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Van Vleck paramagnetism of chromium- and iron-doped II-VI semiconductors
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We present a study of the Van Vleck paramagnets 3& Cr„B and 3& Fe„B, where AB is a II-VI
semiconductor having the zinc-blende or the wurtzite structure. In cubic zinc-blende hosts the nonlinear
magnetization M depends on the orientation of the external magnetic field B with respect to the cubic
axes of the crystal. We show that, while for iron M is largest when 8 is along a cubic axis and a
minimum for B~~[111],for chromium the anisotropy is reversed and the largest value of M occurs for
B~~ [111].Expansions of the angular variation of the magnetization in terms of combinations of spherical
harmonics invariant under the operations of the symmetry group (Td or C3, ) of the site of the impurity
are used to analyze the anisotropy. The magnetic-field dependence of the coeScients in the expansion is
investigated. The magnetic susceptibility of Cr + in wurtzite-structure hosts is expected to be particular-
ly large.

I. INTRODUCTION

A substance exhibits ordinary paramagnetism when
the ground states of its atomic or molecular constituents
possess permanent magnetic dipole moments, i.e., when
their ground states have a degeneracy susceptible to be-
ing lifted under the inhuence of an external magnetic
field. But, even when the lowest energy level of the com-
ponents of the object of interest is nondegenerate,
paramagnetic behavior still occurs as a consequence of
mixing of higher multiplets into the ground state caused
by the Zeeman interaction, H, =ptt(L+g, S) B. Here p~
is the Bohr magneton, L and S the orbital and spin angu-
lar momentum operators of the individual components,
g, the g factor (g, =2) of the electron, and B the magnet-
ic induction.

Even though this is a general phenomenon resulting
from the failure of L+g, S to be a constant of the motion,
it is often significant only when the ground state is nonde-
generate, in which case the expectation values of L and S
in zero magnetic field vanish in the ground state. ' The
resulting magnetism, characterized by a temperature-
independent paramagnetic susceptibility near 0 K, was
discussed by Van Vleck in connection with the anoma-
lous magnetic behavior of Eu + and Sm + in different
salts and is appropriately called Van Vleck paramagne-
tism. The contribution to the magnetic moment per
atom (or molecule) is

=2p, ',a y (E,—E, )-'l(vl(L+g, S) nlO& I'. (l. l)

p, l(vl(L+g, S) nlo) I
«E —Eo . (1.2)

The approximation (1.1) fails, therefore, when accessi-
ble low-energy excitations exist with energies comparable
to or less than the magnitudes of the corresponding Zee-
man interaction matrix elements. Then, one must devel-
op alternative procedures to obtain the magnetization of
the system. In this connection, severa1 recent publica-
tions ' have been concerned with the high-magnetic-
field properties of iron ions at cation sites in cubic and
wurtzite-structure II-VI semiconductors. Doubly ionized
iron ions at cation sites in these materials have nondegen-
erate ground states resulting in Van Vleck paramagne-
tism.

In this paper we present a study of the magnetic prop-
erties of disordered, dilute alloys of the form
A, ,C„B(x«1) where AB is a II-VI semiconductor, A

being the cation and 8 the anion, and C is a magnetic ion.
These alloys have recently received considerable atten-
tion and are called diluted magnetic semiconductors
(DMS's). ' In this work, we limit our discussion to
DMS's in which the magnetic ion is either Fe + or Cr +.

The first few excited levels of Fe + in CdTe (site sym-
metry Td ) belong to the I 4, I 3, and I s irreducible repre-

Here E' ' is the energy of the ground state as a function
of B to second order in 8, a typical stationary state of the
system in the absence of an external magnetic field is
denoted by ~v) and the corresponding energy eigenvalue
by E, n is a unit vector along the direction of the applied
magnetic field, and the sum extends over all states except
the ground state ~0).

