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Scaling theory of the Mott-Hubbard metal-insulator transition in one dimension
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We use the Bethe ansatz equations to calculate the charge stiffness D, = (L/2)d Eo/dC, ~O, o-
of the one-dimensional repulsive-interaction Hubbard model for electron densities close to the Mott
insulating value of one electron per site (n = 1), where Eo is the ground-state energy, L is the
circumference of the system (assumed to have periodic boundary conditions), and (hc/e)C, is the
magnetic flux enclosed. We obtain an exact result for the asymptotic form of D,(L) as L ~ oo
at n = 1, which defines and yields an analytic expression for the correlation length (' in the Mott
insulating phase of the model as a function of the on-site repulsion U. In the vicinity of the zero-
temperature critical point U = 0, n = 1, we show that the charge stiffness has the hyperscaling
form D, (n, L, U) = Y+((b, (/L), where b = ~l —n~ and Y+ is a universal scaling function which
we calculate. The physical significance of ( in the metallic phase of the model is that it defines
the characteristic size of the charge-carrying solitons, or hotons. We construct an explicit mapping
for arbitrary U and (b « 1 of the holons onto weakly interacting spinless fermions, and use this
mapping to obtain an asymptotically exact expression for the low-temperature thermopower near
the metal-insulator transition, which is a generalization to arbitrary U of a result previously obtained
using a weak-coupling approximation, and implies holelike transport for 0 & 1 —n « (

I. INTRODUCTION

The Mott-Hubbard metal-insulator transition is one
of the fundamental problems in electronic condensed-
matter physics. The assertion by Anderson' that the
high-T, Cu02 superconductors should be viewed as
lightly doped Mott insulators has stimulated much work
on the problem. In this paper, we use the Bethe ansatz
equations3 to calculate the zero-temperature conduc-
tivity and low-temperature thermopower of the one-
dimensional (1D) repulsive-interaction Hubbard model
for electron densities close to the Mott insulating value
of one electron per site.

One way to characterize interacting fermion systems
is via the zero-temperature frequency-dependent conduc-
tivity o.(~), which is the linear response of the system to
a spatially uniform, time-dependent electric field. In gen-
eral, 8(io) has the form

o.(u)) = 2D,
~

—+ 7rb(~)
~
+ o„,g ((u),

fi

where lim~ ou8r, ~(io) = 0. The coefficient D, is the
charge stiffness. In a Galilean-invariant system with n
electrons per unit volume of charge e and mass m inter-
acting via velocity-independent forces, D, = ne /2m and
a«~(u) = 0, independent of the interactions. For elec-
trons moving in an external potential, D, may depend on
the interactions and on the potential. Kohn has argueds
that for spatially in6nite systems with a discrete trans-
lational invariance two cases are possible: either D, = 0
and lim e Re[8«~(io)] = 0, or D, ) 0. If D, = 0, the

material is insulating; if D, & 0, the material has the in6-
nite dc conductivity and perfect diamagnetism expected
of a perfect metal. D, is thus an order parameters for
the Mott-Hubbard metal-insulator transition which may
occur in a nondisordered system as the electron concen-
tration and interaction strength are varied.

In a system of finite length L with periodic boundary
conditions, D, is in general nonvanishing. In a previ-
ous paper, 7 we showed numerically and via a large-U
approximation that in the Mott insulating phase of the
1D Hubbard model, which occurs at n = 1 for repulsive
interactions, the largeLbehavior -of D, is

D, (L) L / exp( —L/(). (1.2)

This equation defines the correlation length ( of the Mott
insulator, which is a function of the on-site repulsion U.
In this paper, we derive Eq. (1.2) analytically for arbi-
trary U, and show that the correlation length so defined
is important also in the metallic phase of the model.
In particular, we show that in the vicinity of the zero-
temperature critical point U = 0, n = 1, the charge
stiffness assumes the hyperscaling form:

D, (n, L, U) = Y((b, (/L), (1.3)

where 8 = ~1 —n~ and Y is a (presumably universals)
scaling function which we calculate.

The physical significance of ( in the metallic phase of
the model is that it defines the characteristic size of the
charge-carrying solitons, or hotons. We show that Woy-
narovich's reformulation of the Bethe ansatz equations

0163-1829/93/48(3)/1409(17)/$06. 00 48 1409 1993 The American Physical Society



1410 C. A. STAFFORD AND A. J. MILLIS 48

of the 1D Hubbard model in terms of the parameters of
the charge excitations only is formally equivalent to an
asymptotic (large L) Bethe ansatz for holons, and use this
asymptotic Bethe ansatz to construct an explicit map-
ping for arbitrary U and (6 « 1 of the low-lying charge
degrees of freedom of the model onto weakly interacting
spinless fermions. Using this mapping, we obtain asymp-
totically exact expressions for the charge stiffness and
low-temperature thermopower near the metal-insulator
transition. Our result for the thermopower extends and
makes more rigorous previous work of Schulz P which
was based on a weak-coupling approximation, and im-
plies that the transport is holelike for 0 & 1 —n « (

The paper is organized as follows: In Sec. II, we review
the linear-response arguments and Bethe ansatz equa-
tions used to calculate D, in 1D. In Sec. III, we present
an exact result for the charge stiEness at n = 1 in the
large-I limit, verifying Eq. (1.2), and show that the cor-
relation length so defined also governs the exponential
decay of the equal-time single-particle Green's function
at n = 1 in both the weak- and strong-coupling limits,
as well as the pairing correlations in the ground state of
the attractive 1D Hubbard model at n = 1. In Sec. IV,
we determine the scaling behavior of D, near the metal-
insulator critical point. The total optical spectral weight
~Nt~t = fp Re [8(u)]Cku is also discussed. In Sec. V, we
calculate the finite-size corrections to D, and Nt t in the
regime L ) (, and discuss the implications for the inter-
pretation of numerical calculations of cr(u) in interacting
fermion systems on small clusters. In Sec. VI, we de-
termine the charge excitations, charge stiKness, and low-
temperature thermopower near the metal-insulator tran-
sition. We summarize our results in Sec. VII, and com-
ment brieBy on their relevance for the physics of high-T,
superconducting materials. The details of the calcula-
tions of D, at and near n = 1 in the large-L limit are
given in Appendixes A and B, respectively.

II. FORMALISM

We consider the Hubbard model of spin-1/2 fermions
hopping with matrix element t between nearest-neighbor
sites of a one-dimensional lattice with unit lattice con-
stant and subject to a repulsive interaction U when two
fermions (of opposite spin) occupy the same lattice site.
We impose periodic boundary conditions and thread the
system with a (dimensionless) spin-dependent flux 4
which we represent by a uniform spin-dependent vector
potential A = (hc/e)4' /L, where L is the circumfer-
ence of the system. The Hamiltonian may be written

H = t ) e el+le—c!n + H.c. + U ) nlT Ll

l, cr l

E(M, M', U, @t,@g). The sign of the interaction U in
Eq. (2.1) can be reversed by a particle-hole transforma-
tion on the down-spin electrons,

cif) ~ (—1)'cia,
cog ~ (—1) cog,

lf l t'~

clt ~ cly

leading to the following relation:

E(M, M', U, 41, 41)

1 d2(Ep/L)
2 d(4 /L) @ c p

(2.4)

where 4', = (4't + 4'g)/2. Applying second-order pertur-
bation theory in 4, to Eq. (2.1) gives '

)- l(~lhl0) I'

)
(2.5)

where T = —Q(ci+i ci + H.c.) is the kinetic-energy

operator, J~ = i P(ci+i c—i —H.c.) is the paramagnetic
current operator, ( ) denotes the expectation value in the
ground state, and all quantities are evaluated at Ct
Cg =0.

