram and critical behavior of the Si-Ge unmixing transition:
A Monte Carlo study of a model with elastic degrees of freedom
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A statistical-mechanical model of binary semiconductor alloys, consisting of a distortable diamond
lattice whose sites may be occupied by A atoms, 8 atoms, or vacancies, is studied by Monte Carlo com-
puter simulations. By extending a grand-canonical lattice gas, the model allows for atomic displace-
ments governed by the Keating valence force field. Unphysical boundary conditions are avoided by
keeping the pressure constant. This model is similar to a compressible Ising model, but differs from it by
the occurrence of a bilinear coupling between spin field and displacement field. The interplay between
the chemical and translational degrees of freedom shows up in the form of the unmixing phase diagram
of a system whose parameters were chosen in an attempt to mimic a Si-Ge alloy. Methods of thermo-
dynamic integration to obtain the free energies of different phases are discussed. The critical behavior of
the unmixing transition is studied by a multihistogram data analysis. The finite-size scaling of the data is
in better agreement with mean-field-like critical behavior than with an Ising transition or Fisher-
renormalized exponents. Vegard s law is verified, and it is shown that the Keating potential leads to a
negative coefficient of thermal expansion.

I. INTRODUCTION

The statistical mechanics of miscibility and superstruc-
ture formation of solid binary or multicomponent alloys
is today most commonly studied within the framework of
lattice-gas models. While such models are often able to
fit quantitatively experimental phase diagrams, their limi-
tations are quite obvious: Each lattice site interacts:with
a fixed number of neighbors with fixed interaction con-
stants, and the interplay between elastic distortions and
chemical composition cannot be properly modeled.
However, these effects are quite important and can even
change the qualitative nature of the phase transition. On
the other hand, a computer simulation which studies a
model of a system of particles interacting via a distant-
dependent interaction potential is usually very time con-
suming because the particles are allowed to move freely.
The present study, which focuses on the unmixing transi-
tion of silicon-germanium alloys, hence takes an inter-
mediate approach: The alloy is modeled as a network of
nodes with the fixed topology of a diamond lattice. This
speeds up the algorithm significantly, since the same
neighbor table can be used throughout the simulation.
Apart from moving the nodes stochastically, the Monte
Carlo (MC} simulation also changes the atomic species on
each node within the framework of the grand-canonical
ensemble. In order to accommodate the lattice constants
of both species (which are also temperature dependent),
we perform the simulation in a box of fluctuating size at
constant pressure 0. The present study is therefore
different from recent MC calculations on the same sys-
tem Reference 1 studies a much smaller system of
particles with an empirical interatomic potential, also in
the constant-pressure ensemble. Reference 2 takes the
coupling of the chemical to the elastic degrees of freedom

into account by a set of state-point-dependent effective
lattice-gas interactions obtained by ground-state con-
siderations and thus cannot study the effect of thermal
fIuctuations on this coupling. A constant-pressure en-
semble is also used in Ref. 3, but instead of fixing external
chemical potentials this simulation is run at constant
composition with a Kawasaki-type dynamics where
atoms are exchanged randomly. Because this dynamics is
intrinsically slow, the study was unable to calculate the
unmixing phase diagram.

Other related computational work on the structure of
semiconductor alloys consists mostly either of ground-
state relaxation methods, or of constructing a model
with effective lattice-gas interactions which is then usual-
ly treated by the cluster-variation method, ' or some-
times by Monte Carlo simulation. ' The Si-C system was
studied by MC in Ref. 16, similar to the work in Ref. 1.

For the present work, it should be noted that some of
the interaction parameters are based on estimates which
are not very well controlled. Therefore, the present simu-
lation should be viewed as an accurate study of a model
whose phase-separation behavior may match that of real
Si-Ge qualitatively, but not necessarily very precisely.

The organization of this paper is as follows: In Sec. II,
we define the model and describe the simulation tech-
nique, while Sec. III outlines our choice of interaction pa-
rameters. In Sec. IV, we give a detailed discussion of the
problem of the ground-state entropies, which must be
known in order to perform thermodynamic integrations
to obtain the first-order transition line. In Sec. V, we de-
scribe the histogram technique finite-size scaling analysis
of the critical behavior. We emphasize that the methods
presented in these sections apply quite generally to classi-
cal models with both chemical and translational degrees
of freedom. Section VI accounts for some noncritical

0163-1829/93/48(19)/14182(16)/$06. 00 48 14 182 1993 The American Physical Society



PHASE DIAGRAM AND CRITICAL BEHAVIOR OF THE Si-Ge. . . 14 183

properties such as the change of volume as a function of
concentration (Vegard's law), and thermal expansion.
We conclude in Sec. VII.

II. THE MODEL

The diamond lattice can be decomposed into eight in-
terpenetrating simple-cubic sublattices, and the term
"lattice constant" shall always refer to the lattice con-
stant of these sublattices. Hence, we studied systems of
N=SL nodes, with L =4, 7, and 10 (i.e., 512, 2744, and
8000 nodes). In,'tially, these nodes were put onto the sites
of an ideal diamond lattice with the lattice constant of
pure Si. The initial simulation cell was a cube aligned
with the cubic axes of the initial lattice, which also
defined the initial cell volume. Throughout the simula-
tion, we used periodic boundary conditions.

Although the nodes were moved stochastically in the
course of the simulation, the topology of the lattice was
fixed. As our Hamiltonian (see below) includes only
nearest- and next-nearest-neighbor interactions, we
stored, for each node, the four nearest and twelve next-
nearest neighbors in a table, derived from the initial lat-
tice. This table was then used throughout the runs to cal-
culate the interactions. Since the nodes within a given
simple-cubic sublattice do not interact with each other,
the algorithm could be efficiently vectorized by the stan-
dard "checkerboard" updating scheme.

For each node, we allowed three possible states:
atom (Si, pseudospin variable S=+1), B atom (Ge,
S= —1), and vacancy (S=0), the latter being defined as
a node which gives zero contribution to the Hamiltonian.
By replacing the vacancy state by a third atomic species,
the model can be easily generalized to ternary alloys as
well. Within the framework of the grand-canonical en-
semble the simulation performed stochastic changes of
the species ("spin fiips") on each node, controlled by
chemical potentials. Although vacancies can play an im-
portant role in the alloy structure at high temperatures,
their concentration is very small at the low temperatures
at which the unmixing occurs. We therefore performed
the present study in the limit of vanishing vacancy con-
centration. This can be done by a simple adjustment of
the chemical potentials, which we chose in such a way
that the probability for vacancy occurrence becomes so
small that it can be practically ignored. In this limit it is

with

~ext +~chent +~el, bands +~el, angles (2.1)

~ext PA X~S, , +1 I B X~S, —1 (2.2)

(Kronecker's 5),

= g s(S;,S~.),
J

&„b,„d,= g E(S, ,S )[r; —Ro(S;,SJ )]

(2.3)

(2.4)

and

only the chemical potential difference between the two
species which controls the alloy composition.