Equation (1.1) is only valid within the framework of
second-order perturbation theory, i.e., whenever
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sentations of Td and lie about 20, 40, and 70 cm ', above
the totally symmetric ground state, ' respectively. Mix-
ing of these levels into the I, ground state leads to a non-
linear magnetization M as a function of B which, because
of the nature of the mixing, depends on the direction of 8
and, hence, gives rise to an anisotropy of M at large
values of B. We shall show that in cubic zinc-blende
hosts the anisotropy of the magnetization of chromium is
opposite to that of iron. While for iron M is largest when

8 is along a cubic axis, for chromium the largest value of
M occurs for 8 parallel to [111].

We express the magnetization in terms of the number p
of effective Bohr magnetons per magnetic ion. The quan-
tity p may be expanded in a series of even powers of the
components of n ( =8jB ), each term of the series being
an invariant with respect to all symmetry operations of
the site group (Td). It is easy to show that the ap-
propriate expansion is

J =Po+J 4 Y4(~ 4)—

+a6 Y6(~ 0)+o 35
96

10
7 [ Y4(0,$)—Y~ (8,$)]

1/2

[ Y6(8,$)—Y6 '(8,$)]+
1/2

[ Y6(0,$)+ Y'6 (0,$)] + (1.3)

The combinations of spherical harmonics in Eq. (1.3) are obtained using functions belonging to the totally symmetric
representation of Td. Their averages over all directions of n vanish. ' The coefficients po, p4, p6. . . are functions of B
and of the temperature T. The polar angle 8 of n is referred to the [111]direction as polar axis while the azimuth P is
measured from the [112]direction. For low magnetic fields 8, po is linear in 8 while p4 and p6, initially, increase pro-
portionally to the third and fifth powers of B, respectively.

In Sec. II we discuss the nature of the coefficients po, p4, p6, . . . for Cr + at Cd sites in CdTe and compare the results
obtained with those for Fe + in CdTe.

The analysis of the magnetic properties of Fe + and Cr + at cation sites in II-VI semiconductors having the wurtzite
structure, presented in Sec. III, is based, like that for cubic materials, on the crystal-field approximation but we assume
that the crystal potential is tetrahedral to a high degree of approximation with a small trigonal distortion along the "cu-
bic" body diagonal. The site symmetry of the magnetic ion is, therefore, C3, . The appropriate expansion of the
effective number of Bohr magnetons in this case is

J =J'o+J zY~(~ 0)+S'~oY4(~ 0)+P43[Y4 ~ 4) Y~ '(~ 0 —]
+u6o Y6(~ 4)+p63[Y6(~ 0)—Y6 '(~ 4)]+5'66[Y6(~ 4)+ Y6 '(~ 4)]+ (1.4)

Here the polar axis is the trigonal axis and P is the angle
n makes with one of the o.„mirror planes. In these ma-
terials, the Van Vleck magnetic susceptibility is aniso-
tropic because the first two excited levels above the I,
ground state have symmetries I z(C3„) and I 3(C3, ), the
former lying below the latter. Since (I.+g, S) n only
connects the I 1 ground state with I 2 states for a parallel
to the trigonal axis c, and to I 3 levels for n perpendicular
to c, the magnetic susceptibility, g~~, for 8 parallel to c
exceeds gi, the susceptibility for 8 perpendicular to c [see
Eq. (1.1)].

The calculations presented in this study make use of
phenomenological crystal-field parameters derived from
the rather extensive literature for iron-based l3MS's.
However, while there exist some optical absorption
and luminescence studies of chromium-based DMS's,
there is no published work on their magnetic properties.
Thus, as we shall explain in Secs. II and III, we do not
make use of the optical studies but estimate the parame-
ters appropriate for these alloys by scaling those for Fe
in the same hosts.