We next consider threading the Hubbard ring with a
time-dependent flux 4't(t) = C~(t) = C, (0) exp( —nut),
which leads to a uniform time-dependent electric field
by I araday's law. Standard linear-response arguments
applied to Eq. (2.1) give the frequency-dependent con-
ductivity at zero temperature,

(u+i0+ ( L L - ~ —E + Ep+i0+)
'

v+Q

(2 6)

The conductivity thus has the form (1.1) with D, given
by Eq. (2.5). The high-frequency behavior of Im [8(cu)]
leads, via the Kramers-Kronig relations which link the
real and imaginary parts of cr(w), to an f-sum rule for
the total optical spectral weight, '

= E(M, I —M', —U, 4y, —Cg) + MU, (2.3)

which we will exploit in Secs. III and VII.
To simplify matters, we consider only systems where

the total number of electrons N = M+M' is even. Then
the ground state is a singlet 2 and the ground-state en-
ergy is Ep = E(N/2, N/2, U, C'1, 4g). The charge stifF-
ness D, is defined by5 4

(2.1) 7rNto Re [8(~)]Au = (—T). (2.7)

where ni = ci ci and the sums run from t = 1 to L and
o ='t, J.. In the following, we set e = h = t = 1 unless
explicitly stated.

The numbers M and M' of up- and down-spin elec-
trons are constants of the motion; we denote the
minimum-energy eigenvalue in a given sector (M, M') by

The Hellman-Feynman theorem gives (T) = Ep
UOEp/BU. Thus both Nt~t and D, may be obtained
as derivatives of the ground-state energy.

The energy and momentum of the eigenstates of
Eq. (2.1) can be expressed via a generalization of Bethe's
anSatz aS' 4
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N

E = —2) cosk„, (2 8)

N

P = ) k„, (2 9)

where the pseudomomenta k„are a set of distinct num-
bers determined by4

M

Lk„= 2mI„+ C l —) 2 tan
a=1

(2.10)

= 2vrJ~+ Cl —C)l+ ) 2tan . (2.11)
P=1

Here (I„an[= 1, . . . , N) and (J~;n = 1, . . . , M)
are the quantum numbers which specify the state of
the system: the I„describe the charge degrees of
freedomM i7 2 and are distinct integers (half-integers) for
M even (odd) s while the J~ describe the spin degrees of
freedom, is i7 s and are integers (half-integers) for N —M
odd (even). s For the ground state, the quantum numbers
are consecutive integers (or half-integers) centered about
the origin. 3

In the following, we solve the Bethe ansatz equations
(2.10) and (2.11) analytically and numerically in various
limits to obtain D, and Nt~t as a function of n, L, and
U. The knowledge of the eigenstates of H also allows us
to calculate the low-temperature thermopower near half
filling.

III. THE CORRELATION LENGTH
OF THE MOTT INSULATOR

A. Definition of (
The 1D Hubbard model for n = 1 and U ) 0 is known

to have an insulating ground state, so that the charge
stiffness D, vanishes for an infinite system. In a previous
paper, r we showed numerically and via a large-U approx-
imation that for a large finite ring of circumference L at
n=1
D, (L) = ( 1) ~ + L ~ D(U—)exp[—L/((U)], L ~ oo

(3 1)

(L even), where D(U) is a positive U-dependent num-
ber. Equation (3.1) serves to define the correlation length
((U) in the Mott insulating phase of the 1D Hubbard
model. We have subsequently derived Eq. (3.1) ana-
lytically for arbitrary U. The details are given in Ap-
pendix A. The result for the correlation length ((U) is

and the spin rapidities A are a set of distinct numbers
related to the k„by

N
—1 & —S1n n

U/4

B. Relation of g to the single-particle Green)s
function

The zero-temperature equal-time single-particle
Green's function is defined as

G (Ix —x'I) = (OIct, ,c + ct c ~ IO). (3.5)

From Eq. (2.1) it follows that G ~ (Ix —x'I) = G~~(Ix-
x'I)6 . We wish to show that the Green's function of
the Mott insulator has the form (at L = oo)

(I*I) - exp( —I*I/() ~ Ixl ~ (36)
In order to do so, it is useful first to consider some lim-
iting cases.

The weak-coupling limit of ( may be obtained from an
asymptotic expansion of Eq. (3.2) around U = 0. We
obtain

lim (= (t/U) ~ e '~ —(1+U 1/6vrt+ )
U —+0 2

2t+ U/2~+
A(U, t)

where we have made the hopping matrix element t ex-
plicit, and

16t2 ~ (y2 1 )1/2dy
2A U, t

U i sinh(2vrty/U)

is the Lieb-Wu charge gap. s s is The low-energy (contin-
uum limit) physics of the 1D Hubbard model has been
studied extensively by bosonization techniques. 2 s In
the low-energy sector, the effective Hamiltonian sepa-
rates into independent terms describing the charge and
spin degrees of freedom. 5 Near n = 1 and in the weak-
coupling limit, the Hamiltonian for the charge degrees of

(3.8)

1/((U) = —' d. '"'"'~y' " (32)
U i cosh(2vry/U)

The result for D(U) is given in Eq. (A28). The limiting
behavior of D(U) is

D(U) (2/x() ) U 0 (3.3)
AU, U~oo,

where A 0.147376.
The negative sign of D, when I is a multiple of 4

indicates that the persistent current of the ring is para-
magnetic, as discussed in Refs. 7 and 18. Orbital para-
magnetism is a generic feature of half-filled single-band
4n electron systems, and was first observed many years
agois in NMR spectra of [16] annulene and [24] annu-
lene, larger analogs of benzene. The full flux dependence
of the ground-state energy of the Mott insulator is

Ep(@,) —Ep(0) = '
(1 —cos C),), L ~ oo.

2D, (I )
L

(3.4)

By contrast, in the metallic phase at n g 1, the flux
dependence of the ground-state energy in the large-L
limit is Ep(O, ) —Ep(0) = D,C, /L for IC, I

« 2+L, and
the periodicity Ep(C', ) = Ep(C', + 2vr) required by gauge
invariance2P is restored by level crossings.
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( = in(U/at), U —+ oo, (3.10)

where a = [I'(I/O)/v 27r]4 4.377 (this result was ob-
tained previously by us in Ref. 7). Equations (3.1) and
(3.3) then imply that D~(L) = AULD~2(at/U)~, where
A 0.147376. The correlation length may thus be
obtained in the large-U limit from an expansion of the
ground-state energy in powers of t/U The lead.ing contri-
bution to D, (L) comes from the lowest-order term which
is fIux dependent and is7

2D, (L)
U~oo

(3.11)

where v, = Q c~+& c,~, D = 1/Q, . &n, yn, ~, ~0~) =
lim~ ~ ~0), and SL, is the group of permutations of L ob-
jects. This expression for D, is a sum over all processes
which transport one unit of charge around the ring in
the minimum number of steps L. In the large-U limit,
the Green's function G (L —1) may be evaluated by ex-
panding the ground state ~0) in Eq. (3.5) to O((t/U)~ ~).
The resulting expression for the leading contribution to
t[Gyt (L 1)+Gy~ (L 1)] is ide—ntical to tha—t for 2D, (L)/L
in Eq. (3.11), except that [0~) now refers to the infinite
system, not the periodic system of length L. One can
fix the phase factors such that G'yy = Ggg. Then the
only difference between tG (L —1) and D, (L)/L in the
large-U limit stems from the difference between the spin

freedom is of the relativistic sine-Gordon form. ~ The
quantity which plays the role of the speed of light c in
the Hamiltonian is given to leading order in U at n = 1
by21, 25

c = 2t + U/2z + (3.9)

The elementary objects in the sine-Gordon model are
solitonszs carrying charge e and obeying the relativistic
dispersion relation Eg = (c k + 6 ) ~ .272s The quan-
tum, soliton length (, = c/4 defines the characteristic size
of the solitons, zs so we see from Eqs. (3.7) and (3.9) that
in the weak-coupling limit the correlation length is equal
to the quantum soliton length.

The mapping onto the weak-coupling Hubbard model
fixes the number density of solitons as n, = 1 —n.
The operator c involves creating at least one soliton
(plus spin excitations). Thus, if we evaluate Eq. (3.5) at
a timelike separation at n = 1, we find G (t —t')
exp[ —iA(t —t')] + terms involving higher energies. Us-
ing the Lorentz invariance of the weak-coupling field the-
ory to rotate back to a spacelike separation, we obtain
G (~x —z'~) exp( —4~2:—x']/c). so The gapless spin de-
grees of freedom correct this expression only by a power
of ~x —x'~. We have thus established Eq. (3.6) in the
weak-coupling limit.