Altogether, our model contains the following parame-
ters: (a) Chemical potentials p„and lMB for the two
species (the zero of chemical potential was defined as the
chemical potential of the vacancies); (b) chemical binding
energies E(S;,S~) of nearest-neighbor covalent bonds, de-
pending on the atomic species which are connected by
the bond; (c) ideal nearest-neighbor bond lengths
Ro(S, ,S ), depending on the bond type as well; (d) bond
"stiffnesses" E(S;,S ) for nearest-neighbor bonds,
describing the energy cost of the bond length being
diFerent from its ideal value Ro(R, , S& ); and (e) angular
"stiffnesses" A (S;,S,Sk ), which describe the energy cost
of an angle between nearest-neighbor bonds having a
nonideal (nontetrahedral) value. The angular stiffnesses
are essential for stabilizing a diamond lattice. Prescrib-
ing the bond lengths alone is not sufficient, because an
¹ ode lattice has 3' translational degrees of freedom,
while the bond lengths impose only 2% constraints.
Based on this fact, and on symmetry considerations,
Keating' introduced a "minimal" elastic interatomic po-
tential, whose two parameters E and A are uniquely re-
lated to the macroscopic elastic constants of the crystal.
Originally intended only for pure substances (only in this
case does the one-to-one correspondence to the macro-
scopic properties hold), it was later also used to describe
the structural properties of mixed systems and is still in
use today

For reasons of simplicity, we also adopted the Keating
potential for the present study. The Hamiltonian there-
fore reads

A(S, ,S),Si, )[r," rk +Ra(S;,S )Ro(Sk, S )/3j
i —j—k

(2.5)

In these equations, i-j denotes a bond of the nearest
neighbors i and j, while i-j-k denotes the angle of the
nearest-neighbor bonds i-j and j-k with vertex at site j.
The bond vector r; =r; —r. , where r; is the position of
site i.

The "chemical" part &,„t+&,h, is equivalent to a
Blume-Emery-Griffiths model, which becomes apparent
by the rewriting

&,„t+&,h,
= —J, g S;S,. —J2 g S;S

2 J J
—J3 g (SS +S,S, )

H, QS, H2+S;— —

with

(2.6)
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and

J, = —
—,
' [E( A, A )+E(B,B )+28( A, B )],

Jz = —
4 [E( A, A )+E(B,B ) —2E( A, B ) ],

J3 = —
—,'[E( A, A ) —s(B,B )],

IIi =-,'(C ~+Vs»

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

However, since the vacancies practically do not occur,
i.e., S,. =1, we effectively study the model in its Ising lim-
it with exchange constant J2.

However, S; and r; are not the only degrees of free-
dom. Additionally, we allow the linear sizes of the simu-
lation cell A„, A, and A, to Auctuate (independently) in
order to fix the pressure P =0. The most general shape of
the cell is a rectangular parallelepiped. We did not allow
for cell shearing, because both pure crystals are cubic.
The partition function is therefore

Z= & f dA, f "dA~ f dA, f d r, f d rz exp[ —P&([S,], [r, ],A, A, A, )] .
z3

(2.12)

P denotes the inverse temperature 1/ks T, kii being
Boltzmann's constant. Note that the Hamiltonian de-
pends explicitly on A„, A, and A, because of the period-
ic boundary conditions: For example, increasing A„
while keeping r,- and the S; constant moves the periodic
images further away from each other. Because these im-
ages are connected with each other via elastic bonds, this
procedure is in general accompanied by an energy gain or
loss. The free energy resulting from the partition func-
tion is

I'" = —k~TlnZ . (2.13)

A' A'A,'~,s=~ NkiiT ln—
AAA, (2.14)

the latter term describing the change in translational en-
tropy when the volume changes. For more details on
constant-pressure simulations, see Ref. 23.

The program was fully vectorized and ran on an IBM
ES/9000 mainframe with vector facility, yielding a speed
of roughly 3 X 10 particle updates per CPU second.

III. CHOICE OF PARAMETERS

The typical energy scales of the present model are in
the meV range. In order to suppress the occurrence of
vacancies, we chose p~ and pz to be substantially larger
than these energy scales, and controlled the composition

The stochastic algorithm is performed in the following
way: For a single particle of type S, and at position r;,
we randomly choose a new type S (out of the three possi-
bilities) and a slightly displaced new position r, , keeping
the other particles and the box dimensions fixed. This
random move is accepted or rejected by the usual
Metropolis criterion. After all particles have attempted a
random move, we randomly choose new box sizes A' Ay,
and A,'. In order that this trial configuration be homo-
geneous as well, the new node coordinates must be
x =(A' /A )x;, etc. The pseudospin configuration, of
course, remains unchanged (S =S,. ). The energy change~ associated with this global distortion of the system is,
however, not the only quantity entering the Metropolis
acceptance criterion. Instead, one has to use

I

by varying p„—IMii on a meV scale (in practice, we arbi-
trarily set p, „=1 eV, and varied ps ).

Reasonable Hamiltonian parameters which correspond
to pure species can be derived from known physical prop-
erties of the materials. E(Si,Si) and s(Ge, Ge) were es-
timated from the heat of atomization per atom, which is
nothing but the energy to break two bonds out of the
ground state. From the values given in Ref. 24, we con-
clude that E(Si,Si) =E(Ge,Ge) = —l. 9 eV. Similarly,
Ro(Si,Si) and Ro(Ge, Ge) are related to the lattice con-
stants, which, according to Ref. 25, are as; =5.43089 A
and a0, =5.65754 A at T=300 K. From the geometry
of the diamond lattice it follows that R o

=3a /16.
Hence, we set Ro(Si,Si) =2.352 A and Ro(Ge, Ge) =2.450
0
A. The thermal-expansion coefficients are so small that
we expect temperature effects on a to occur only in the
fifth significant digit. The parameters E and A for Si and
Ge have been previously calculated from the macroscopic
elastic constants. ' From there we obtain
E(Si,Si)=0.2053 eV A and E(Ge,Ge) =0.1508 eV A
as well as A(Si,Si,Si) =0.0585 eV A and
A(Ge, Ge,Ge) =0.0444 eV A

However, those parameters which correspond to the
mixture are much less well defined. For Ro(Si,Ge) we
simply chose the arithmetic mean of Ro(Si,Si) and
Ro(Ge, Ge) (2.401 A), motivated by the intuitive picture
of joining covalent bonding arms, and the experimental
finding that Vegard s law (i.e. , linear variation of the alloy
lattice constant with concentration) holds rather well for
the Si-Ge system.

The parameter E(Si,Ge) is related to the "unmixing en-
ergy. " If only the chemical part of the Hamiltonian were
present, mean-field theory (MFT) would predict a critical
temperature at ks T, =2E(Si,Ge) —E(Si,Si) —E(Ge,Ge).
Kelires and Tersoff' derived an unmixing enthalpy of
EH=7. 3 meV from their empirical potential, which they
related to the MFT prediction k&T, =26H. From these
relations, we estimate E(Si,Ge)= —1.89 eV. The good
agreement between the MFT prediction for T, and the
simulation result, as reported by Kelires and Tersoff is
probably largely accidental: It is well known that MFT
critical temperatures of lattice gases are substantially
higher than the correct values. On the other hand, by
only considering the lattice-gas part of the Hamiltonian,
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one disregards all of the elastic effects which introduce an
additional tendency for unmixing; these errors may just
cancel each other to a large extent.

The remaining parameters are E and A for particle
combinations corresponding to a mixed system. Bublik
et a/. performed diffuse x-ray scattering of a sample
containing 28% Si and 72% Ge, from which they ex-
tracted the elastic constants of that sample. Assuming
that these are the elastic constants of the system at 50%
composition with a lattice constant of (as;+ao, )/2, we
again transformed to E and 3 and assumed that these pa-
rameters pertain to every possible particle combination.
We therefore set E(Si,Ge) =0.2316 eV A and
A(Si,Ge, Si) = A(Ge, Si,Ge) = A(Si, Ge,Ge) = A(Ge, Si,Si)
=0.0436 eV A [the relations E(Si,Ge) =E(Ge,Si) as
well as A(Si,Ge, Ge) = A(Ge, Ge,Si) and A(Ge, Si,Si)
= A(Si, Si,Ge) are obvious from the symmetry of the lat-
tice]. Of course, this is a very drastic procedure and the
resultant parameters are only approximate. In addition,
the Keating Hamiltonian has even more basic flaws
which are independent of the parametrization, as we will
discuss in Sec. VI.

