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Estimates of phonon-mediated electron-electron scattering rates in the metal elements
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Starting with an exact expression for the quasiparticle decay rate due to the phonon-mediated
electron-electron interaction, we derive a simple approximate formula for the magnitude of its T
coe%cient at low temperatures. Comparison with measured decay rates in Cd and several nonmagnetic
transition metals yields agreement to within at worst a factor of 2. Similar agreement holds for estimat-
ed electrical resistivities.

I. INTRODUCTION

The electron-phonon and Coulomb interactions give
rise in ordinary metals to two nearly distinct scattering
mechanisms, electron-electron scattering (due to a com-
bination of the Coulomb interaction and the exchange of
virtual phonons' ) and electron-phonon scattering (refer-
ring to the emission and absorption of real phonons). As
long as phonons are well-defined excitations, as is certain-
ly the case for the elementary metals, the distinction be-
tween these two mechanisms is sharp. Clear signatures
exist in the asymptotic temperature dependences of the
quasiparticle decay rate in normal metals, as is well
known: Electron-phonon scattering produces cubic tem-
perature dependence far below the Debye temperature
T ((OD, and linear dependence above. Electron-
electron scattering produces quadratic dependence both
far below and above OD, but with different coefficients in
the two regimes because only the Coulomb interaction
contributes at higher temperatures. Similar signatures
are associated with the electrical resistivity, with "cubic"
replaced by "T ". Only a limited amount of data relating
to electron-electron scattering exist in elementary metals
because electron-phonon scattering dominates it at all but
very low temperatures.

There are several theoretical approaches to quasiparti-
cle decay rates or transport coefficients that incorporate
phonon-mediated electron-electron scattering. The earli-
est treatments' showed how processes attributable to
both real and virtual phonons are included in the familiar
Dyson's equations of the coupled electron-phonon sys-
tem. Later treatments ' combined the Coulomb and
phonon-mediated interactions within a Fermi liquid for-
malism to construct the full Landau scattering function.
Still later treatments obtained the full scattering func-
tion and real phonon processes from the three self-energy
diagrams of Fig. 1.

Among these theoretical works, only Refs. 4 and 5 ar-
rive at quantitative results and compare these with exper-
iment. The current state of agreement between theory
and experiment is discussed in a detailed review of
electron-electron scattering by Kaveh and Wiser. ' A

briefer discussion is given in a more general review of
transport properties by van Vucht, van Kempen, and
Wyder. " To summarize briefly, calculations are per-
formed for the alkali metals (except for Li), the noble
metals, Al, and Pb. The phonon-mediated interaction
has been detected experimentally only in the low-
temperature electrical resistivities of K (Refs. 12 and 13)
and Al (Refs. 14 and 15) among these metals. In Al, the
theory and experiment agree within 50%%uo, which is within
the accuracy of the resistivity calculation. In K, the cal-
culated resistivity exceeds experiment by about a factor
of 3. This calculation is more accurate than the Al one,
and the reason for the discrepancy is not known. In the
other alkali metals (those that do not undergo Martensi-
tic phase transformations), electron-electron scattering is
detectable only at high temperatures, ' ' where only the
Coulomb interaction contributes. The agreement here
with Na, K, Rb, and Cs is within 40%. Electron-electron
scattering is detectable in the noble metals at both
low and high ' temperatures, but the Coulomb in-
teraction always dominates so that the phonon-mediated
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FIG. 1. The three quasiparticle self-energy diagrams used in

Ref. 9 to obtain the total inelastic decay rate. Solid and wavy
lines represent the renormalized quasiparticle and phonon prop-
agators, respectively, the dashed line is the bare Coulomb in-
teraction, and triangles are the screened, Coulomb-corrected
vertices.
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part is unresolvable. The calculated magnitudes exceed
experiment by about a factor of three in all cases.

Electron-electron scattering is not seen in Pb because
the electron-phonon contribution swamps it above the su-
perconducting transition T & T, =7.2 K. It is interest-
ing, though, that MacDonald finds the phonon-mediated
interaction much stronger than the Coulomb interaction
in the superconducting metals Al and Pb. In the alkali
metals, the Coulomb interaction is stronger in absolute
terms, but the phonon-mediated interaction wins out in
the electrical resistivity because it has more umklapp
character.