II. MAGNETIC PROPERTIES OF CHROMIUM
AND IRON IN CUBIC DII.UTKD

MAGNETIC SEMICONDUCTORS

The macroscopic parameters po, p4, p6, . . . defined in
Sec. I are related to the characteristic microscopic prop-
erties of the magnetic ion in the compound 31 „C B.
The potential at a cation site in a zinc-biende semicon-
ductor can be written in the form

I

V= g[ —(35/ —30$ r +3r ) —20&2+'(g —37) )],30

(2. 1)

where the sum extends over all the electrons in the mag-
netic ion and $, 71, $ are the coordinates of a point mea-
sured from the center of the ion and referred to the g, il, g
axes parallel to [112],[110],and [111],respectively. The
numerical coefficient a' can be estimated by calculating
the electrostatic potential caused by the surrounding ions
in the vicinity of the magnetic element. Assuming point
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charged ions this estimate yields a ' = —(35ze /9R )

where z is the effective anion charge and R the anion-
cation distance. We do not follow this approach here but
rather relate a' to a coefficient, denoted here by a, which
appears as a prefactor of an operator equivalent to that in
Eq. (2.1) when acting on states within a Russel-Saunders
term (characterized by quantum numbers L and S) of the
magnetic ion. For a D term this potential is

V= —(a /30)[(35L
&
—155L&+72)

+5v'2{L++L,L(] ] . (2.2)

Here L is the orbital angular momentum operator of the
atom in units of fi, L+ =L&+iL„and the curly brackets
denote an anticommutator: {u, U J

=uu+ vu.
The parameter a can be related to a' and to (r ), the

average of the fourth power of the radial position of an
electron over the 3d radial wave function of the magnetic
ion. This relation is obtained making use of the Wigner-
Eckart theorem and is written in the form

~(C '+)= —&(F '
)& '), /& ')„,

= —3961.6 cm

obtained using the values 4.496 and 7.211 atomic units

where (L/fP//L ) =+—,', for the D terms of Fe + and of
Cr + with the upper sign corresponding to Fe + and the
lower one to Cr +. Since in a tetrahedral arrangement
a' & 0, a (0 for Fe + and a & 0 for Cr +. In a tetrahedral
field the orbital D term of a positively charged ion splits
into a I 3 doublet and a I 5 triplet in which I 3 lies below
I 5 for Fe + while the opposite occurs for Cr +. The en-

ergy level diagram shown in Fig. 1 illustrates both cases.
It shows the orbital splitting in which the zero of energy
is taken at the I 3 level [b, =E( I ~)

—E( I 3)= —6a is
positive for Fe + and negative for Cr +]. The 1 3 rnulti-
plet splits into five equidistant levels to second order in
the spin-orbit interaction A,L-S. The energies of these
levels are —24k, /b„—18K, /b„—12jP/b, , —6A, /5, and
0, their symmetry classifications being characterized by
the I „I4, 13,I 5, and I z irreducible representations of
Td, respectively. The I 5 level splits into three levels of
energies, 6—2A. , 5+1,, 6+3k, with degeneracies 7, 5,
and 3, respectively. To second order in A, these levels
split further as indicated in Fig. 1 in the column labeled
Td. Thus the ground states of Fe + and Cr + in a
tetrahedral environment are both singlets of symmetry
1 &, the former originating from the orbital doublet I 3

and the latter from the I 5 triplet. The strength A, of the
spin-orbit interaction is negative for Fe + (its value in
CdTe, according to Udo et al. , ' is —91 cm ') and posi-
tive for Cr + (in the present paper we take it equal to its
free-ion value 58 cm '). The last column, labeled C3U,
in Fig. I refers to the spectra of Fe + and Cr + in a
wurtzite-structure DMS and is discussed in Sec. III.

The value of 6, deduced from near-infrared-absorption
data' is 2470 cm ' for Fe + in CdTe. The correspond-
ing quantity for Cr + in CeTe is

for (r ) in the 3d" configurations of Fe + and Cr +, re-
spectively.