All the other parameters are zero, because they corre-
spond to a particle combination containing a vacancy.

IV. LOW- TEMPERATURE BEHAVIOR
AND THERMODYNAMIC INTEGRATION

We measured the concentration of B atoms,
(cia ) = (Nit ) /N, where (N8 ) is the average number of
B atoms in the system. Hysteresis loops in the (c8 ) vs

pz curves at fixed temperature were obtained by starting
deep in the A-rich phase, increasing pz until the system
was deep in the B-rich phase, and then sweeping p~ back
down. Here each simulation run started from the final
configuration of the previous one. While a system of 512
particles could be used throughout the sweeps at lower
temperatures, we studied an 8000-particle system at
higher temperatures in order to ensure sufhcient metasta-
bility (of course, the larger systetn was only needed in the
vicinity of the transition). The observation time was al-
ways 10 Monte Carlo steps per site (MCS). Figure 1

shows a hysteresis loop rather close to the critical tem-
perature. In order to accurately determine the chemical
potential of the transition, we integrated the relation

1.0 J y ~ 0 o
~ ~ ~
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FICx. 1. Hysteresis loop of &c~) as a function of ps, at
kz T=0.026 eV ( =94% k~ T, ). The inset shows the transition
region on an expanded scale.

free energy which finally result from those calculations
are shown in Fig. 2, corresponding to the hysteresis loop
in Fig. 1. In this figure, we make use of the fact that the
location of the intersection depends only on the free-
energy difFerence, and, by arbitrary convention, set the
free energy at the end point deep in the B-rich phase
equal to zero. The absolute free energies could not be
measured, as will become clear in the following para-
graphs.

By integrating the equation

F
BT T

U
T2 ' (4.3)

0.06

which relates the free energy to the internal energy
U= (&), b,I' at finite temperature can be deduced from
hF in the low-temperature limit. While the latter is
trivial in simple lattice gases (there, for
T~OEF~EUo UAO UBO, where UA0 d Ugo
the ground-state energies of the A and B phases, respec-
tively), a model with continuous classical degrees of free-
dom requires proper treatment of the problem of infinite
ground-state entropy.

aF
Bpg

(4 1)

in both phases to obtain branches of the free energy
whose intersection point defines the transition. The nu-
merical integration was done by fitting cubic splines to
the data points, exploiting the fact that the curves' slopes
at the end points are known from the "susceptibility:"

t)&ca &

(&.,'& —&., )') . (4.2)
Bp k T

0.04O
CD

LL
0.02

0.00
0.94

0.051
0.988

0.97

0.994

1.00
u gevg

I

1.03

Of course, this intersection method requires that the
difference in free energies AF =Fz —Fz between the end
points deep in the phases is known. Methods to deter-
mine AF will be discussed below. The branches of the

FIG. 2. The branches of free energies corresponding to Fig.
1. The inset corresponds to the inset of Fig. 1, showing the in-

tersection on an expanded scale.
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For T~O, one can regard the pseudospin degrees of
freedom as frozen-in and treat the continuous degrees of
freedom within the harmonic approximation U= Uo+ —,'(N+1)kB T (4.7)

because no kinetic energy is considered in the Hamiltoni-
an. Upon integration, Eq. (4.6) yields

&( IS, I, Ir; I,A)~ Uo+&q( Ir; I,A), (4.4)

where Uo is the ground-state energy and &z stands for
the harmonic excitations. We do not give an explicit ex-
pression for &h because its derivation is straightforward
but tedious. The free energy in the 1ow-temperature limit
is then

F= Uo
—kB T ln f d A f d r, . f d r~ exp( p&h—)

(4.5)

C~ = T = =
—,'(N+ 1)kB,as aU

aT aT (4.6)

where S stands for the entropy. Note that the factor
(N+ 1) occurs due to the additional degree of freedom of
the fluctuating box size, and that the prefactor is only —,

'

(the integration in A may safely be extended to the full
three-dimensional space, with an extremely small error
whose relative contribution vanishes in the thermo-
dynamic limit). It is well known that the specific heat of
a classical harmonic system obeys the law of Dulong and
Petit: '

S= ', (N+—1)kB ln
T

0

which proves the anticipated divergence of S for T~O.
The integration constant To depends on the system, i.e.,
on the actual value of the inte(. ral in Eq. (4.5). These
forms can be combined to yield

F= U —TS= Uo+ ', (N+1—)kBT 1 —ln
T

To
(4.9)

EF=b.UO ', (N+1—)k—BT ln
T08

OA

while Eq. (4.5) yields

(4.10)

From this one sees that it is much more useful to consider
bF=b, U —Tb,S (i.e., the free-energy difference between
the two phases at the same temperature) than F: in hF
the diverging contributions cancel out. From Eq. (4.9)
one obtains

f d A f d 1 i
' ' ' fd l~ exp( pJVhg )

AF=AUO —k~T ln f d A f d r& f d r~ exp( PAI,B)— (4.11)

Comparison of the expressions shows that the ratio of the
harmonic partition functions does not depend on temper-
ature, and that its logarithm is the (nontrivial) difference
in ground-state entropies:

d A d r, - d r~exp'—
AS() /k~ =ln

f d A fd r, f d rz exp( P&hB)—

as well as

and

hF =6Uo —TESO+ 65F

AU=EUO+55U .

Analogously to Eq. (4.3) one also has

(4.15)

(4.16)

(4.12)

F= Uo+ —,'(N+1)kBT 1 —ln +oF,T
0

(4.13)

The T independence of the ratio is due to the harmonicity
of the Hamiltonians, which allows us to scale the prefac-
tor P into the integration variables ' (the Dulong-Petit
law arises from the same property). Physically, the main
contribution of b,so comes from the different atomic radii
of Si and Ge, which causes a larger translational entropy
for Ge. Altogether, one sees that the T~O thermo-
dynamics is completely solved if one knows DUO, which
is trivial (b, Uo/N=pB —1 eV for our choice of parame-
ters), and b,So, which shall be discussed below.

For T)0, one also has to take into account anharmon-
ic and pseudospin excitations. For these contributions
we write

a
aT

65F 65U
T T2

(4.17)

which can be integrated after determining 65U from Eq.
(4.16). We did this for a 512-particle s~ stem with a statis-
tics of 10 MCS along paths of p&=0.94 and 1.05 eV.
The normalized integrand P b,"oU/N is shown in Fig. 3.
The data are somewhat noisy, but accurate enough to
roughly estimate the integral, which is sufficient in our
case because the main contribution comes from
6Uo TASO, for all temperatures in consideration.