There is evidence of electron-electron scattering in the
transition metals, but existing theoretical treatments ac-
count only for the Coulomb interaction. ' These will
be discussed later in connection with present results. We
will describe in Sec. II an approximation for the phonon-
mediated interaction that applies in principle to any ordi-
nary metal. The approximation relies heavily on connec-
tions with empirically determined parameters and avoids
assumptions relating specifically to Fermi surface shape
or band structure. On the other hand, we do not believe
that the Coulomb interaction can be incorporated realist-
ically at a similar level of approximation. We compare in
Sec. III with experimental data in nonmagnetic metals
whose electron-phonon coupling is sufficiently strong that
phonon-mediated scattering could dominate or at least
compete with Coulomb scattering. We will argue that W
is a borderline case with A, -0.3 (about twice the value
found in most alkali metals). It is encouraging that Al
easily satisfies this condition even though (with X=0.43)
(Ref. 24) it is still in the weak-coupling regime. The com-
parison of theory and experiment focuses on quasiparticle
decay rates which provide the most direct test, and in-
cludes the electrical resistivity at a more qualitative level.
Conclusions are summarized in Sec. IV. The simple for-
mula which we will derive seems to be accurate to within
a factor of two, and it gives a consistent account of
electron-electron scattering in the nonmagnetic transition
metals as well as in the simple metals Cd and Al.

II. DERIVATION OF APPROXIMATE
DECAY RATE FORMULA

This section forms an extension of the general formula-
tion for inelastic decay rates developed in Ref. 9. As an
introductory step we obtain a simplified expression (but
still exact, within Migdal's theorem) for the low-
temperature limit, i.e., the coefficient of T, arising from

k-q-p, a

k-q
v+q

p+q

FIG. 2. (a) and (b) Effective diagrams representing ImX as
given by Eqs. (1) and (2), respectively. It is understood that ver-
tices are Coulomb renormalized, but only the explicit particle
lines are cut in forming the imaginary part.

the phonon-mediated interaction. We then proceed to
develop an approximation.

A. Exact low-temperature form

Diagrams of Fig. 1 have the following interpretations
when the imaginary parts are taken to compute the decay
rate: The third diagram, usually neglected on the grounds
of Migdal's theorem, was shown by Lopes dos Santos
and Sherrington to represent the exchange contribution
to phonon-mediated electron-electron scattering. The
second diagram represents not only real phonon process-
es but also direct phonon-mediated electron-electron
scattering (through the finite phonon linewidth), ' 3 and
the interference between Coulomb and phonon-mediated
scattering amplitudes (through the dynamics of its ver-
tices). This interference causes the partial cancellation
which becomes complete in the jellium model.

We showed in Ref. 9 that both electron-electron and
electron-phon on mechanisms are given correctly to
lowest order in the phonon linewidths by calculating the
imaginary part (only) of the quasiparticle self-energy
from the effective diagrams of Fig. 2, in which the ver-
tices are taken static. The Coulomb interaction (ignored
here) is included simply by making each interaction line a
sum, as described in Ref. 9. Clearly the direct and ex-
change virtual phonon-mediated contributions are
represented by Figs. 2(a) and 2(b), and real phonon con-
tributions arise as resonances in Fig. 2(a). The expres-
sions are

Imbed(k, e) =2vr f co dto[2n (co)+f (co —e)+f (co+ e) j

X g g 5(Zej, )5(Ze )5(Ze +~) gg (k —q, k)D (q, co)g (p+q, p)
v
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lm&, „(k,e)= —
m f dco[n (co)+f (co E—)]f dc@'[f(p ~' —~) f—(e —~')]

0 0

X g g 5(Zek )5(Zap)5(Zep+q)

X g g (k —q, k)D' (q, co)g (p+q, p)

X gg (p+q, k)D .(k —p —q, co')g .(k —q, p), (2)

where n and f are Bose and Fermi functions, respectively, D (q, co) is the phonon propagator, and g (k —q, k) are the
electron-phonon vertex functions attached to the ends of it in Fig. 2. The combination g Dg is the co-dependent
phonon-mediated scattering amplitude. We follow the notation of Ref. 9 except in the choice of arguments of the ver-
tex functions. It is preferable here to choose the outgoing and incoming electron momenta rather than the average and
the difference; Table I provides translation between this and the convention of Ref. 9. The physical (renormalized)
quasiparticle energies are denoted by e&, so that Ze& is unrenormalized, with Z the quasiparticle renormalization func-
tion Z(e) evaluated at @=0. The delta functions therefore simply reduce the momentum sums to Fermi surface in-
tegrals; for example,

g 5(Zap) =N(0)
P

is the unrenormalized density of one-spin states at the Fermi level.
The decay rate of a quasiparticle in state k is

'(k) = ImX(k, ek) .
Z Ek

(4)