The wave functions for the levels displayed in the
column labeled Td in Fig. 1 are given in Tables 6, 8, and
18 of Villeret, Rodriguez, and Kartheuser. The magne-
tization is found forming the thermal average of the mag-
netic moments in the states obtained from the diagonali-
zation of the Hamiltonian matrix of the D term in the
presence of an applied magnetic field. This program was
carried out in Refs. 7 and 8 for Fe + in a cation site in a
zinc-blende semiconductor.

For sufficiently large magnetic fields the magnetization
of Fe + ions is anisotropic, as expected from the failure
of second-order perturbation theory already mentioned in
Sec. I. The magnetization is largest when B is directed
along (001) and is a minimum, for given ~8~, when 8 is
parallel to (111). The explanation of the result is as fol-
lows. In second-order perturbation theory the Zeeman
energy mixes the I, ground state with the I 4 levels.
However, if one wishes to obtain the energy eigenvalues
to fourth powers in B, the I 4 level is mixed with I 3 for 8
along (001) and with 1 5 for 8 parallel to (111). Since
for Fe + in a Td environment the I 3 level is below the I 5

level the admixture into I
&

of the former is larger when
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FIG. 1. Schematic drawing of the energy levels of Cr + and
Fe + at a cation site in II-VI compounds having the zinc-blende
(Td ) or the wurtzite (C3, ) structure. The group-theoretical no-
tation follows that in Ref. 20. The zero of energy is selected at
the I 3 orbital D state. For Cr, b, (0 and A, )0. These signs
are reversed for Fe +.
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B(~[001] than that of the latter when B(~[111].Further-
more, the I ~ doublet splits significantly when B~~[001]
while its degeneracy is not removed if B~~ [111](see Figs.
1, 2, and 6 in Ref. 7). Thus, the magnetic component of
the perturbed ground state when 8~~[001] is larger than
that obtained when 8~~[111],accounting for the observed
result.

The situation in Cr + in a Td environment is reversed.
We note that the lowest I 5 level lies below the lowest I 3

level by, approximately, 3 times the strength of the spin-
orbit interaction. Thus the contribution of mixing of I 5

into I, via I 4 exceeds that of I z into I, explaining the
expected behavior described graphically in Fig. 2.

The results of calculations of the e6'ective numbers of
Bohr magnetons per Fe + and Cr + in CdTe at 4.2 K are
shown in Fig. 2 where the features just mentioned are
clearly displayed. As expected the saturation in the case
of Cr + is reached at lower magnetic fields.

It is interesting to note that the saturation of p for
large 8 is lower in Cd& Cr Te than in Cd& „Fe Te. In
principle, at sufficiently large magnetic fields the satura-
tion value of p for Fe + should be 4 if the Zeeman energy
is small compared to A. The admixture of I 5 levels into
the I

&
multiplet leads to a saturation value

p =4[1—(A/b, )]=4.6. In Cr only the lowest I i, I 4,
and I 5 states can contribute to the magnetic moment at
even the largest available laboratory magnetic fields. Un-
der this condition I. and S are antiparallel and, thus, the
saturation value of the magnetic moment equals three
Bohr magnetons.

The magnetic susceptibilities of these ions in a Td envi-

Cd& „Fe„Te

0 50 100
B (ko)

200 250 300

FIG. 2. Effective number of Bohr magnetons per magnetic
ion in Cd& Fe,Te and Cd&, Cr Te, at T=4.2 K for three
orientations of the magnetic field with respect to the cubic axes
of the crystal. The material parameters are 6=2470 cm ' and
A, = —91 cm ' for Cd& „Fe~Te and 6= —3961.6 cm ' and
A, =58 cm ' for Cd, Cr„Te.