Now let us consider the strong-coupling limit. From
Eq. (3.2) it followss~ that

correlations in the infinite Heisenberg model and those
in the periodic one of size L, which can at most cause
tG (L —1) to differ from D,(L)/L by an algebraic factor
in I. The eorretation lengths defined by the two functions
must be the same in the large-U limit.

We have thus established Eq. (3.6) in both the weak-
and strong-coupling limits. We now give a physical ar-
gument which suggests that 0 has this asymptotic form
for arbitrary U.

C. Singlet pairing for U & 0

The modulus ~G (~x~) ~

of the equal-time single-
particle Green s function is invariant under U + —U
at half filling, as may be seen by applying the trans-
formation (2.2) to Eq. (3.5). Let us therefore consider
Eq. (3.6) for the case U ( 0. The U ( 0 Hubbard model
is a superconductor (or more precisely, in one dimen-
sion, has divergent superconducting fluctuations ). Su-
perconductors are characterized by a correlation length

( which one may think of as the size of a Cooper pair,
and G decays exponentially with characteristic length g.
The superconducting correlation length can also be de-
termined via the periodicity of the ground-state energy
of a superconducting ring with respect to the magnetic
fIux enclosed. Gauge invariance implies that Eo must
be periodic in C, with period 2vr (one flux quantum);zo
however, in a system with superconducting correlations,
the period will be vr (half a flux quantum) when the sys-
tem is large compared to the correlation length. zo In this
subsection, we show that the deviations from a periodic-
ity of half a fIux quantum in the ground-state energy of
the U ( 0 1D Hubbard model scale as exp[—L/((~U~))
at n = 1. We therefore identify ((~U~) as the supercon-
ducting correlation length; this makes it plausible that G
decays exponentially with this length for arbitrary U, as
asserted in Eq. (3.6). The analogous electron-hole cor-
relations in the ground state of the Mott insulator were
discussed by Krishnamurthy et at.34 in a slightly difFerent
context.

The Bethe ansatz description of the ground state
of the attractive 1D Hubbard model involves complex
pseudomometa, ss and is unwieldy for a finite system
with periodic boundary conditions. However, we can
use the identity (2.3) to obtain the ground-state en-
ergy of the half-filled attractive 1D Hubbard model as
a function of C, from the ground-state energy of the
half-filled repulsive 1D Hubbard model as a function of
4, = (4~ —C~)/2. The latter may be obtained from
a solution of Eqs. (2.10) and (2.11) with the k's and
A's strictly real (alternatively, one can think of this as
a Bethe ansatz for U & 0 in a representation where
the down-spin electrons are treated as holes). In 1D,
the variation of the ground-state energy with respect
to flux for U ( 0 is Eo(C ) Eo(0) + D ( ~U~)C /L
when I is large. However, there are level crossings
with states whose energy parabolas have local minima
at C, = +7t., +2+, etc. Each parabola corresponds to a
particular choice of the Bethe ansatz quantum numbers
(I„) and (J~) (in the repulsive representation). The
quantum numbers (I~o) and (J~o) of the ground state at
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4, = 0 are given in Eqs. (Al) and (A2) in Appendix A.
The ground state at O, = 2m has quantum numbers sat-
isfying I„=I„+1, J~ = JP —2, and is equivalent to the
above state, but shifted by one flux quantum. The equiv-
alence of these two states follows from gauge invariance.
There is a level crossing with a third, inequivalent state
whose energy minimum lies at 4, = m, and whose quan-
tum numbers satisfy I„=I„, J~ = JP —1. The energies
of these three states as a function of C, are plotted as
solid curves in Fig. 1 for U = —4 and N = L = 6 and
28 [note that ((4) = 4.06]. The ground-state energy for
the repulsive case (shifted by —NIUI/2) is plotted as a
dashed line for comparison. Equations (2.10), (2.11),and
(3.4) imply that in the large-L limit the local energy min-
imum at C, = vr differs from that at 4, = 0 by

Ep(vr) —Ep(0) = ' I exp[—L/((I Ul)].
4D (IUI)

L
(3.12)

It is evident from Fig. 1 that as L increases and the local
energy minima at 4, = 0 and 4, = m become degenerate,
the ground-state energy becomes periodic with period 7I.

(half a flux quantum).

—3.2

IV. SCALING BEHAVIOR OF De NEAR THE
METAL-INSULATOR CRITICAL POINT

We have shown that the charge response of the half-
filled (n = 1) U ) 0 1D Hubbard model may be char-
acterized by a length g which diverges as U ~ 0. In
this section, we show that the point U = 0, n = 1 is
a conventional quantum critical point in the sense that
the singular behavior of D, (n, L, U) in the vicinity of
this point is given by a (presumably universals) scaling
function Y(all —nl, (/L), which we calculate numerically
and, in various limits, analytically. Our results confirm
the applicability of the hyperscaling ansatz to this sys-
tem. We also discuss the total optical spectral weight
ergot.

The hyperscaling ansatz for a 7" = 0 phase transition
is that the singular part of the ground-state energy per
correlation volume scales as the inverse of the correlation
time. s Since the correlation time scales as (',M it follows
that

(4.1)

where d is the spatial dimension and z is the dynamic
critical exponent. In our problem d = 1, and the Lorentz
invariance of the critical point implies z = 1. From
Eq. (2.4), we see that D, involves two derivatives of Ep/L
with respect to 4', /L; the singular part of D, should
therefore have scaling dimension 2 —d —z = 0. We thus
postulate that as U ~ 0, n —+ 1, and L ~ oo, the singu-
lar part of D, is given by

—3.3
D "s(n, L, U) = Y~($6, $/L), (4.2)

—34
LU

—3.5

—3.6

—3.7
0 0.4

I

0.8
I

1.2
I

1.6 2.0

where 6 = ll —nl and Y~ are dimensionless scaling func-
tions, universal up to a metric factor fixing the units of
length and energy. The subscripts + on Y refer to U & 0
and U & 0. The charge response at U = 0 is that of
noninteracting electrons with nearest-neighbor hopping,
so Y (0, 0) = 2/vr. One consequence of Eq. (4.2), there-
fore, is that the charge stiffness at n = 1 and L = oo has
a universal jump of 2/m as U goes from 0+ to 0

Equations (3.1) and (3.3) imply that

—16.00 Y+(O, y) = (2/7ry) / exp( —1/y), y —+ 0. (4 3)

—16.02

—16.04

—16.06

—16.08

-16.10
0

I

0.4 0.8
I

1.2 1.6 2.0

FIG. 1. Ground-state energy of a half-filled Hubbard ring
vs magnetic fiux (hc/e)C, from C, = 0 to 27t. Solid curves,
Ep(4', ) + NIUI/2 for U = —4; dashed curves, Ep(C, ) for
U=4. (a) N=L, =6 1.5(; (b) N=L=28 —7(, where
g(4) 4.06 is the correlation length at half filling for IUI = 4.

To verify the scaling law (4.2) for the general case, we
have calculated D, (n, L, U ) 0) by solving the Bethe
ansatz equations (2.10) and (2.11) numerically for sys-
tems with N & 200 and L & N. We have considered only
systems with an even number of electrons N. In order to
obtain for D, a smooth function of n and L, we impose
antiperiodic boundary conditions (i.e. , C't = 4i = vr)
when N mod 4 = 0, so that the ground state is always
a singlet. s7'ss Because 6 = I1 —N/LI = 0, 1/L, 2/L, . . .,
the scaling function Y(x, y) is only defined on a count-
able set of lines in the x, y plane, namely on x = my;
m = 0, 1, 2, . . . , oo. In Fig. 2, we plot mD, versus $/L
along the lines 6 = 0, 1/L, 2/I, and 4/L for systems with
N = 60, 80, and 100 electrons. In each case, the results
for N = 60, 80, and 100 fall onto a smooth curve over
the entire range 0.3 ( (/L ( 10000, verifyin'g Eq. (4.2).
(The limit I )) ( is examined more fully in Sec. V.) For
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2
lim Y+(x, y) = —.

y —+oo 7r
(4.4)