For T «6~ only the low-co limit of the phonon propagators D (q, co)~ —2lco is sampled, and the double frequency
integral in Eq. (2) reduces to the single one in Eq. (I), which is equal to —,

'
[ok+ (mk~ T) ], the result for ordinary poten-

tial scattering. By taking this (static D ) limit we have eliminated the electron-phonon decay mechanism. It is con-
venient to average the decay rate over the Fermi surface, with the result

'(0) = g r '(k)5(ZEk)
k

4''(k~ T)
gg g 5(Zek)5(Zek )5(Ze )5(Ze + )
k q p

X gg (k —q, k)coq 'g (p+q, p)

X & [2g. «—q, k)~q.'g. (p+q p) —g. (p+q k)~k-'p — .g. (k —q p)]
a'

=r„'(0)+r,„'(0) .

The factor in square brackets identifies the direct and ex-
change contributions arising from Eqs. (I) and (2), respec-
tively. In comparing with experimental results, it is usu-
ally appropriate to average also over the quasiparticle en-
ergy, r '= fde( r)f /r)e)r '(e), which i—s easily seen
from the above-noted energy dependence to be related to
the value at the Fermi level [Eq. (5)] by

TABLE I. Notation of Ref. 9 and the present work are com-
pared for the electron-phonon vertex function [whose argu-
ments correspond to the lower left vertices in Figs. 2(a) and
2(b)], and two self-energy contributions. The superscript (ii)
refers to the purely phonon-mediated contribution to the imagi-
nary part of the diagram in Fig. 1(b). This table is intended pri-
marily for readers of Ref. 9.

r-'= 4r-'(0),

also —T at low temperatures. This result is exact
(within Migdal's theorem, as generalized by Ref. 7) for
the phonon-mediated electron-electron interaction at

vertex function
contributions to ImX

Reference 9 present work

g (k —q, k)
Imbed
ImX,„
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T «eD.
Equations similar to (1) and (2) were derived by Lopes

dos Santos and Sherrington, although ReD appears in
place of D, which accounts for only half the contribution
from real phonon emission and absorption. Equation (5)
is equivalent to formulas used in Ref. 5 to compute the
electrical and thermal resistivities in the alkali metals.
The main difference between this and Refs. 4 and 5 is not
in the description of the underlying phonon-mediated in-
teraction, but in the nature of the approximations used to
extract quantitative results. We now turn to the problem
of obtaining quantitative estimates from Eq. (5).

B. Approximation

An approximate analytical formula was derived in Ref.
9 using a familiar set of assumptions, namely a spherical
Fermi surface, Debye phonons, and jellium matrix ele-
ments. It is possible to derive an equally simple but more
accurate result for the phonon-mediated part of the
electron-electron interaction without these separate as-
surnptions, but rather just a single one that specifies how
the effective interaction is distributed over phonon states
(i.e., the Brillouin zone). Allen and Silberglitt derived a
similar result using an "extended Debye model" for the
phonon hnewidth and spectral distribution function in
evaluating Fig. 1(b). The main virtue of these treatments
may be that the phonon linewidths (or similar quantities)
incorporate the necessary integrals over the exact Fermi
surface. To show this as simply as possible, consider the
phonon linewidth due to the creation of electron-hole
pairs

Comparing this with the direct contribution v.
d in Eq.

(5), it is apparent that if g is independent of k (which
refers to the azimuthal position on the cylinder in Fig. 3),
then

8'(k~ T)'" '=
3X(0)Z(0) ~ ~ ~q

q o.

2

(9)

=2 g g 5(Z@i, )
k —k', cr

(10)

is the quasiparticle renormalization parameter for a state
k in the Fermi surface, and k is the Fermi surface average

g A,k5(Zeq) .2
X(0) q

If we write A, as a double integral and integrate over k
holding q=k —k' fixed, then according to Eq. (7),

The scattering geometry on the Fermi surface, including
Umklapp, has been treated exactly, in principle. The
only real approximation involves the integrand in Eq. (9).
It is shown in the Appendix that the exact ~d

' may be
written in only slightly less transparent form and com-
puted with essentially no greater difhculty. However, Eq.
(9) is more useful for proceeding analytically.

To this end, we compare Eq. (9) with a similar expres-
sion for the average electron-phonon interaction strength
k. Microscopically,

Ai, =Z(k, 0)—1

yq =2~coq g ~g (p+q, p) '5(Ze )5(Ze + ) .
p

(7) 1 g g y /co'
q cr

The sum is over all pairs of states lying on the Fermi sur-
face that are separated by q. Umklapp processes are in-
cluded most simply by drawing the Fermi surface in the
repeated zone scheme as shown in Fig. 3. According to
Eq. (7),

Ig. (p+q p)l'
g yq /~q =2m g g 5(Ze )5(Ze + ) .