We now turn to the determination of Aso, according to
Eq. (4.12). Since the integrals are Gaussian, they can, in
principle, be calculated analytically. However, we found
it easier to slightly modify our MC program and calcu-
late the ratio of partition functions by umbrella sampling:
Eq. (4.12) can be rewritten as

U = Uo+ —', (N+ 1)kB T+ 6U (4.14) ~SO /kB =»& exp[ —@~~A ~hB )) & (4.18)
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2
~ ~ ~

~ ~

spectively, we write

A =aA/BAD(1+l ) (4.20)

CD

1

0
~ ~ ~ ~ ~

~ ~

0.00 0.01 0.02
k, T [eV]

I

0.03 0.04

FIG. 3. The normalized integrand for thermodynamic in-
tegration according to Eq. (4.17), as a function of temperature.

where ( ) denotes a thermal average of a system
whose Hamiltonian is &bB. Now, h =p(&bA —&bB)
obeys, to a very good approximation, a Gaussian distri-
bution with unknown mean and variance, as follows from
the central limit theorem for large systems. Hence, by
means of a simple one-dimensional Gaussian integral, Eq.
(4.18) is simplified to

r, =aA/B[r, o(1+1 )+u; ] . (4.21)

Here a denotes a Cartesian index, while l and u, are
small dimensionless elongations of the system dimensions
and the particle coordinates, respectively. Note that the
dimensionless T=O values for these degrees of freedom,
Ap and r,.o, are the same in both phases. Exploiting the
fact that the Keating potential is purely fourth order, and
that we have chosen Ro~&~ ~a~&~, we may write the
harmonic Hamiltonians in the form

~hA/B aA/B [+A/Bgb( {ui

+ ~A/BQ ({u, ],{1 ] )], (4.22)

l =(pa A/BEA/B )' l (4.23)

where the functions Qb and Q„resulting from the bond
and angle terms of the Keating potential, are purely
quadratic in their arguments. Again, Qb and Q, are the
same for both phases. Introducing r„&z = Az&~/Ez&~
and the scaled variables

ISO/kB = —,'((h ) —(h ) ) —(h ), (4.19)
and

which can be calculated by MC simulation with &bB as
Hamiltonian.

Obviously, this method works particularly well if &bA
and &bB are very similar: In this case, h is small and has
a narrow distribution which is easy to sample. We there-
fore introduced a simple rescaling transformation which
extracts the main contribution to ASo and makes the
Hamiltonians more similar. In the A and B phases, re-

I

(pa A

/BE

A�
/B ) (4.24)

After transforming to the variables 1 and u;, we rewrite
Eq. (4.12) as

one finds

p&b„/B =Qb({u, ], {l ] )+r„/BQ, ({u, J, {l J) . (4.25)

EBaB f d 1f d ui . . f d u&exp( —gb r„g,)—
ISO/kB = ', (N+ 1)ln +—ln f d 1f d u, f d uiv exp( —

Qb rBQ,)— (4.26)

The second term can be treated by the umbrella sampling
method outlined above, which we did for systems of 512
and 2744 particles with a statistics of 10 MCS. Alto-
gether, we obtained ISO /(NkB ) = —0.3398+0.0216
= —0.3182, where the first number results from the first
term in Eq. (4.26), while the second is the result of our
MC simulation. As expected, ASO is negative, mainly
due to the larger atomic radius of Ge.

From this one can also calculate the low-temperature
behavior of the first-order transition line in the (pB, T)
plane. The condition for the transition is AI' =0, which
means, in the low-temperature limit, 6 Uo =

TORSO, or, for
our parameters, kB T =(1 eV pB ) /0. 3182. —

The phase diagrams which we obtained by these
methods are shown in Fig. 4 [grand-canonical ensemble,
(iMB, T) plane] and Fig. 5 [canonical ensemble, (c TB)

plane]. The slight asymmetry in Fig. 5 is due to the fact
that the present model, in contrast to usual lattice-gas

I

models with pair interactions, lacks any spin-up/spin-
down symmetry.

We obtain a critical temperature of T, =320 K. For
comparison, note that the study in Ref. 10 found T, =360
K, while Refs. 1 and 2 calculated a much smaller T, of
about 170 K. We were not able to find an experimental
value in the literature. Apparently, this has not been
done yet, because of the inherent difficulty of extremely
long equilibration times at these low temperatures. As al-
ready mentioned in Sec. III, some of our interaction pa-
rameters are not very well defined. Therefore, not too
much emphasis should be put on our numerical value of
T'

It is interesting to note that a substantial contribution
to the unmixing is due to the elastic part of the Hamil-
tonian. This is easily seen by comparing our value of T,
to the critical temperature of the same model with the
elastic part being switched off, i.e., all the E's and A's be-



14 188 B. DUNWEG AND D. P. LANDAU 48

0.03

0.02

from the discussion above that AI' =6U0, with AS0~0
for k —+ ~. Of course, EU0 must now be calculated for
the ( [r;„„],A„L) configuration. For A, ( ~, one in-
tegrates the relation)

CD

I—

0.01 down to X=O:

(4.28)
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FIG. 4. The phase diagram in the grand-canonical ensemble.

g (r; —r;„i ) +(A —AFL) (4.27)

to the Hamiltonian, where X is a coupling constant which
is varied, while r;FL and AFL are external fixed parame-
ters which denote the "ideal" positions and system sizes,
respectively. We chose the structure of the X=O ground
state in the A phase for these parameters. At finite tem-
perature, but large negative or positive values of pz, the
pseudospin configuration is again fixed in the all-up or
all-down states, respectively. Moreover, if k is
sufficiently large, the [r, I and A degrees of freedom are
completely controlled by &„L. If the two state points in
consideration have the same temperatures, then it follows

ing zero. This latter model is nothing but the ferromag-
netic nearest-neighbor Ising model on the diamond lattice
with exchange constant Jz=5 meV [cf. Eqs. (2.6)—(2.11)
and Sec. III], whose critical temperature is well known
from series expansions [(kiiT, )/(4Jz)=0. 67601]. For
our case we find T, = 156.9 K, i.e., the elastic part rough-
ly doubles the critical temperature.

We have also tried the method proposed by Frenkel
and Ladd (FL) for finding the free-energy diff'erence be-
tween two phases. The method is conceptually straight-
forward, and even easier to implement than the pro-
cedure outlined above. They add a term

bF(A, =O)=b, UO+ f dA.
0

(4.29)

We performed simulations of a 512-particle system at
k~T=0.01 eV, choosing p~= —9 (deep in the A phase)
and 11 eV (deep in the B phase) to be far from the first-
order line, which is substantially shifted for large values
of A, . After integration of Eq. (4.29) we integrated &cia )
over p~ [see Eq. (4.1)] in order to obtain the free-energy
difference between the state points p~ =0.94 and 1.05 eV,
which we had also determined by the previous method
(bF/%=0. 053 eV).

Figure 6 shows the Frenkel-Ladd integrand as a func-
tion of A, . Most data have been obtained with a statistics
of 5 X 10 MCS; however, for ka& & 5 eV in the B phase
we used 1.5 X 10 MCS. This improved statistical effort
was necessary because, at small A. , &„i/1, shows large,
slow Auctuations: In the limit A, ~O the full translational
invariance of the system is restored, while for A, )0 it is
broken by the introduction of the external parameters
r, FL and A„i. The consequence is that &&„L/A, ) is
infinite for A. =O, caused by the free diffusion of the
overall system, whose "precursor" is seen for finite X. Of
course, this problem occurs first in the B phase, whose
lattice constant does not match that of &„„.We view
this as a fundamental weakness of the Frenkel-Ladd
method, at least in its simple implementation such as the
present one: The most important contributions of the in-
tegral come from the small-k values, but there the in-
tegr and is the difference of two diverging functions,
which is intrinsically numerically inaccurate. We there-
fore believe that our Frenkel-Ladd value for AF between
the states at p~ =-0.94 and 1.05 eV (bF/%=0. 04 eV),
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FIG. 5. The phase diagram in the canonical ensemble.
FIG. 6. The normalized integrand for Frenkel-Ladd integra-

tion, according to Eq. (4.29).
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which we obtained by spline integration and extrapola-
tion [linear extrapolation of hF in A, for A. ~O, and linear
extrapolation of hF in I/A, for A,~ ao (Ref. 33)] is less ac-
curate than the estimate resulting from the previous
method.