The charge stiffness in the limit L —+ oo (y —+ 0) has
been calculated previously ss 0 from a numerical so-

comparison, Fig. 2(b) is replotted with ( as the abscissa
in Fig. 2(e). It is evident from Fig. 2 that as (/L ~ oo,
D, —+ 2/7r (the value of the universal jump at the critical
point), which we may express as

lution of the Bethe ansatz integral equations. Here we
merely point out that because Y is universal, one can ex-
tract Y+(x, 0) from Haldane's analytical resultss for the
sine-Gordon model at Ps = 8vr . The mapping between
the two models is uniquely determined by equating the
energy gap 4 to the soliton rest energy m, c, equating
the correlation length ( to the quantum soliton length,
and equating the doping b' = ~l —n~ to the mean number
of solitons per unit length, as discussed in Sec. III B. The
result for the scaling function is

I I I I I I I2
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2
N~ot -——,

7r' (4.7)

approximately independent of b, L, and (. This result
was obtained previously for the case L =oo. 4 The ap-
proximate b independence of Nt t near the critical point
is in agreement with the intuitive picture that when
( )) 1 the kinetic energy of the system should be lit-
tle affected by the transition to an insulating state. At
b = 0, there is an energy gap 2A for charge excita-
tions, and all the optical spectral weight is at frequen-
cies w & 2A when L = oo. We refer to the states at
w ) 2E as being in the "upper Hubbard band" (UHB)
(see See. VI). Although for b ) 0 there is no true gap
in cr(cu) = Re [8.(u)], the structure in the UHB region
u & 2A must persist for sufficiently small b by continuity.
However, the rapid growth of D, with b and the approxi-
mate b independence of Nq q imply that near the critical
point the primary effect of doping on o (u) is to transfer
spectral weight from the UHB region into the Drude peak
at cu = 0, so that the UHB structure in o (w) is essentially
destroyed for b & ( i. A similar shift of spectral weight
from the UHB region into the Drude peak with decreas-
ing system size is implied by Fig. 2, the UHB structure
being essentially destroyed for L ( (. In the language
of the continuum field theory, 4i the approximate equal-
ity N«t D, 2/vr, which holds in the weak-coupling
limit both for (6 » 1 and for g » L, arises because
the efFects of umklapp scattering are largely smoothed
out in those limits, so that 8(w) approaches the result
expected in the absence of umklapp scattering, zs with
N«t ——D, = (2/m) sin(n~/2).

( 1 2 81n2
V+(x, o) = x

~

1 —-(~x)'+ (~x)'+. " ~, x ~ 0,2 3vrs ) '

(4.5)

2t' 1
Y~(x, 0) = —

~

1 ——[1n(vrx)] + ~, x oo. (4.6)
vr ( 2

Near the critical point, therefore, the charge stiffness
grows rapidly as one dopes the Mott insulator, saturat-
ing near its maximum value 2/7r when x = (b l. In
Sec. VI, we compute the small-x behavior of the scaling
function directly from the Bethe ansatz equations, veri-
fying Eq. (4.5).

The total optical spectral weight xNq q involves infor-
mation at high frequencies, but is related via the f-sum
rule (2.7) to the expectation value of the kinetic energy
in the ground state; thus N«t may also be expected to
exhibit universal behavior near the critical point. In the
critical regime (, L, b i )) 1, we find that

1.6

1.5—
U=6
6= 0.2

1.6

—1.5

1.4—

1.3—

I o—o—o—o—o—o—o
—1.4

OI- ~2
—1.3

nonsoluble models as well.
We find that the finite-size corrections to both D, and

N«q are positive and depend smoothly on I, provided the
boundary conditions are chosen so that the ground state
with an even number of electrons is a singlet: periodic
boundary conditions when N mod 4 = 2, antiperiodic
when N mod 4 = 0. 2 We employ these boundary con-
ditions throughout this section. In Fig. 3, D, and N& t
are displayed as a function of I for b = 0.2 and U = 6
(( —2.04). Note that the finite-size corrections to D, are
larger than those to Nt, t-, , this is a generic feature of the
finite-size corrections and indicates that the finite-size en-
hancement of D, is in part due to a transfer of spectral
weight from higher frequencies, as discussed above. We
find that the leading finite-size corrections to both D,
and Nt t are O(L ) in the metallic phase, in accor-
dance with the system-size dependence of the ground-
state energy. 44 The solid curves in Fig. 3 are extrapo-
lations of the I z behavior to small L, indicating that
the asymptotic form of the finite-size corrections gives a
reasonable approximation even for fairly small systems,
provided L ) (.

The coefficients A(b, U) and B(b, U) of the leading
finite-size corrections in the metallic phase, defined by
D, (L) = D,(oo)[1+ A(b, U)/L + ] and N«&(L)
N«i(oo)[1+ B(b', U)/I + ] are plotted versus U for
several values of b in Fig. 4 (note the different vertical
scales). Both for U ~ 0 and far from the critical point,
A(b, U), B(b, U) —+ vr2/6, the value expected for nonin-
teracting fermions (with or without spin) with nearest-
neighbor hopping. While the relative finite-size correc-
tions to the total optical spectral weight are always of
order vr2/6L, the relative finite-size corrections to D,
can be much larger, particularly near the critical point.
The curves in Fig. 4(a) display increasingly sharp max-
ima as 6 is decreased, which occur at values of U such
that g(U) b —0.4, and at which point A(b, U) —0.8((U)z.

In the critical regime, we expect the leading finite-size

1.2— —1.2

V. FINITE-SIZE CORRECTIONS
TO THE OPTICAL SPECTRAL WEIGHTS

In this section, we calculate the finite-size corrections
(for L ) () to the charge stiffness D, and the total optical
spectral weight xN«t in the metallic phase of the U & 0
1D Hubbard model. Since the scaling function for the
charge stifFness is expected to be universal, the finite-
size corrections we obtain should be relevant for other,

1.1
0 10

I

20 30
I

40
1 ~ 1

50

FIG. 3. Total spectral weight mNt, t, (squares) and Drude
weight vr D, (triangles) as a function of system size L for U = 6
and 6 = 0.2. The solid curves indicate I behavior extrap-
olated to small L.
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2

f+(x) = ——7r x +
2

x —+ 0. (5.2)

In Fig. 5, the function f+ =— [A(b, U) —vr2/6]/((U)2 is
plotted versus ((U)b'; the solid curve was obtained by
fixing b and varying U, while the triangles were obtained
by fixing U and varying b. Note that the numerical data
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corrections to D, to scale as

D, (L) = D, (oo)[1+ 7r /6L + fp((b)((/L)~+. ],

(5 1)

where f~(x) = d Y+(x, y)/dy ~& 0/2—Y+(x, 0), and we
have included the regular term vr2/6L2. The small-x
behavior of f+(x) can be obtained by noting that to
O((b)s, the charge stiffness in the weak-coupling limit is
equivalent to that of noninteracting relativistic spinless
fermions2s [c.f. Eq. (4.5)], whence

connect smoothly to Eq. (5.2) (dotted curve) as (b —+ 0.
Figure 5 provides further proof of the scaling law (4.2) in
the regime L )) (.

Though the finite-size corrections to D, near the criti-
cal point are much larger than expected in a noninteract-
ing system, they should not be a great obstacle to obtain-
ing information about optical properties of 1D models
from numerical calculations on small lattices, except at
6 = 0, due to the impossibility of simultaneously having
small L and small but finite b (min 6 = 1/I) Ro.ughly
speaking, the maximum value of the I 2 correction in
the critical regime is

D, (L) —D, (oo) 0.13
D, (oo) (bL)z ' (5.3)

though of course we have seen in Fig. 3 that the addi-
tional term vr2/6Lz can lead to slightly larger corrections
( 20'Fo) for small systems.

A further comment on the choice of boundary condi-
tions is appropriate at this point. One practice which
has been employed to reduce finite-size effects is to aver-
age over periodic and antiperiodic boundary conditions.
While this may result in cancellations for some values
of n and U due to the fact that the finite-size correc-
tions sometimes have diferent signs, it is ineffective near
the critical point, where the finite-size corrections are
largest, since the corrections are always positive and
essentially independent of boundary conditions in that
regime. s Furthermore, depending on U and n, any of the
three possibilities "ither periodic or antiperiodic bound-
ary conditions or an average over the two—can result
in the smallest finite-size corrections. One is better oE
choosing boundary conditions such that the ground state
with an even number of electrons is a singlet; then the
finite-size corrections to D, and Nt t are always positive,
with magnitudes as given above.
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FIG. 4. Plots of (a) A(b', U) and (b) B(b, U) as a func-
tion of U for b = 0.05, 0.1, 0.2, and 0.4 (top to bottom),
where D, (L) = D,(oo)[l + A(b, U)/L + ] and Ntoq(L) =
Nqot, (oo) [1 + B(b, U)/I + ]. Note the different vertical
scales.