P 0 Ci7q~

(8)

Q(q)=g yq /~q (12)

defined within the Brillouin zone. Specifically, we can
write

an identity derived by Allen. The k' sum may be re-
placed by a Brillouin-zone sum because umklapp process-
es are counted in the k sum, as required by the definition
of y [Eq. (7)]. A comparison of Eqs. (9) and (11) shows
that rd '-k /(1+A, ) with a coefficient that depends only
on the functional form of the quantity

8m. X(0)k ( k~ T)

3 (1+I )
(13)

where the dimensionless functional C is
—2

C[Q(q)]=+ Q'(q) g Q(q) (14)

FIG. 3. Cylindrical sections of the Fermi surface represent
the domain of k and p sums at fixed q, as occur for example in
Eqs. (S) and (7), with umklapp processes included by using the
repeated zone scheme. A spherical Fermi surface is sketched
for clarity only, the analysis is not restricted to this case.

and n;,„=g 1 is the density of primitive cells, or in cases
studied here simply the density of ions.

Now C is uniquely minimized by the constant function,
for which it takes the value C;„=C[constant]=1. A
more physically realistic choice is however Q(q) —1/q,
because this is the exact behavior at small q. Therefore
we adopt the value



48 ESTIMATES OF PHONON-MEDIATED ELECTRON-ELECTRON. . . 14 093

'/2 . (16)

We adopt this approximation because of its simplicity,
and we also note that it represents the maximum value of
~r,„'~ (see Appendix), and thus underestimates the total
rate ~

The final approximate result may be written con-
veniently in terms of experimentally determined parame-
ters,

2
16m %(0)A.

k 2 8~
n9;,„(1 +X) 3 ' 1+A,

(17)

where y, &
is defined by the electronic heat capacity per

primitive cell (here atom),

y„=C„/T=2rr X( )0(1 +A, )k~ /3n;, „.
The only material parameters in this result are k and y,&.

Note that ~ is quadratic in A, in the weak-coupling lim-
it, and linear for strong coupling. Of course the Coulomb
interaction will become important as A, is reduced. This
formula is a factor of 2(1+A, ) less than the one derived
by Allen and Silberglitt, the factor of 2 from the in-
clusion of exchange [Fig. 1(c)].

As mentioned earlier, Eq. (17) may be derived from a
single approximation, namely the one leading to Eq. (16)
for ~,„.Having arrived at this approximation in steps,
however, we can argue (see Appendix) that these tend to
counteract each other, so that this result is probably nei-
ther an upper nor lower bound on the exact w '. Beyond
these mathematical approximations, the neglect of the
Coulomb contribution probably overestimates ~ ', al-
though the results of Ref. 4 suggest that this may be a
small e6'ect for at least some cases with A, ~ 0.4.

The electron-electron contribution to the electrical
resistivity is related to the quasiparticle decay rate [Eqs.
(5) and (6)] in a simple manner, assuming that the total
resistivity is dominated by an elastic scattering mecha-
nism that fixes the nonequilibrium distribution in the usu-
al relaxation time form. The relation is

where the plasma frequency Q is defined by a Fermi
surface average of the electron velocity, 0
=e ( ~vk ~

) /[3m X(0)];and the parameter b, , called the
fractional umklapp scattering, is a more complicated

C [ I/q] =—',

which is close to C;„. Since the actual function Q (q) is
anisotropic, we suspect that C is greater than —', . Pro-
nounced phonon softening would also be expected to
enhance C.

The exchange counterpart ~,„' cannot be reduced to an
expression like Eq. (9) without a stronger approximation
than the one used there; in this case we simply note that
if the combination g g co g is independent of q (as
well as of the other momentum arguments), then the
remaining steps follow as before, with the result

average involving initial and final velocities in scatter-
ing events (v&, v2 and v3, v4, respectively),

b. =( iv, +v, —v, —v, i') ( i2v„i')

in this case weighted by the scattering probability. Now
Q has been calculated for most of the metallic ele-
ments, ' ' but 5 for only a few, and only for Al among
cases studied here. So we rely on the quasiparticle decay
rate for a more direct quantitative test of the theory, and
include the electrical resistivities more qualitatively.