V. CRITICAL BEHAVIOR

A. Theoretical background

Since our model includes elastic distortions, an
efFective long-range interaction between the pseudospins
occurs and the unmixing is not necessarily Ising-like.
The influence of elastic effects on phase transitions has
been a subject of longstanding interest. Mattis and
Schultz discussed a very simple model of a magnetic
system coupled to elastic distortions, and showed how
this model could exhibit a temperature-driven first-order
transition at zero magnetic field. Later, more realistic
models for "compressible Ising models" were stud-
ied, mostly by use of the renormalization-group
technique. The extensive study of Bergman and Halpe-
rin resulted in various predictions, depending on the en-
semble (constant volume/constant pressure) and on the
boundary conditions. For our case, constant pressure,
the prediction is a weak temperature-driven first-order
transition at zero magnetic field. There is no statement
about the behavior at nonzero field, but since their Ham-
iltonian has strict spin-up/spin-down symmetry, the
first-order behavior results from the coexistence of three
phases; therefore a triple point in the field-temperature
plane occurs, where the low-temperature first-order line
branches into two lines at higher temperatures.

In this context, we emphasize that our model is not a
standard compressible Ising model: In the latter, the dis-
placement field couples to the square of the spin field, '

while in the present model the leading coupling is /inear
in the spins. Such a linear coupling is, of course, forbid-
den in a magnetic system (for reasons of time-inversion
symmetry), but in the present model with pseudospins it
is allowed. This term is easily seen by writing

r',, =(&r,, )+u,, )'=&r,, &'+2&r,, ) u;, , (5.1)

with

Ro(S;,S.) =po+p, (S, +S~ )+p2S;Si. , (5.2)

and

po= —,
' [R 0( A, A )+R o (B,B )+2R 0( A, B )],

p, = —,'[Ro(A, A )
—Ro(B,B )],

(5.3)

(5.4)

p2= —'[Ro(A, A )+Ro(B,B)—2RO(A, B)] (5.5)

(recall that the vacancy species is suppressed in the simu-
lation). Insertion of Eq. (5.1) and (5.2) into &d b,„d, [Eq.
(2.4)] yields, after multiplying out the square, the asserted
bilinear coupling between displacements and spins. One
also sees that this leading contribution is proportional to

where u;. =u, —u is the difference in the atomic dis-
placements (which are assumed to be small), and

p&, which models the atomic size mismatch and has no
analog in magnetic systems. Furthermore, it should be
noticed that the present simulation was run without al-
lowing a global shearing of the system, which of course
imposes a constraint on the long-wavelength (k=O) Iluc-
tuations of the displacement field.

If the first-order line does not end in a triple point, it
must end in a critical point. It is then possible that the
critical point exhibits mean-field behavior, since in simi-
lar systems elastic effects have been shown to generate a
sufFiciently long-range interaction: Classical behavior,
was, e.g., found in the gas-liquid transition of hydrogen in
metals, in structural phase transitions (both in crystal-
line and amorphous solids), and, experimentally, in
ferroelectrics. For a derivation of the long-range nature
of the efFective interaction between pseudospins, see Refs.
38 and 39; we believe that the arguments presented there
also can be applied to our model. According to Ref. 38
the interaction decays like r, and corresponds to an in-
teraction between dipolar elastic defects (i.e., localized
stresses). For a more detailed derivation of the defect-
defect interaction and its modification by the finite size of
the system, see, e.g. , Ref. 47. In this context, it is
worthwhile to recall renormalization-group results about
the critical behavior of d-dimensional magnetic systems
with power-law interactions: An isotropic interaction
which decays like r ' + ' leads to mean-field behavior if
o. (2—g, where the critical exponent g pertains to the
corresponding short-range system (Ref. 48, Sec. IVA).
Qf course, this holds for o =0, but in this case the energy
in the ferromagnetic phase is no longer proportional to
the system volume, which is clearly unphysical. For a di-
polar interaction with strong spin anisotropy in the Ising
limit (Ref. 48, Sec. IVE), it is found that d=3 is the
upper critical dimension, resulting in the prediction of
mean-field behavior with logarithmic corrections.

Nevertheless, it is not at all obvious to us if our model
can be mapped on any of the Hamiltonians discussed in
the literature. If this is not the case, a renormalization-
group analysis of a class of models like the present one
would be highly desirable.

For the sake of completeness, we checked our data not
only for the Ising and mean-field predictions, but also for
Fisher-renormalized Ising exponents, although these
are predicted to pertain to constant-volume systems
only. 4'4'

B. Results and analysis

For the analysis of the critical properties we used the
multihistogram reweighting method. ' ' In Appendix A
we present a rederivation of the method which we hope is
particularly transparent and sheds some more light on
the optimization process involved in the reweighting.

After the phase diagram had provided us with a rough
estimate for the location of the critical point (p~„k~ T, ),
we obtained data with very good statistics (10 MCS) for
all three system sizes (N=512, 2744, and 8000) at four
state points in its vicinity: For pz =0.992 eV, we chose
the temperatures kz T=0.0269, 0.028, and 0.029 eV,
while for pz =0.9919 eV we set k&T=0.0275 eV (this
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last state point was observed with slightly worse statis-
tics).

After every Monte Carlo step we measured the magne-
tization

0.7

0.6

0.5
M= gS; (5.6) 0.4

and "core energy" U, which is defined via

&=U+&,„, (5.7)

0.3

0.2

[cf. Eqs. (2.1) and (2.2)]. Taking into account the
suppression of vacancies, one can rewrite &,„, [Eq. (2.2)]
as

0.1
0.026

I

0.027
k, T [eV]

0.028

(5.8)

FIQ. 7. The maximum cumulant [cf. Eqs. (5.9) and (5.10)] as
a function of temperature.

from which it is obvious that the total Hamiltonian is
uniquely determined from M and U. For a given system
size, we determined the maximum and minimum value of
M and U, where the maximization (minimization) ran
over all observations at all state points. These intervals
define a rectangle in (M, U) space, which was discretized
in a 1001X 1001 grid in order to construct a two-
dimensional histogram of these variables. The multihis-
togram equations were solved by simple iteration with
Aitken 6 acceleration.

For constant temperature, we determined the fourth-
order cumulant

(5.9)

as a function of p~. The critical value of p~ was found as
the location of the maximum of U4, resulting in the tran-
sition line p,z, ( T) [note that the histogram method allows
the calculation of U~(p~ ) for arbitrary pz values].

The dependence of the cumulant on the field H and the
system size as a useful tool for the analysis of a field-
driven first-order transition was first introduced by
Binder and Landau. It should be noted that the
definition given in Eq. (5.9) diff'ers slightly from that in
Ref. 53, and therefore a di6'erent behavior results. How-
ever, the approach given in Ref. 53 can be applied to our
case as mell. Our analytical result is described in Appen-
dix B.

In Fig. 7 we plot the maximum value of the cumulant
along the transition line, for the three system sizes in con-
sideration. More precisely, the figure shows the function

U4'"(T)=U4(ps, (T), T)= max U~(ps, T) . (5.10)
IJg

At the critical point, the curves for the various system
sizes will always intersect in one point, for diferent
reasons depending on the nature of the transition.