FIG. 5. Plot of the function f~ = [A(b, U) —vr /6]/((U)
vs ((U)b. Solid curve: b = 41; 1.8 ( U ( 4.7. Triangles:
U = 3; b = 10,15,20,30,40,60. Dotted curve: f+(x)
m /2 —m x, the analytic result in the small-x limit.
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VI. CHARGE EXCITATIONS AND
THERMOPOWER NEAR THE

METAL-INSULATOR TRANSITION
The mapping of the charge sector of the weak-coupling

1D Hubbard model near n = 1 onto the sine-Gordon
model suggests that the charge excitations near half fill-
ing can be described in terms of the states of L —N soli-
tonlike charge carriers which behave like weakly interact-
ing spinless fermions in the low-density limit I —N &( L.
In this section, we use a reformulation of the Bethe
ansatz equations due to Woynarovich to construct an
explicit mapping for arbitrary U and ('6 (( 1 of the
low-lying charge degrees of freedom of the 1D repulsive-
interaction Hubbard model onto spinless fermions whose
mutual interactions vanish as (b -+ 0, and which
obey a quadratic energy-momentum dispersion relation
with a U-dependent effective mass. We use this map-
ping to obtain asymptotically exact expressions for the
charge stiffness and low-temperature thermopower near
the metal-insulator transition. Our calculation of the
thermopower extends and makes more rigorous previous
work of Schulz~o which was based on a weak-coupling ap-
proximation and implies that the transport is holelike for
0 & 1 —n (( (-'.

The energy eigenstates of a U ) 0 Hubbard chain of
length L containing L —H electrons can be obtained by
solving Eqs. (2.10) and (2.11),with an appropriate choice
of charge quantum numbers (I„)and spin quantum num-
bers (J ). The charge quantum numbers of the ground
state are L —H consecutive integers (or half-integers),
centered about the origin, and the spin quantum num-
bers of the ground state are (L —H)/2 consecutive in-
tegers (or half-integers), also centered about the origin
(as discussed in Sec. II). We wish to consider the low-

lying charge excitations of the system, so we restrict our
attention to those states whose spin quantum numbers
(J~) are those of the ground state, and in which all of
the pseudomomenta are real (states with complex pseu-
domomenta are separated from these by an energy gaps).
A hole Ih in the distribution of the charge quantum num-
bers (i.e. , I„+q —I„=2, Ih = I„+1) corresponds to a
charge excitation which, following Anderson, we refer
to as a holon We wish t. o consider the case H (( L;
since the I„are only defined mod(L), we can charac-
terize the low-lying charge excitations of the system by
the H holes (Ig, h = 1, . . . , H) in the distribution of the
charge quantum numbers rather than working with the
larger set (I„).Formally, we shall consider these holes in
the distribution of the charge quantum numbers to exist
even in the ground state of the system, where they will be
consecutive integers (or half-integers) centered about L/2
(for convenience, we restrict Ih, to the region 1 & I~ ( L).
We denote the corresponding holes in the distribution of
the pseudomomenta by the set (k~). Woynarovichs has
derived a reduced form of the Bethe ansatz equations,
valid in the large-L limit, which deals only with the pa-
rameters (Ih,) and (kh) of these excitations rather than
the parameters of all the electrons. We extend the re-
sults of Ref. 9 to include a magnetic flux Cy = Cg ——4,
through the ring, and point out that the reduced set of
Bethe ansatz equations derived in Ref. 9 can be inter-

preted as an asymptotic Bethe ansatz for h,olons, which
consequently is expected to become exact in the limit
I —+ oo for arbitrary H. We use this asymptotic Bethe
ansatz to investigate in detail the limit H, L —+ oo, with
6 = H/L small but finite.

In the large-I limit, the energy of such a state is given
in terms of the set (kh, ) bys

E(L —H) = Ep(L) —) e, (kp, ),
h=1

(6.1)

where Ep(L) is the ground-state energy at half filling, s

and~

Jp(ld) Jy(4)) de
p ~[1 + exp((uU/2)]

' (6.2)

e, (k) = —2 cos k —4
Jq (cu) cos(u sin k) Chu

(u [1 + exp(cu U/2)]
(6.S)

The momentum of the state, defined mod(2m), iss

H

P = C, —) p, (k~) + 7r(L —N/2+ 1), (6.4)

where

p, (k) = k+ 2
Jp(u) sin(u sin k) d~
~[1 + exp(u)U/2)]

(6.5)

Following Anderson, s we interpret —e, (k~) and —p, (kg)
as the energy and momentum of a holon. The holons can-
not be regarded as noninteracting quasiparticles, how-
ever, since the kg are not free parameters, but are related
to the set (Ih) by the equationss

H

Lp~(kh, ) = 2&Ih+ c'c+ ) e(kn, kh~),
h/ =1

where

sin[co(sin k —sin k')] Cku

m[1 + exp(uU/2)]

(6.6)

(6.7)

We point out that the set of equations (6.6) is for-
mally equivalent to an asymptotic Bethe ansatz for the
holons, O(k, k') being the effective holon-holon scattering
phase shift. 4" An asymptotic Bethe ansatzss can be used
to obtain the asymptotic form of the many-body wave
function of a 1D system with nondiffractive scattering in
the limit where the particles are widely separated "ven
if the exact wave function of the system is not of Bethe
ansatz form. Moreover, the asymptotic form of the wave
function is suFicient to determine the energy eigenvalues
of the system exactly in the limit L ~ oo, even at Gnite
particle density. ss Consequently, we expect Eqs. (6.1),
(6.4), and (6.6) to become exact in the limit L —+ oo for
arbitrary H. We emphasize that this conclusion follows
a posteriori from the form of the equations and is by no
means obvious from the methods of their derivation. As
a test of this conjecture, we use Eqs. (6.1) and (6.6) to
calculate the energy of the empty lattice, which in this
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formalism is treated as the ground state of a system of
I holons. In the limit H = L ~ oo, Eq. (6.6) implies
that the holon pseudomomenta (kg) are equally spaced
with density L/2vr, so that the sum over kg in Eq. (6.1)
can be replaced by L f dk/2m. The resulting integral
is equal to Es(L), yielding E = 0, as expected for an
empty lattice.

Equations (6.3) and (6.5) implicitly define an energy
band s, (k(p)) for charge excitations, k(p) being the in-
verse of the function p, (k) defined in Eq. (6.5). The
holons are just holes in this energy band, which is full at
N = L. Since ds, (k(p))/dp~„= dss, (k(p))/dps~„
0, the holon energy near the zone boundary p = k = vr

can be written

s.(k(p)) = ~- —
2 „+ 4,

+"(p —~)'
(6.8)

where p, = s, (m) is the chemical potential in the limitn~1,3

and

d's. (k(p)) s", (~)
]p'. (~)]'

d4s, (k(p)) s~ 1(7r) 4s,"(vr)p~ 1(vr)

dp' „=. b!(~)1' K(~)]'

(6.9)

(6.11)

For small b = H/L and low temperatures [k~T && E&
(orb)z/2~m" ~], we can use this expression for 0 to calcu-
late 6'pg. since the thermal average of 2vrIh, /L is m. , the
thermal average of bpg (for fixed Ih, ) is

(6.10)

Equation (6.9) defines the effective mass rn' of the holons
near the zone boundary, s M which is negative, as is ap-
propriate for a holelike charge carrier. Explicit expres-
sions for p', (n), s,"(x), p, (m), and s~ 1(n) are given in
Eqs. (B9)—(B12) in Appendix B.

Equation (6.6) implies that the holon momenta dif-
fer from those of noninteracting spinless fermions by a
term which vanishes as b' —+ 0; we write ph

—= p, (kq) =
2vrIh/L+4, /L+bph, where bpg = L Q&, & O(kh, , kg ).
Equation (6.7) implies that

41n2e(k„k..) = —, L.(k.) —p.(k')1

The effective holon-holon interaction, which should be
considered as a correction to the hard-core repulsion of
free spinless fermions, is thus attractive, and is neg-
ligible for (6 « 1 (or U )) t). While the explicit
form of Eq. (6.13) is only valid for (6 « 1 and small
excitation energies, one can show quite generally that
~bp~~ & 8 ln 2 b/U, so that holon-holon interactions are
also negligible at high temperatures when b'/U « 1.