III. RESULTS AND COMPARISON
%'ITH EXPERIMENT

Focusing initially on the quasiparticle decay rate, we
list on Table II the values of the coeKcient

(19)

computed with Eq. (17) for a representative set of ele-
ments with A, +0.3 and compare these with experimental
values where available. The experimental entries in some
cases represent a range of values arising from anisotropy
and/or experimental uncertainty. Individual sources are
listed on Table III and will be discussed shortly. The
agreement is surprisingly good quantitatively, especially
given the simplicity of Eq. (17).

With the exception of Nb, experimental data are avail-
able only in the weak-coupling cases A, ~ —,'. The larger
a-values are not readily observable because the ratio of
the superconducting transition temperature T, to the De-
bye temperature OD =co~ is large (see columns 5 and 6 of
Table II). For T) T, the electron-phonon contribution
( —T or faster) dominates the electron-electron. To ob-
serve a with T & T, requires suf5ciently high magnetic
fields to suppress superconductivity. For example, in Nb
(one of the best strong-coupling candidates) the data are
found only for T & T, and in magnetic fields -kG. This
allows for the use of magnetoacoustic attenuation, but
rules out the more accurate radio frequency size eA'ect

technique, which has provided most of the other quasi-
particle data (Table III). Among other strong-coupling
elements, judging from Table II, V is probably the most
favorable candidate, Ta less favorable, and Pb, La, and
Hg very unfavorable for observing electron-electron
scattering. The best candidate overall appears to be Ru,
with Os, Mo, and Re close behind. The simple metals Al,
Ga, and Zn appear to be reasonable candidates as well.

We have considered signatures of electron-electron
processes in the superconducting phase, which will be
discussed in a future publication. We find that the best
candidates in the normal phase tend also to be the best
candidates in the superconducting phase.

Although the u values are clustered around 0.4—0.5,
the y, &

values range over an order of magnitude, and so
we plot the results as a function of this parameter on Fig.
4. The experimental points for Al, Os, and Ru are in-
ferred from electrical resistivity data as will be discussed.
The data are consistent with the predicted linear depen-
dence on y, &

[or X(0)]. This contrasts with the quadratic
dependence found in a calculation of Coulomb scatter-
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ing in the s-d model, in which the conducting s-electrons
scatter from the more massive d electrons. Although the
s-d model is now known not to apply to most transition-
metal Fermi surfaces, which are highly hybridized, the
quadratic dependence indeed seems to apply to magnetic
metals, and presumably rejects in some way the impor-
tance of the underlying Coulomb interaction for quasi-
particle decay in those cases. It would be interesting to
obtain quantitative estimates from a di6'erent microscopic
approach, for example, along the lines of Ref. 33, ap-
propriate to the magnetic case. Neither the quasiparticle
data nor the electrical resistivity data shown here are de-
scribed as well by a quadratic dependence.

Let us discuss the entries in Table III individually.

A. Cd

FIG. 4. Phonon-mediated electron-electron scattering rate
with explicit A, dependence removed, plotted vs the coeKcient of
the electronic heat capacity. The solid line represents Eq. (17),
the filled circles represent quasiparticle data (Table II), and the
open circles represent electrical resistivity data as described in
the text.

The experimental data for Cd are obtained from the
radio-frequency size effect (RFSE). The smaller value of
a (Ref. 34) applies to a limiting-point orbit near the cap
of the third-zone lens of the Fermi surface. The larger
value applies to two extremal orbits, also on the lens.

TABLE II. CoeKcient a of the phonon-mediated electron-electron scattering rate calculated from
Eq. (17) using parameters X and y,&, with the molar values of y, &

first divided by Avogadro's number.
Experimental cz values, in some cases averages, are from quasiparticle data as detailed in Table III.
Values in parentheses are inferred from electrical resistivity data as described in the text. The Debye
temperature eD and superconducting transition temperature T, are tabulated only to identify good and
bad candidates for observable electron-electron scattering e6ects.

Al
Ga
Sn
In
Pb

0.43
0.4
0.72
0.81
1.55

(mJ/molK )
b

3 el

1.36
0.60
1.78
1.70
3.14

th

1.6
0.65
4.1

4.5
15

(10 s 'K )

+exp

(K)
GD

423
317
196
109
102

(K)
y b

1.2
1.09
3.72
3.40
7.23

Zn
Cd
Hg
Tl

0.42
0.40
1.6
0.80

0.64
0.67
2.2
2.83

0.74
0.73

11
7.3

0.8
316
252

75
88

0.88
0.56
4.15
2.36

Mo
Ir
W
V
Nb
Ta
La

0.40
0.35
0.3
0.6
1.1'
0.88'
0.85

2.10
3.15
1.22
9.04
7.66
5.84

10.1

2.3
2.8
0.86

17
28
17
28

2.5

0.7

51

459
425
388
399
277
258
142

0.92
0.10
0.012
5.38
9.26
4.48
6.0

Ru
Os
T1
Re
Tc
Zr

0.4
0.4
0.35
0.45
0.7
0.4

3.3
2.35
3.41
2.40
4.06
2.91

3.6
2.5
3.0
3.1

9.1

3.1

(6.2)
(4.4)