(i) At a standard second-order transition with critical
fluctuations, the curves intersect at a nontrivial fixed-
point value. For the universality class of the three-
dimensional Ising model, this value is close to
UIs 0 47 55

(ii) At a mean-field-type second-order transition, the

curves intersect at a fixed point which can be calculated
exactly. For a one-component order parameter, one ob-
tains

U "= 1 — I ( —,
'

) =0.270 52 .1

24m.
(5.11)

(iii) At a temperature-driven first-order transition, we
expect an intersection at U4"'=0. 5. For those q-state
Potts models whose transition is first order, it has been
shown that the intersection occurs at

q+1
3g

(5.12)

where q is the number of coexisting phases below T, (note
that we have chosen a di8'erent normalization for U4
than Ref. 57). In our case (q =2), this results in
U4"' =0.5. Although our model has less symmetry than
the Ising model (i.e., the q =2 Potts model), we neverthe-
less expect the prediction to hold: With the methods
presented in Appendix 8, it can be shown very easily that
the cumulant value for three-phase coexistence in the
thermodynamic limit at the transition point is 0.5, even if
there is no symmetry in the location of the three peaks of
the magnetization distribution function.

(iv) In the case of Fisher renormalization of the critical
exponents due to "hidden variables, " we expect an in-
tersection at a value which is precisely the same as for the
system without the hidden variables (i.e., U4 =0.47 in
our case). We conclude this because for all variables ex-
cept the specific heat Fisher renormalization is equivalent
to a nonlinear rescaling of the temperature axis. Howev-
er, we have no rigorous proof for this assumption.

From the intersection point, we conclude that
p~, =0.9918 eV and k~T, =0.02762 eV. Moreover, the
intersection value U4=0. 29 - 0.30 is much closer to
the mean-field value than to any other of the above pre-
dictions. This alone is a rather good indication for a
mean-field-type second-order transition, which is further
corroborated by additional observations: Figs. 8 and 9
show the energy and magnetization distribution func-
tions, respectively, rather close to the critical point.
While the energy shows simple Gaussian behavior with a
single peak, the magnetization distribution of the smallest
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'P

bCCC: 1—
T.

(5.13)

where the order-parameter exponent P has a value of
=0.32 in the Ising universality class. In the case of
Fisher renormalization, it has the efFective value

/3 = =0.36,efF (5.14)

-4.75 -4.74
U / N [eV]

-4.73

FIG. 8. Probability distribution of the total energy per parti-
cle, at p& =0.991 84 eV and kz T=0.02762 eV (close to the crit-
ical point). The curves are normalized such that the integral is
unity.

system agrees well with the form A exp[ —B(rn rn, ) ]-
( A and B being positive constants), which one expects at
a mean-field critical point. For the larger systems, an
asymmetric double-peak structure seems to develop, indi-
cating that the chosen state point is probably slightly ofF
the critical point ( T below T„and pz favoring the phase
with positive magnetization). For a temperature-driven
first-order transition (i.e., a triple point), one expects
rather di6'erent behavior: In this case, both distributions
should exhibit three peaks (for each of the coexisting
phases) with a possible degeneracy of two energy peaks
due to equivalence of the ordered phases. Therefore, in
the limited range of system sizes accessible to us, there is
no indication of a temperature driven first ord-er transitio-n
whatsoever. On the other hand, it must be noticed that
the predicted first-order transition ' should be very weak
and hence extremely hard to detect.

Having concluded that our simulation is best described
by a critical point, we can analyze the data taken along
the phase boundary. Close to T„ the concentration jump

g = (Nkii T ) '( ( M ) —( M ) ) (5.15)

are not hampered by this additional parameter: In these
quantities only central moments ((M —(M ) )") appear,
and M, cancels out.

In the case of a standard critical point, the finite-size
scaling relations for U4 and g read

U4= U4(tL '~
) (5.16)

X=L "X(«"), (5.17)

where L denotes the linear system size, t stands for
T/T, —1, and y and v are the critical exponents for the
susceptibility and correlation length, respectively. In

where u stands for the specific-heat exponent of the pure
(unrenormalized) system (a =0.12 in the Ising universali-

ty class ). The mean-field value is P= —,'. Figure 10
shows our result. Though by no means conclusive, the
data seem most compatible with mean-field behavior.
One also sees that the critical region is relatively narrow,
extending to not more than 4% of T, .

For the finite-size scaling analysis via "data collaps-
ing, " we therefore restricted the data to this range. An
analysis of the order parameter was not attempted, since
this requires an accurate knowledge of the critical magne-
tization M, . On the other hand, the cumulant U4 and
the susceptibility

3.0
N=512

-------- N = 2744
N = 8000

1.0

2.0

1.0

0.0
-1.0 -0.5 Q.Q 0.5 1.0

0.1
0.01 0.10

1-T/T,
1.00

FICx. 9. Probability distribution of the magnetization per
particle, at p& =0.991 84 eV and k& T=0.027 62 eV (close to the
critical point). The curves are normalized such that the integral
is unity.

FIG. 10. Log-log plot of the concentration jump hc of the
phase diagram (see Fig. 5) as a function of reduced temperature
1 —T/T„using a value of kz T, =0.027 62 eV. In the asymptot-
ic regime, the curve s slope is the critical exponent P, indicated
by the lines for the three hypotheses.
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'V

eff (5.18)

these relations, it is implicitly assumed that the field con-
jugate to the order parameter vanishes, i.e., that the
quantities are evaluated along the transition line.

In the case of Fisher-renormalized critical behavior,
the exponents must be replaced by

BV Bco (6.1)

where co is the average phonon frequency, and P the pres-
sure. A hand-waving argument shows why this should be
negative for the Keating potential. From Eq. (6.1) it fol-
lows that

BV B6) Bco B7. BE
BT" BP B~ BE BP ' (6.2)

V
V

erat
(5.19)

Finally, for a mean-field transition in a d-dimensional
system, the finite-size scaling relations read

400
~ N =512

N = 2744
N = 8000

U4= U4(tL ) (5.20) 300

L d /2g( tl d /2
) (5.21)

In the Ising universality class, one has y=1.24 and
v=0. 63, while a=0. 12. From these numbers, one ob-
tains 1/v= 1.6 for Ising scaling, and 1/v, ~= 1.4 for Fish-
er scaling, while d /2= 1.5. Because these values are so
close to each other, we were not able to use the cumulant
to distinguish between the cases.

On the other hand, for Ising and Fisher scaling, one
has y /v =y,~/v, ~= 1.97, which is distinctly difterent
from 1.5. Therefore, the susceptibility is a much better
candidate for discriminating between the cases. As
shown in the data collapsing plot Fig. 11, the mean-field
hypothesis is in best agreement with the data.
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VI. QTHKR PRO)PERTIES

Figure 12 shows the dependence of the lattice constant
a, obtained from the system volume V, as a function of
Ge concentration, at roughly twice the critical tempera-
ture. Vegard"s law, i.e., linear behavior, holds rather well
for our system.

In Fig. 13, we study the temperature dependence of the
system volume at constant chemical potentials. Close to
the transition line, one can observe complicated behavior,
since there also (cz ) depends on temperature. In order
to only see the eA'ects induced by the Keating potential,
we adjusted the chemical potentials for a pure 3 phase
(p„=12 eV, p~ =10 eV). The data displayed in Fig. 13
were obtained for a 512-particle system; however, we also
checked a few data points against an 8000-particle system
in order to exclude finite-size eAects. Obviously, the
coe%cient of thermal expansion is negative up to very
high temperatures, in contradiction to intuitive expecta-
tion and experimental observation: While real Si actually
does exhibit negative thermal expansion in the tempera-
ture range from 0 to about 120 K, our system shows
this behavior for all temperatures which we studied (up
to about 3000 K), with no observable trend to the con-
trary.