The ground state of the system is obtained by choosing
the set (Ih,) to be consecutive integers (or half-integers)
centered about L/2, i.e., by placing the holons near the
energy minimum at p = vr (with our convention for Ih, , ph,
is restricted to the interval 0 & ph, & 2m). Since bpg/pg
O((b) as b ~ 0, the holon momenta are approximately
equally spaced in the ground state when (b' « 1. We can
thus use Eqs. (6.1), (6.6), and (6.8) to obtain an analytic
expression for the charge stiffness near half filling,

b' ~2A bs

21m"
I

2vr2 ln 2 b4 ( p', (vr) + p~ 1
(m) )

3 Up', (7r) ~
~m"

~
Q', (m)]'

(6.14)

To O(bs), the charge stiffness is equivalent to that of non-
interacting spinless fermions in the energy band (6.8), re-
flecting the approximate Galilean invariance which holds
at low holon densities. The term proportional to b4 comes
from holon-holon interactions, The term linear in 6 in
Eq. (6.14) may also be obtained by a more conventional
technique, which we describe in Appendix B. Equation
(6.14) is consistent with previous exact numerical calcu-
lations of the charge stiffness.

It is instructive to consider the weak- and strong-
coupling limits of Eq. (6.14). Making an asymptotic
expansion of the U-dependent coefficients in Eq. (6.14)
about U = 0, and using Eqs. (3.7) and (3.9), we obtain

b ( 1 2 81n2
lim D, =

~

1 —-(~(b)'+, (~(b)'+ &((b)' l,

(6.15)

which is equivalent to Eq. (4.5), apart from the nonsin-
gular multiplicative factor c/2t = 1+ U/4vrt. Note that
the weak-coupling limit of the holon effective mass can
be written as limU 0 ]m'~ = E/c, which is just the rest
mass of the soliton in the equivalent sine-Gordon model.
In the limit U -+ oo, Eq. (6.14) becomes

(6.12) h m D. = —
I

~b — +&(b')
~

t ( (7rb)s
U~oo 7r 4 3 (6.16)

—6e,
p — &c

81n2b' —41n2(b/vr, U ~ 0
—81n2b/U, U ~ oo.

(6.13)

Inserting this result into Eq. (6.8), one finds that the
shift of the holon momentum —bp& caused by holon-holon
scattering leads to a fractional shift in the holon energy,
measured relative to the chemical potential at half filling,
given by

where we have made the hopping matrix element t ex-
plicit. This is just the Taylor series for (t/n) sin orb, the
charge stiffness of noninteracting spinless fermions with
dispersion s', (p) = 2tcosp, in accord—with the well-
known behavior of the holons in the limit U )) t. '

The low-lying charge excitation eigenstates of a Hub-
bard ring with I + H' electrons follow from the above
results and the particle-hole symmetry present at half
filling. The energy and momentum of such a state are
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given by Eqs. (6.1) and (6.4) with —s,(kh) —+ U —s, (kh),
and the kh are determined by Eq. (6.6) with O, -+ —C, .
For 0' && L, and for small excitation energies, these
states can be described as the states of H' noninteract-
ing spinless fermions (antiholons) near the bottom of the
parabolic energy band,

2

(p) = U —s, (k(p)) = U —p + +

(6.17)

The antiholons are thus characterized by a positive ef-
fective mass near p = vr. Note that the gap between the
maximum of the lower Hubbard band (6.8) and the mini-
mum of the upper Hubbard band (6.17) is U —2p = 2A,
the Lieb-Wu charge gap. s s The result (6.14) also holds
for n = 1+b. We can thus write

thermopower. Furthermore, in this limit the holons
can be treated as noninteracting spinless fermions in the
energy bands (6.8) and (6.17). So far, we have proven
this only for the case where the spin wave function is in
its ground state and there are no charge excitations into
the upper Hubbard band [i.e. , no excitations from the
band (6.8) into the band (6.17)]. Such charge excitations
correspond to umklapp processes, and lead to a finite
conductivity for T & 0; however, their effect on the
thermopower is negligible when k&T « 2A. The inter-
action of the holons with a thermal population of spin ex-
citations can be described by adding a term L6pah(T) to
the right-hand side of Eq. (6.6); in Ref. 56, we show that
for small 6 and low temperatures bp~h (T) ~ G(Tb), so the
holons are still efFectively noninteracting when b and T
are small. A standard formula for the low-temperature
thermopowerM can therefore be used to obtain

D, 1

On 2m" /1 —n/ «1, (6.18) k~~T m*

3iei 6
(6.22)

where it is understood that m' & 0 (& 0) for n & 1

(& 1). This expression emphasizes that the conductivity
is "holelike" when m* ( 0, in that the Drude weight
decreases when an electron is added to the system, and
conversely, that it is "electronlike" when m* ) 0.

The physical significance of the effective mass m' is
revealed in the dynamics of a wave packet. The charge
velocity v, is defined as the the group velocity of a wave
packet composed of low-energy charge excitations. For
6 « 1, we obtain

which is valid for (b « 1 and k~T && E~
(~b) /2~m*~ in the absence of impurity scattering. The
low-temperature thermopower thus becomes large and
positive as the metal-insulator transition is approached
from n & 1 and has the opposite sign for n & 1. The
small-U behavior of Eq. (6.22) is in agreement with an
earlier result~a obtained using a weak-coupling approxi-
mation. The entropy carried by spin excitations is im-
portant at higher temperatures and/or dopings, and is
discussed in Ref. 56.

ds, (k(p)) orb

dp „(,~) ~m'~
' (6.19)

If we apply an electric field E to the system, the wave
packet will be accelerated:

dv, d2s, (dp) 1

dt dp2 (dt) m* (6.20)

E = SV'T. (6.21)

S is the entropy carried per unit charge by an electric
current, and is ordinarily negative for electron con-
duction and positive for holes. In general, both the
charge and spin entropies will contribute to S. How-
ever, the holon density of states diverges (v, —+ 0) as
6 ~ 0. Close to the metal-insulator transition, therefore,
the entropy of the holons will be much greater than the
spin entropy at low temperatures and will dominate the

The holons, having m* ( 0, will be accelerated parallel
to an applied electric field, and are thus holelike, while
antiholons are electronlike. 54

The transport coefBcients which are conventionally
used to determine the sign of the carriers —the ther-
mopower and the Hall coefficient —couple to electrons,
not holons, however, so the above picture is not the whole
story. In 1D, only the thermopower (Seebeck coefficient)
S is available, which is defined in terms of the open cir-
cuit electric field E produced by a temperature gradient
V'T across the sample:

VII. CONCLUSIONS

We have obtained an exact result for the charge stiff-
ness of a Hubbard ring with U & 0 and n = 1 in the
large-circumference limit, which defines and yields an
analytic expression for the correlation length ((U) in
the Mott insulating phase of the 1D Hubbard model.
We have shown that this correlation length also governs
the exponential decay of the equal-time single-particle
Green's function at n = 1 in both the weak- and strong-
coupling limits, as well as the pairing correlations in the
ground state of the attractive 1D Hubbard model at
n = 1. We remark that the strong-coupling expansion
[Eq. (3.11)], which gave D,(L), G (L) ~ exp( —L/(),
with ( ~ = ln(U/t) + const, must hold for the half-filled
Hubbard model in the large-U limit in any spatial dimen-
sion.