=(Snab b, /3A, ) 1—4k
B

5A,
(2.3)

for Fe + and

ronment can be obtained by standard second-order de-
generate perturbation theory; they are

y= lim (npp, ii/B)8~0

T 2 T

y= lim (npp~/B)= —(2np~b/3A, ) 1+ — 1+4A, 8A, 5A, 4A,1—
8~0 (2.4)

for Cr + where n is the number of magnetic atoms per
unit volume. The corresponding susceptibilities are 0.335
and 0.201 cm /mol for Fe and Cr + in CdTe, respec-
tively. ' Figure 3 shows the temperature dependence of

the calculated magnetic susceptibilities for Cd, Fe„Te
and Cd

&
Cr„Te. Figures 4, 5, and 6 show the

magnetic-field dependence of the Fourier coefficients
po, p4, and p6, respectively, for Fe + and Cr + in CdTe.
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FIG. 3. Temperature dependence of the magnetic susceptibil-
ity of Fe + and Cr + in CdTe. Parameters as in Fig. 2.

0
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B {ko)
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FIG. 4. Angular average po of the effective number of Bohr
magnetons of Cr + and Fe + in CdTe as a function of magnetic
field. Temperature and material parameters as in Fig. 2.
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III. MAGNETIC PROPERTIE S OF CHROMIUM
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ed except at presently unattainable magnetic fields be-
cause of the large anisotropy of the magnetic susceptibili-
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FIG. 12. Fourier coefficient p«. Conditions and parameters
as in Fig. 9.

plane normal to c represent the extremes of this behavior.
It is interesting to note that the coefficient p66 in Eq.

(1.4) is directly related to the anisotropy of p in the plane
perpendicular to c. Indeed, we find that the difFerence
between p(Blo, ) =p(B, 6)= sr/2, / =0) and p(B~~t7, )

=p(B, 8=m/2, $=tr/2) is given by

~p=p(B~~c „)—p(B&o., )=1.932p, 6 .

A numerical calculation for Fe + in CdSe, using the pa-
rameters obtained from the near infrared absorption data
of Udo et al. , ' shows that the p vs B curves cross at
BCR =199kG for Blc in a o, plane and at BcR =205 kG
for Blc normal to o., at absolute zero temperature. The
corresponding values at 4.2 K are 201 and 207 kG, re-
spectively. Thus, the change in BCR as B is rotated by
90' in the plane perpendicular to c from a direction in o,
to one normal to it is -6 kG.

In chromium-based DMS's, this behavior is not expect-

IV. CONCLUDING REMARKS

The Van Vleck paramagnets among the II-VI com-
pounds doped with magnetic ions of the iron group are
those containing Cr +, Fe +, and Ni +. In this paper we
have studied the magnetic properties of Cr + and Fe + in
DMS's. We have shown that the anisotropy of the mag-
netization at high magnetic fields has opposite signs in
chromium- and iron-based DMS's. We have not dis-
cussed nickel in detail for the following reasons. The
lowest-energy term of Ni + is I' which splits in a crystal
field of tetrahedral symmetry into I 4, I 5, and I z orbit-
al multiplets, I 4 being the lowest. This in turn is split by
the spin-orbit interaction into I „I 4, I 3, and I 5 levels,
listed here in order of increasing energy. Thus, Ni + in
DMS is a Van Vleck paramagnet. However, the energy
separation between the I, and I4 levels is of order
3~A, ~/2. But A, , the strength of the spin-orbit interaction
equals —324 cm ' so that 3

~
k

~

2 =486 cm '. This ener-

gy is large enough for the paramagnetic behavior of
nickel-based DMS's to be less dramatic than in the cases
considered in the present work.
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'If g is a nondegenerate eigenstate of the Hamiltonian of a
quantum-mechanical system, HP=Eg, and T is the time-
reversal operator, then Tg =cP where

~
c

~

= 1 and

(TWILIT@)= —(@ILIQ)=c*c(1('ILIA)=0. The same ar-
gument shows that (@~S(g)=0 and hence (1(~L+g, S~@)=0.
In some cases, when each state of a multiplet is its own time-
reversed conjugate, the same conclusion holds. An interest-
ing example occurs in Fe + in a Td environment. The 'D
term of Fe + splits into I 3 and I „the former being the or-
bital ground state. The two orbital I 3 states are their own
time-reversed conjugates so that ( L) =0. We say that the or-
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