For a full understanding of this behavior, an analysis
along the lines of Gruneisen theory is necessary. Accord-
ing to this theory, one has
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FICx. 11. Data collapsing plot for the scaled susceptibility as
a function of scaled temperature [cf. Eqs. (5.15), (5.17), and
(5.21)]. The data were obtained along the critical line, defined

by the maximum of the cumulant. A value of k&T, =0.02762
eV was used, while the critical exponents are those of various
universality classes: Three-dimensional Ising (a), Fisher-
renormalized Ising (b), and mean-field theory C,c).
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FIG. 12. The lattice constant (in A), obtained by the average
volume, as a function of average concentration of Ge. A 512-
particle system was simulated at k& T=0.05 eV, well above the
critical temperature.

where r is the average phonon cycle time [i.e.,
w=(2m)/co], and E the total (i.e., potential and kinetic)
energy of the system. Assuming BE/BP &0, the volume
expansion coefticient is positive if ~ decreases with E. In-
stead of embarking on the full phonon problem on the di-
amond lattice, which would be necessary to rigorously
calculate B~/BE, we hope to gain some qualitative insight
by instead considering the one-dimensional motion of a
particle in an external potential, for which the task of
finding w(E ) is trivial. Hence we study a one-
dimensional potential of the form

U(x ) = (x&—
x&() )

k
2p

(6.3)
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I
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0 3FIG. 13. The volume per particle (in A ) as a function of
temperature, for a 512-particle system at p &

= 12 eV and

pz = 10 eV, in a pure- A phase.

p =1 corresponds to a harmonic potential, while p =2 is
the one-dimensional analog of the Keating potential. In
the limit of small energies, one finds that Br/BE (0 holds
only for —,

' &p &1.
In order to assess if this argument is of any use for our

three-dimensional system, we ran a test simulation with a
modified Keating potential corresponding to p =—', , where

FIG. 14. Same as Fig. 13 for the modified Keating potential
(see text).

we replaced r,. with a„~ (r,. )' and —r,j rk~ with

a„~ ( —r," rk )'~ . All the other parameters were left un-

changed. Figure 14 shows that for this potential one
indeed obtains a positive BV/BT. We therefore believe
that the negative BV/BT is a generic property of the
Keating potential, induced by the unphysically steep in-
crease for large distances.

VII. CONCLUSIONS

We have studied the statistical mechanics of a simple
model of a semiconductor alloy. While the present work
has focused on the binary Si-Ge system, the same model
approach can also be used for systems with three or even
more species. A lattice-gas model on a diamond lattice
was extended to include the elastic degrees of freedom
within the framework of the Keating potential. For the
simulation we chose the most natural ensemble, i.e., con-
stant pressure and constant chemical potentials.

The phase diagram was obtained by thermodynamic
integration. As discussed in Sec. IV, the free-energy
difference between the two phases can be obtained by um-
brella sampling. Two methods were compared, a deter-
mination of the ground-state entropy difference based on
the harmonic approximation, and straightforward
Frenkel-Ladd integration. While we find an intrinsic
numerical inaccuracy in the latter method (due to the
overall diffusion of the system), the first method can (in
our case) be tailored to bring the two Hamiltonians in
consideration rather close together, thus allowing dis-
tinctly better accuracy.

Apart from introducing an asymmetry into the phase
diagram, the elastic degrees of freedom also have a pro-
nounced effect on the critical behavior. As discussed in
Sec. V, our data indicate that the first-order line ends in a
critical point with classical exponents. This mean-fien-
dlik behavior is rather plausible, taking into account that
the elastic degrees of freedom introduce an effective
long-range interaction between the sites. Of course, other
reasonable scenarios are not completely ruled out by the
numerics, since our system sizes are limited: An Ising-
like transition is still possible if the effective range of in-
teraction turns out to be finite, but distinctly larger than
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the systems studied. Similarly, a temperature-driven
first-order transition is still possible if it is sufficiently
weak (i.e., the correlation length remains finite, but is
larger than our system sizes). From the analytic point of
view, we find that our model is rather similar to the stan-
dard compressible Ising model, but di6'ers from it by the
occurrence of a bilinear coupling between spins and dis-
placement field. The proper treatment of elastic alloys
with atomic size mismatch in terms of a Landau-
Ginzburg-Wilson Hamiltonian is not yet clear and poses
an interesting question for renormalization-group theory.

In the disordered phase, we find the expected result
that the lattice constant varies linearly with concentra-
tion. However, its temperature dependence in the pure
phases is qualitatively wrong, i.e., the system shrinks
upon heating. As discussed in Sec. VI, this unphysical
behavior can be related to an unrealistic description of
the anharmonicities by the Keating potential. We view
this as an even more severe drawback than the fact that
some of the interaction parameters are not very well
defined (Sec. III). More realistic studies of semiconduc-
tor materials therefore clearly require better interatomic
potentials.

H„,(S)= g H (S) (A4)

is the total number of occurrences of S in all simulations.
Now,

(H (S) ) = exp(K S)W(S),
m

where Z is the partition function at state point m,

Z = g exp(K .S)W(S) .
S

(A6)

iV„
(H„,(S) ) = g exp(K„.S)W(S)

n n

(A7)

(H...(s))
W(S) =

g (X„/Z„) exp( K„.S )
(A8)

and, inserted into Eq. (A6),

Summing Eq. (A5) over m (i.e., over all simulations), one
obtains
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(H„,(S) ) exp(K S)

g (N„/Z„) exp(K„S)
(A9)

APPENDIX A: THE MULTIHISTOGRAM METHOD

g W(s) exp(K S)A (S)

(~(s)& =
g W(S) exp(K S)
s

(A2)

where W(S) is the density of states (i.e., apart from an ar-
bitrary prefactor, the number of configurations of the sys-
tem compatible with S), the problem is solved if one can
find a good estimate for JK In order to do this, one mea-
sures H (S), the number of occurrences of S at state
point m. Obviously,

Suppose the Hamiltonian can be written in a form

—PS=K S,
where @=i/(kiiT) (k~ is Boltzmann's constant, T the
absolute temperature), K is a vector of parameters ("cou-
pling constants") of arbitrary dimension, and S is a vector
of system observables of the same dimension. We will al-
ways suppose that S can only assume discrete values; con-
tinuous observables can, in good approximation, be
discretized. The task is to find a good estimate for the
thermal expectation value of an observable A (S) at an ar-
bitrary state point K in the vicinity of other state points
K where Monte Carlo simulations have been per-
formed. Since

N
(S)= exp(K~ S),

m

(A 10)

Eq. (A5) can be abbreviated as

(H (s))=g (s)w(s). (Al 1)

Instead of simply summing up Eq. (A5), one could as well
form arbitrary linear combinations of the equations,
yielding the estimate

The partition functions Z can hence be estimated by re-
placing (H„,(s) ) in Eq. (A9) by the measured values,
and solving the resulting set of nonlinear equations itera-
tively. Apparently this set is invariant with respect to
multiplication of all Z with the same prefactor. This
rejects the fact that in a Monte Carlo simulation one is
unable to measure absolute values of partition functions,
while ratios of partition functions (or free-energy
diff'erences) are accessible. Therefore, one usually solves
the equations by requiring Z, = 1, and iterating only in
the space of the remaining Z . This arbitrariness in the
Z corresponds to an arbitrariness in W, which of course
cancels out in Eq. (A2). One then inserts the estimated
values of the Z into Eq. (A8) and again replaces
(H„,(S) ) with the measured values to obtain W.

This solution of the problem is optimal in the following
sense: Suppose the partition functions Z are known.
After defining

X =gH (S)
s

(A3)

is the total number of measurements at point m, while

gp (S)H (S)
m

g p (S)g (S)
(A12}
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for the density of states, where p (S) are arbitrary weight
factors. As far as the expectation value is concerned„ the
solution Eq. (A12) is just as good as the previous one,
Eq. (AS). However, it can be shown that the error

(a w(s) )'=
& ~(s)'& —

& ~(s) &' (A13)

&H. (s)'& —&H. (s) &'= &H (S) & (A14)

holds. From Eqs. (All) —(A14) one finds, after a little
algebra, and taking into account that different simula-
tions are statistically uncorrelated,

is minimal if p (S) does not depend on m, in which case
Eq. (A12) reduces to Eq. (A8).