In the vicinity of the zero-temperature critical point
U = 0, n = 1, we have shown that the doping and system-
size dependence of the charge stiffness scale with the cor-
relation length (. The scaling function for the charge
stiffness is expected to be universal, and thus should be
applicable to other 1D metal-insulator transitions. In ad-
dition, this scaling function appears to describe a certain
class of 1D magnetic phase transitions which do not in-
volve broken symmetry and which are characterized by
a transition from a state with algebraic correlations to a
state with a gap. In particular, Eqs. (2.3) and (4.2) imply
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that the spin stifFness D, = (L/2)d Eo/dC, ]@. o [where
4, = (41 —4g)/2] of the 1D attractive-interaction Hub-
bard model with n = 1 and magnetization o = 2S'/L
has the form

D, (S', L, —U) = Y~(ger, (/L) (7.1)

in the vicinity of the magnetic critical point U = 0, o. = 0.
The spin stiffness is related to the magnetic susceptibility
y by D, = (1/2vr )y (see Ref. 4). There is a similar
mapping between the metal-insulator transition occur-
ring at n = 1/2 for 1D lattice spinless fermions with
nearest-neighbor repulsion and the magnetic transition
occurring at the isotropic point in the antiferromagnetic
Heisenberg-Ising spin chain. Because of the universality
of the scaling function for the metal-insulator transition,
this magnetic transition is also expected to be described
by the scaling function Y.

One important consequence of scaling is that the finite-
size corrections to D, are enhanced near the critical
point. While the scaling form (5.1) for the finite-size
corrections can only be expected to hold for 1D systems,
it is plausible that the finite-size corrections to D, may
be enhanced near half filling for smaller values of U in
higher-dimensional systems as well, suggesting that cau-
tion is required in interpreting numerical calculations of
o.(cu) on small clusters in this regime. Enhanced finite-
size effects of this type could explain anamolous negative
values for the Drude weight of the 2D Hubbard model
on a 4x4 lattice with 14 electrons when U = 4 and 8.M
We do not expect similar enhancements of the finite-size
corrections in the t —J model, since the constraint of no
double occupancy fixes g = 0.

In the metallic phase of the model, the physical signifi-
cance of the correlation length is that it defines the char-
acteristic size of the charge-carrying solitons, or holons.
We have shown that a reformulation of the Bethe ansatz
equations of the 1D Hubbard model in terms of the pa-
rameters of the charge excitations only is formally equiv-
alent to an asymptotic Bethe ansatz for holons, and have
used this asymptotic Bethe ansatz to show explicitly for
arbitrary U that the holons are equivalent to spinless
fermions with mutual interactions that vanish in the low-
density limit (6 —+ 0. We have used this mapping to ob-
tain an expression for the low-temperature thermopower
near the metal-insulator transition, which implies hole-
like transport for 0 ( 1 —n (( (

It has been argued in a series of papers by Andersonso
that the physics of doped Mott insulators is similar in
one and two dimensions. It is therefore interesting to
compare the metal-insulator transition in the 1D Hub-
bard model with that observed in the cuprate materi-
als in which high-temperature superconductivity occurs,
which are widely regarded to be quasi-two-dimensional
doped Mott insulators. ~ The thermopower of the doped
cuprates is generically positive for hole doping 3 and
negative for electron doping, with a magnitude
which increases drastically as the nominal concentration
of doped carriers goes to zero, in qualitative agreement
with Eq. (6.22). However, linear-T thermopower has not
been clearly identified in metallic samples. For larger
dopings, the thermopower has an unusual temperature

dependence, ~ ' 8 69 and will be discussed in more de-
tail elsewhere.

The optical conductivity near the metal-insulator tran-
sition in the doped cuprates~~~~ also shows qualita-
tive similarities to that near the Mott-Hubbard metal-
insulator transition in 1D.2439 5o In particular, a linear
growth of the Drude weight with doping is observed in
the cuprates for small dopings, ~" while the total in-
tegrated spectral weight in the optical conductivity up
to 3 eV, which includes both the low-frequency response
and the charge-transfer band (or upper Hubbard band) is
roughly constant from the insulating antiferromagnet all
the way through the superconducting phase. 7o ~i The pri-
mary effect of doping in these compounds is thus to trans-
fer spectral weight from high to low frequencies. This
transfer of spectral weight is quite rapid, being essen-
tially complete for a doping of approximately 0.25.
Similarly, near the critical point of the Mott-Hubbard
metal-insulator transition in 1D, we find that the total
optical spectral weight vrN~ t is approximately indepen-
dent of doping, while the Drude weight mD, grows lin-
early for small dopings, the transfer of spectral weight
from high to low frequencies being essentially complete
when (6 ~ l. Of course, the fraction of the low-frequency
spectral weight which is collapsed into the Drude peak at
u = 0 is much greater in our 1D model for several reasons,
among which are the absence of an impurity potential
and the kinematic constraints which limit carrier-carrier
scattering in 1D.

Note added in proof. After this manuscript was ac-
cepted we became aware of work by M. Continentino
[Phys. Rev. B 45, 11312 (1992)] in which it is argued
that the charge stiffness ought, in general, to obey scaling
near a second-order Mott transition, but that in the par-
ticular case d = 1, n = 1, U —+ 0 scaling does not apply.
The work presented here proves that the charge stiffness
scales in the expected way near the Mott transition in
d = 1, even in the case n = 1, U ~ 0. The exponents
obtained here agree with those of Continentino; the def-
inition of ( and the calculation of the scaling function
presented here are different.
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APPENDIX A: CALCULATION OF g(U')

Here we derive the result (3.1) for the asymptotic form
of D,(L) as L ~ oo at n = 1 using a technique7s pre-
viously employed for computing finite-size corrections to
energy eigenvalues in Bethe ansatz solvable models.

We use Eq. (2.4) to calculate the charge stiffness from
the dependence of the ground state energy on C, . Eo(C,)
may be obtained by solving the Bethe ansatz equations
(2.10) and (2.11), and using Eq. (2.8). We consider only
even N (= L), so that the ground state is a singlet (M =
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N/2) and nondegenerate. The charge quantum numbers
are then

I. LI = ——+1 —s ——+2 —s ——s
2 2 )

dA p(A) = n/2.

The ground-state energy is then

(A12)

(A1) Eo ———2L dk cos k p(k). (A13)
where s = 4(L mod 4), and the spin quantum numbers
are

(
M —1 M —1

j
In order to facilitate a solution of Eqs. (2.10) and (2.11) in
the large-I limit, let us define the following functions:7

pL, (k) = k ——) 2tan '
p

1 ~ A —sink„
zr, (A)

—= —) 2tan '

——) 2 tan
p

(A3)

( 4)

With these definitions, the Bethe ansatz equations (2.10)
and (2.11) become, for Cy = 41~ = C1„

2vrI~ C,
pL(k ) = L" + L'

2'J
zl(A ) =

(A5)

We also introduce the functions73

1 dye, (k)
dk

1 dzL, (A)
( 8)

2vrp(k) = 1 + cos k

2~p(A) +

8Up(A)
Uz+ 16(A —sink)z'

4Up(A')
U'+ 4(A —A')z

In the limit L ~ oo with N/L = n kept finite, the
pseudomomenta {k„)in the ground state are distributed
continuously on the real axis between the pseudo-Fermi
points Q and Q+ with density p(k) —= limL, pL, (k),
and the spin rapidities {A ) are distributed continuously
between —oo and oo with density p,(A):—liml. pl. (A).
Equations (2.10) and (2.11) then lead to the following
coupled integral equations for p(k) and p, (A):r4

Eo is independent of C, at n = 1 in the limit L ~ oo,
as may be seen from Eqs. (A9)—(A13): at half filling, the
pseudomomenta span the entire Brillouin zone (—vr, m),
so the shift in the pseudo-Fermi points Q and Q+
caused by the fiux C', merely takes the Brillouin zone
into itself, so that p(k), p(A), and Ep are all indepen-
dent of C1, at n = 1. To obtain an expression for the
ground-state energy of the finite system suitable for an
asymptotic expansion about L = oo, we express the sum
over pseudomomenta in Eq. (2.8) as an integral by means
of Eqs. (Al), (A5), and the Poisson summation formula,
with the result

Ep(C, ) = 2L—dk cos k pl. (k)

x ) exp{im[LpL, (k) —C, + 2m s]).

7r $2
D&'» = I,' dk.o.k-

6'C z (A15)

D(~I }
C

7t —7

dk sink sin[Lp, (k) + 2ms]. (A16)

D, l describes the fiux dependence of the ground-state
energy due to the change in the distribution of pseudomo-

menta as a function of C „while D, describes that due(ak}

to a uniform shift of the pseudomomenta 6k„= C', /L.
Both vanish as L + oo.