5.1

600
500
426
415
351
289

0.51
0.66
0.39
1.7
7.77
0.52

'Reference 24, except as noted.
From compilation of G. Gladstone et al. , in Superconductivity, edited by R. D. Parks (Dekker, New

York, 1969), Vol. 2, Chap. 13.
'P. B.Allen et al. , Phys. Rev. B 34, 4331 (1986).
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0.73 0.6
0.8

RFSE
RFSE

(Ref. 34)
(Ref. 35)

Mo 2.3 4.4
2.4-2.9
1.3-2.5

MA
DSCR
RFSE

(Ref. 41)
(Ref. 40)
(Ref. 37)

0.55 —1.1' RFSE (Ref. 42
and Ref. 43)

Re

28

3.1

51

4.3-6.2 RFSE

(Ref. 41)

(Ref. 45)

The more accurate later data are consistent with the ear-
lier value within its experimental uncertainty, suggesting
that a is nearly isotropic over the 1ens piece of the Fermi
surface. Large apparent T terms were found on first-
and second-zone orbits in the earlier work, but these were
later found to revert to T dependence at lower temper-
atures. This behavior is understood theoretically ' to
arise from electron-phonon scattering near cusplike re-
gions of the orbit, where the Fermi surface has a small
momentum gap Ak & kz T/c„with c, the speed of sound.

TABLE III. Sources of quasiparticle data are listed: Radio
frequency size effect (RFSE), magnetoacoustic attenuation
(MA), and Doppler-shifted cyclotron resonance (DSCR).

(10 s 'K )

~exp

RFSE work. ' ' As in Mo, a was found to be approxi-
mately isotropic on the electron jack and hole octahedron
sections, with values between 0.55 and 0.65. The larger
value 1.1 was found on the electron spheroid.

The case of W is interesting because a microscopic cal-
culation of the Coulomb scattering rate was done by
Potter and Morgan, taking into account repeated
scattering on a realistically shaped Fermi surface with
tight-binding electron states. Pointwise values of o. were
calculated in the range 0.87—1.34 (10 s ' K ), with an
average value (about 1.0) only slightly higher than the ex-
perimental average. It seems plausible that W, with
A, -0.3, is a borderline case in which Coulomb and
phonon-mediated interactions are comparable. Although
they would be expected to cancel somewhat, the cancella-
tion would not be complete, owing both to different par-
tial wave decompositions of the differential cross sections,
and to different anisotropies of the total cross sections for
the two contributions. It is possible that the magnitudes
of the Coulomb and phonon-mediated interactions found
in Ref. 23 and the present work (Table II), respectively,
are both consistent with the experimental value.

D. Nb

The single entry in this case ' is from magnetoacoustic
data on the extremal (100) orbit of the hole octahedron,
analogous to the MA measurement in Mo. In both cases,
the measured value of o, is about twice the theoretical
value. RFSE data are unavailable because of the high su-
perconducting critical magnetic field in Nb.

B. Mo

The RFSE data are the most informative in this case:
Measurements on many extrernal orbits on the electron
jack and hole octahedron indicate a nearly isotropic value
(2.5) of a on these sheets. The smaller values 1.3 and 1.9
were found on the small hole ellipsoids. It is noted that
these latter values are less reliable because the T
behavior is observable over a narrower temperature
range, and furthermore the overlap of cyclotron reso-
nance signals from spheroids and ellipsoids hampers the
determination of the cyclotron effective mass. A critique
is given of earlier RFSE work ' in which different
values were found on the hole ellipsoids, but similar
values on the larger sections. The Doppler-shifted cyclo-
tron resonance (DSCR) technique yields averages over
noncentral orbits corresponding to extrema of dS/dk„
where S is the area of an orbit with normal along the k,
axis. This entry represents two additional orbits on the
electron jack and hole octahedron sections. The magne-
toacoustic attenuation (MA) entry ' represents a single
orbit in the (100) plane of the hole octahedron. Its value
(4.4) is inconsistent with the other data. We choose 2.5 as
a rough estimate of the average value of a.