In order to calculate (b, JY(S)), a reasonable assump-
tion about the statistics of H (S) is necessary. Since
there are very many values for S [note that, according to
Eq. (Al), S must be thermodynamically extensive], one
can view the filling of the histogram entry at S as a Ber-
noulli experiment, in which the event S occurs with very
small probability P, while it does not with probability
1 P[A—. M. Ferrenberg (private communication)]. In
particular, for large systems and a large number of S
values it becomes rather unlikely that the same entry S
occurs twice within one correlation time of the simula-
tion. From this assumption one can conclude that H (S)
follows a binomial distribution, which, in the limit of
large X and small P, can be approximated by a Poisson
distribution, for which the relation

the vicinity of a first-order transition.
x shall denote a configuration in the system's

configuration space I. For each of the E coexisting
phases, we assign a part of the configuration space I, .
For a single phase i, one may define a partition function
Z, and a branch of the free energy F; via

F, = .ks—TlnZ, = —ksTlnf dxexp( —P&) .
I

(B2)

We here assume a continuous configuration space; for a
discrete space analogous formulas with summations ap-
ply.

pi=
Z

g Z)

(B3)

is then the statistical weight of phase i, and we introduce
the abbreviation

E[. ]=ps . . . (B4)

for a weighted average over the phases. Associating a
configuration space function P(x) with the variable @,
the probability density of 4 in phase i is written as

P, ;(4)=Z; ' f dx 5[+—P(x)]exp( —P&) . (85)

Because of

gp (S) g (S)
(b, W'(S)) = .

2
8'(S) .

gp (S)g (S)
(A 15)

Kyf dx =fdx . .
i=1 r (B6)

a summation of Eq. (B5) over all phases, weighted with

p;, yields the total probability density of 4:
By differentiation one shows that this is minimal if p (S)
does not depend on m. In this case the minimum value is

P(@)= [P,(C&) ] . (B7)

(b, W(S)) =
(S) ' (A16)

which, by means of Eq. (All), can be written in the intui-
tively appealing form

=&H (s)&-'".
~(s) tot (A17)

APPENDIX B:
THEORY OF THE FOURTH-ORDER CUMULANT

AT FIRST-ORDER TRANSITIONS

This appendix is devoted to the calculation of the
fourth-order cumulant

&(c —&c &)'&

3& (@—
& @& )'&' (Bl)

of the distribution of a thermodynamically intensive mac-
roscopic variable 4& (e.g. , magnetization, energy, . . . ) in

One should note, however, that this formula is of limited
use for the error of 3 according to Eq. (A2), since there
time correlation effects become extremely important, re-
sulting in nontrivial covariances between histogram
values at different S.

1
P, ;(N)= exp

+2~~',
(@—4;)

20
(B8)

However, one should be aware that this form only applies
to variables N whose thermodynamically extensive coun-
terpart is additive with respect to volume. On some oc-
casions, one studies cumulants of quantities which do not
satisfy this condition (e.g., root-mean-square order pa-
rameters ). In such a case a different distribution func-
tion must be used.

Combining Eqs. (B7) and (BS), one can straightfor-
wardly calculate moments of P(4) as a function ofp;, 4;,
and o.;. Since

&e&=[c], (B9)

Since at phase coexistence all the F s are equal, one
sees that the transition is characterized by equal statisti-
cal weight for each phase. This "equal weight" rule,
which has been rigorously established by Borgs and
Kotecky, ' is also therefore rather obvious on the phe-
nomenological level.

As @ is a macroscopic variable, the central limit
theorem may, for sufficiently large systems, be applied
within each phase such that P, ; is approximated by a
Gaussian:
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the central higher moments are

n n
&(C —&C &)"&= g k (@—[@])" "I"d@P,(C)(@—4)"

k=0
(810)

Specifically, for n =2 one obtains

&(@—&@))')=[ ']+[(@—[+])'],
and, for n =4,

&(~—&c ))'&

(811)

yielding

and

(816)

Fi =Fc Nmich 2 N&ich (813)

=3[cr ]+6[0 (4—[4]) ]+[(4&—[4]) ], (812)

which can be inserted into Eq. (81) to obtain the cumu-
lant. In the thermodynamic limit, the formulas are con-
siderably simpler, because in this case the 0.; s vanish.

In order to obtain the dependence of the moments on
an external control parameter in the vicinity of the tran-
sition, one expands the free energies F; around the transi-
tion point with respect to that parameter, usually up to
second order. This shall be done in the following para-
graphs for a field-driven transition with K=2. N can be
identified with the magnetization m, while the external
control parameter is the magnetic field H. The transition
occurs at H=H„and we write h =H —H, . The expan-
sion then reads

Pl=
exp[N/3(m;, h+y;, h /2)]

2

g exp[NP(m, h+yj, h /2)]
(817)

We now introduce the reparametrization

Xlg XQ+Xg

X2g Xo Xg

(818)

(819)

and

m&, =mo+m,

m2c mo ms@

(820)

(821)

m,„ is the spontaneous magnetization, while g, measures
the asymmetry of the phase transition. With the abbrevi-
ation

where F, denotes the free energy of phase i at the transi-
tion (note that this value is independent of i), N is the
number of particles, and m;, and y;, are magnetization
and susceptibility, both evaluated in phase i at the transi-
tion point. From Eq. (813) one obtains

6=NI3(m, ~h+ —,'g, h )

the statistical weights are written as

exp(6)pl=
exp(6)+exp( —6)

(822)

(823)

and

1 BF
rn = —— =m. +y hi N gh ic ic (814)

exp( —6)
P2 exp(6 ) +exp( —6) (824)

1 a'F
Xf N ~h 2 X7g (815)

Using pl+p2=1 and p, —p2=tanhe=t, one can then
straightforwardly calculate the moments occurring in
Eqs. (811)and (812). After some algebra we obtain

(1—t )I2m (1—3t )+12(kiiT/N)m y, t —3(ksT/N) y, I

3[(kiiT/N)(go+a, t)+m (1—t )I
(825)

where the abbreviation rn=m, +y, h has been intro-
duced. At the transition h = t =0 one has

oka T
U4(y, =0)=—', (1—2sinh 6) 1+ cosh 6

Nm, „
U~(h =0)=—' —O(N ') . (826) (827)

For h ~+~, the exponential dependence of the factor
1 —t = cosh e dominates, and hence U4 —+0. A more
detailed discussion can easily be done for the symmetric
case y, =0, in which Eq. (825) is simplified to

This function is symmetric in h, and its maximum is at-
tained at h=0, around which two symmetric minima
occur. The locations of these minima approach h =0 for
N ~~, and the minimum value is negative, approaching
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—Oo for N~ oo (in leading order, U4'" ~ —N). For
large system sizes, one therefore gets a sharp peak.

In the asymmetric case y, AO, the function is distorted
and no longer symmetric in h. In particular, the minima
are shifted to asymmetric positions and have di6'erent
depths, while the maximum is shifted to a nonvanishing
field h, „whose value, in leading order of an N ' expan-
sion, is

XQ
max

F72 SP

2
k~T
N

(B28)

Since the finite-size effect is rather small (in particular for
transitions with weak asymmetry), the maximum of the
cumulant is a quite accurate estimator of the transition
field.
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