The integral in Eq. (A16) is dominated by the saddle
point

(A14)

In the large-L limit, the dominant C', dependence of
Eo comes from the terms with m = 0, +1. Moreover,
for large L, pl, (k) may be approximated by p, (k)
limL, ~pi. (k) in the terms with rn g 0. p, (k) may be
obtained by integrating the expression for p(k) in Ref. 3,
and was given in Eq. (6.5). Thus, using Eq. (2.4), the
charge stiffness may be written in the large-L limit as
D, (L) = D, + D, , where

kp = a+ i sinh (U/4) (A17)
8Up(k)""

U + 16(A-.;.k)

where Q and Q+ are determined by the conditions

and may be evaluated by the method of stationary phase,
yielding

.'" = ' "'""'""""-.[- /~( )],
i~@".(kp)/21'~'

dkp(k) = n,

and p, is normalized to

dkk p(k) = n@,/L, (A11)

(L even), where

(A18)



1422 C. A. STAFFORD AND A. J. MILLIS 48

41/g(U):——ipse(ko) =-
U

ln(y+ Qys —1)
dy

cosh (2vr y/U)

(A19)

I

We next consider Eq. (A 15) for D, . To find
b'

pL, (k)/bc ~c,, 0, we first introduce coupled integral
equations for pl. (k) and pl. (A). Combining Eqs. (A3),
(A7), and (A9), we obtain

2vr[pl. (k) —p(k)] = cos k

+ cosk

dA
SU[ ~(A) —S(A)]

U2 + 16(A —sin k)2

dA ~ . —) (b(A —Ap) —pL, (A)] .
8U 1

P=l
(A20)

The Poisson summation formula and Eqs. (A2) and (A6) can be used to rewrite Eq. (A20) as

2vr[pL, (k) —p(k)] = cos k

+cosk

SU[@I,(A) —p, (A)]
U2 + 16(A —sin k)2

SU@I.(A)
Us + 16(A —sin k)2

m= —oo
mgo

exp{im[Lzl, (A) + 2vrs']), (A21)

where s' = 2[(M —1) mod 2]. After similar manipulations, Eqs. (A4), (AS), and (A]0) lead to

2vr[pl, (A) —p(A)] = , 4U [pl, (A') —p, (A')]
U2 + 4(A —A')~

exp(im[Lpl, (k) —C, + 2vrs])

exp(im[Lzl. (A') + 2~s']).

8U[pL (k) p(k)]
U2 + 16(A —sin k) 2

SUpl. (k)
U2 + 16(A —sin k)2

m= —oo
mgo

4U pl. (A')
U'+ 4(A —A')~

m= —oo
mgo

(A22)

Differentiating Eqs. (A21) and (A22) twice with respect to C, and keeping only the leading-order terms, we obtain
the following coupled integral equations for b pl. (k)/bc, ~o. o and b2pl. (A)/bc2~c, . 0, valid in the large-L limit:

2" 2

b~ pl, (k) = cosk
c C,=O

8U
U2 + 16(A —sin k) 2

b'2@1.(A)
bC,

(A23)

b2 pL, (A)
/@2 4 =0

4U b2 pl. (A')
U'+ 4(A —A')' bc,' C =0

SU b2 pl. (k)
Us+ 16(A —sink)~ b'C2 dk 2 . ~ cos[Ip, (k) + 2vrs]. (A24)

16U p (k)
U2+16 A —sink ~

These equations can be solved by Fourier transforms, with the result

b2pl. (A)
bC2 4 =0

dk
p(k) cos[Lp, (k) + 2vrs]

27t

exp[in(A —sin k)] dku

2 cosh(~ U/4)
(A25)

b2pr, (k)

e.=o

dk'
& BO(k, k')

p(k') cos[Lp, (k') + 2~s]
27r

(A26)

where O(k, k') was defined in Eq. (6.7). Inserting Eq. (A26) into Eq. (A15), and evaluating the integral over k' by
the method of stationary phase in the large-L limit, we obtain

~{,) (—1)' 'L' '[1 + ( /U)')' ' p[— /((U))
[7rp,"(ko)/2( '~2 (A27)
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(I even). The sign of D, is opposite that of D, . As noted in Ref. 7, D( ~) is negligible compared to D( ) in(~~) ~ ~ (~k) ~ (~~) ~ ~ (ak) .

the large-U limit. In the small-U limit they are comparable in magnitude, but !D(
! ) !D( )! V U. Combining

Eqs. (A18) and (A27) yields Eq. (3.1), with

D(U) =
(U/4) —[1 + (U/4) ] dx e tanh(x) Ji (4x/U)

"x' *Jp(4x/»&(U/4)'+ ['+ (U/4)']«anh(x)&
I

1/2 ' (A28)

By applying arguments similar to those above directly
to Eq. (A14), one can readily derive Eq. (3.4).

APPENDIX B: CALCULATION OF D,
NEAR HALF FILLING

Here we use a technique due to Haldane75 to calculate
the charge stiffness near half filling, verifying the term
linear in 6 in Eq. (6.14). Eliminating p(A) from Eqs. (A9)
and (A10) yields an integral equation for p(k) alone:7s

D, =
I
1+

[2vrp(vr)]~ ( 2vr

O20(k, Q)
OQ2

(B7)

Inserting the result for p(vr) from Ref 3i.nto Eq. (B7)
and using Eq. (6.7), we obtain

I

From Ref. 75 OQ/On = [1 —id(Q) + id( —Q)]/2p(Q), so
(OQ/On)!„ i = 1/2p(a). After some manipulation,
Eq. (B6) becomes

~+ „,OO(k, k')
P )

Q D, tb
1 —2 Chd id Ji(id)/[1+ exp(idU/2t)]

2 . (B8)

e v,2P
C

27r
(B2)

where 0(k, k') was defined in Eq. (6.7). We note that
Eqs. (All), (A13), and (Bl), which determine the de-
pendence of the ground-state energy on C, in the limit
L ~ oo, are identical in form to those considered by Hal-
dane in his treatment of the spinless 1D quantum fiuid. 7s

The result for the charge stiffness obtained in Ref. 75 is
therefore applicable here, and is

1 —2 did Jp(id) /[1+ exp(cdU/2t)]

Note that the above expression for D, may be rewrit-
ten using Eqs. (6.9), (B9), and (B10) as D, = 6/!2m*!,
thus confirming the term linear in 6 in Eq. (6.14). Note
also that v, vr6'/!m'! for b (( 1, in agreement with
Eq. (6.19).

For completeness, we give below the explicit expres-
sions for p', (~), s,"(vr), p, )(vr), and s( )(~):

where e~ = 1 —cu(Q) —id( —Q) is a positive number which
parametrizes the electron-electron interactions, and p', (vr) = 1 —2

Jp(Cd) deed

1+exp(idU/2t)
' (B9)

(,
(Q)

'(Q)— dk s'(k) ~(k) (B3) Cd Ji(id) Ckd
!1+exp(idU/2t) r

' (B10)

2vrid(k) = 0(k, Q)— „,OO(k, k') („, (B4)

is the charge velocity. Here s(k) = 2tcosk, and i—d(k)
and ~(k) are solutions of the following integral equations:

&(s) (~) —2
(1 + id~) Jp(id) Ckd

1 + exp (id U/2t)
' (B11)

Oe(k, Q)
OQ

, Oe(k, k')
Ok' (B5)

BD,
On

OD, OQ

OQ q=~ O" ~=i-
(B6)

Using Eq. (6.7) for 0(k, k') and the fact that Q = a at
half filling, we see that v, vanishes at half filling because
z'(7t) = 0 and 7 ( k) = w(k) when Q—= vr. Also, id(vr) =
id( —m) = 0, so e4 = 1 at half filling. Thus, for a small
doping 6 away from half filling,

(4) f (ids + 4id) Ji(id) ~ i
1+exp(~U/2t) r

(B12)

D, tb!

( oo

x!
1

(y2 —1)ii~ [2 coth (2vrty/U) —1] i

rsinh(27rty/U)
2 1)

—li2 i
dg

sinh(2vrty/U) r
(B13)

Using the Laplace transforms of Jo and Ji, and the
Sommerfeld-Watson transformation, Eq. (B8) may be
rewritten in a form more suitable for an asymptotic ex-
pansion about U = 0 as follows:
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