The single entry in this case refers to the most recent
RFSE work, ' where one can find a critique of earlier

K. Re

The range of a values quoted here represents RFSE
data for six orbits on the eighth-zone section of the Fer-
mi surface. This section was chosen for the measure-
ments because it is centered at the I point, so that
electron-phonon scattering, being predominantly normal,
is less severe here than on the other sections. Even so, a
T contribution to r ' (presumably from normal events)
is clearly evident on three of the six orbits. The
electron-electron contribution to ~ is isotropic within

experimental uncertainty on this branch of the Fermi sur-
face, while the electron-phonon contribution is highly an-
isotropic.

F. Electrical resistivity

Theoretical results for the resistivity parameter

2 =pT =4rrQ b, (1+A.)a (20)

[see Eqs. (18) and (19)j are evaluated and compared with
experimental values on Table IV. Direct comparison is
possible only for Al, where the umklapp parameter 6 has
been computed. Note that 0 is approximately uniform
across the transition metals, so that A is approximately
linear in y,&, as mentioned earlier.
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TABLE IV. Theoretical and experimental electrical resistivi-
ty coefficients A,b and A,„„. A, I, is calculated using Eq. (20)
with tabulated values of the plasma frequency Qp, h, z for Al
{Ref. 29), and the values of A, and n, z from Table II. Other
theoretical 5 values are not known. Apparent values le pp are
inferred from A„„and cz„„,the latter from Table II.

(eV)
Qp'

(10-"n mK-')
A exp

Al 12.4 0.30 0.28' 0.40

Mo
W
Nb

8.1

7.4
9.1

2.4A
1.06

355

1.3
0.5
2.3

0.5
0.6
0.04

8.9
8.7
7.4

3.15
2.36
4.06

2.7
2
4.5 0.6

'Reference 30 (first four), and Ref. 31 (last three).
T. L. Ruthru6; C. G. Grenier, and R. G. Goodrich, Phys. Rev.
8 17, 3070 (1978) except as noted.
'Reference 14.
Reference 42.

The close agreement in this case may be fortuitous.
The more detailed theoretical treatment described in Ref.
4 results in a value about 40% larger, which is within the
theoretical uncertainty of the present estimate. It is pos-
sible that the computed value of 5 is too large, and that a
smaller value would bring the Ref. 4 value into closer
agreement. A more detailed calculation along the lines of
Ref. 46 would be informative, as would be new experi-
mental quasiparticle data on Al.

Existing RFSE (Ref. 47) and surface Landau-level reso-
nance data show no evidence of electron-electron
scattering; only the T dependence expected from
electron-phonon scattering is resolved. New RFSE ex-
periments are being undertaken which extend the tern-
perature range and precision of previous measurements.
A T coefficient consistent with the electrical resistivity
data should be observable in these experiments.

H. Mo, W, Re, and Nb

In these cases where both resistivity and quasiparticle
data are available, we infer "apparent" values of the um-
klapp parameter (b,, in column 5) from Eq. (20) using
experimental values of A,„and a,„(we use the aver-
aged a values shown in Table II). Values near b, ——,

' seem
plausible, based on computed values for Al (Ref. 29) and
Pb (Ref. 4) (both 0.4), so that the experimental values of

p and cz, appear consistent for Mo, W, and Re, but
not for Nb. The Nb resistivity data were also found at
T (T, and therefore in high magnetic fields, requiring
subtraction of the magnetoresistivity in order to deter-
mine c4 exp e

I. Ru and Os

Since quasiparticle data are unavailable in these cases,
and since 6 has not been calculated, we must assume a
value of 6 in order to compare theory and experiment.
Taking 6-—,

' based on calculated values for Al and Pb
and the empirical values 6, for Mo, W, and Re, the
discrepancy is within about a factor of 2. It is unlikely
that 6 is significantly larger than —,', as would be required
for perfect agreement. The "experimental" points for Ru
and Os in Fig. 1 are obtained using this value.

J. A 15 compounds

Many compounds exhibit T dependence in their low-
temperature resi. stivities. This effect has received much
attention in the 3 15 compounds where those with high
T, ( —20 K) show a large eff'ect (above T, ) and those
with low T, show little or no such effect. ' Estimates
based on the Coulomb interaction, as considered in Ref.
22, fall two orders of magnitude below the larger ob-
served T terms. ' Estimates based on the present
treatment of the phonon-mediated interaction, taking
eight atoms per primitive cell, improve the agreement by
one order of magnitude. It seems unlikely that anisotro-
py and phonon softening could by themselves account for
the remaining discrepancy, although they move things in
the right direction. So this result does not remove the
motivation to look beyond the Migdal-based formalism,
as done for example in Ref. 53.

IV. SUMMARY

Starting with an exact formulation of the inelastic
quasiparticle decay rate, we have derived a simple ap-
proximate formula for the phonon mediated electron-
electron contribution at low temperatures. The result,

'/T -y, ~A, /(1+k), is quadratic in A, for weak cou-
pling, and linear for strong coupling. Nevertheless, the
best candidates for observation of this effect among metal
elements are weak-coupling superconductors (A, —0. 5)
with high Debye temperatures. Strong-coupling elements
tend to have large values of the ratio T, /OD, which
means that electron-phonon scattering dominates
electron-electron for T & T, .

The available experimental data among superconduct-
ing elements agree quantitatively with this formula, and
in particular they confirm the predicted linearity in y, &,

which varies by more than an order of magnitude in the
available cases. It is notable that this range includes sim-
ple metals and transition metals, so that the distinction
regarding the phonon-mediated interaction is only a
quantitative one, measured primarily by N (0), or y,&.

The linear dependence predicted here for r ' (and also
approximately for p) contrasts with the quadratic depen-
dence on y, &

associated with magnetic metals.
We would not argue that the Coulomb contribution is

negligible in all the cases studied here. Although Mac-
Donald found it to be negligible in Al (and Pb), Potter
and Morgan found it to be important in W, which with
A, -0.3 we consider to be a borderline case. However, the
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APPENDIX

We suggest here an approach for computing the exact
', and then argue that Eq. (9) probably overestimates

the exact result, but that subsequent approximations
probably underestimate Eq. (9). So the final result is
probably neither an upper nor a lower bound on the exact
result.

According to Eq. (5), we may interchange the k and q
integrals to show that ~ ' may be computed as a Bril-
louin zone sum of a function (of q), which is itself com-
puted as a double integral over the cylinder shown
schematically in Fig. 3. Each cylinder integral is of the
type [Eq. (7)]. The direct part rd

' may be computed
more simply by defining the matrix

U, (q)=2' +6(Ze )6(Ze + )g (p+q, p)
P

Xg (p+q, p)(coq coq )

in terms of which

(Al)

8~(k~ T)

3N (0)Z (0)
TrU q (A2)

The q integrand here involves just a single cylindrical in-

agreement found in eight metals (in three cases with both
quasiparticle and electrical resistivity data) argues that
the phonon-mediated interaction is generally at least as
important as the Coulomb interaction for quasiparticle
decay in the superconducting elements, and although this
interaction is complicated in detail, the resulting values
of ~ are given to surprising accuracy by a simple ex-
pression.

ACKNOWLEDGMENTS

tegration. These two equations may be compared with
Eqs. (8) and (9); the left-hand side of Eq. (8) [later called
Q(q) in Eq. 12], is equal to TrU(q). So Eq. (9) is similar
to (A2), but its integrand is [TrU(q) ] .

The ratio of Eq. (9) to Eq. (A2) would take on its max-
imum value, the dimension of U (i.e., the number of pho-
non modes) if and only if U-I. This is impossible, how-
ever, because it would require that all the off-diagonal
elements vanish, which none of them do, in general. An
approximation which is probably much closer to the
truth is U (q) =f (q)f, (q), which follows for exam-
ple if the integrand of U(q) is independent of the cylinder
integration variable p. In this approximation the ratio of
Eq. (9) to (A2) is unity. This would be the minimum
value if U were positive definite, which seems likely but is
not guaranteed as far as we know. Therefore it seems
likely that Eq. (9) overestimates rd '.

The next approximation is to assume that Q(q)-q
(and is isotropic) in Eqs. (13) and (14). This approxima-
tion makes C[Q(q)]= —', [Eq. (15)], only slightly above
the absolute minimum (unity), which is achieved accord-
ing to Schwartz inequality if and only if Q(q)=constant
(which is unphysical). Angular dependence would only
increase C; radial dependence could increase or decrease
it depending for example upon whether qQ(q) were a
monotonically decreasing or increasing function, respec-
tively. It is likely that this approximation, being close to
the minimum, produces an underestimate of ~d as given
by Eq. (9).

Finally, the approximation for exchange
(R =rd ~~,„'~~—,') [Eq. (16)], maximizes R and thus un-
derestimates the total scattering rate. This may be seen
from Eq. (5) by combining the exchange term with half
the direct term in the form of a perfect square (whose
minimum is zero). The same limit is achieved for exam-
ple when nearly free electrons undergo purely s-wave
scattering. For comparison, the Thomas Fermi screened
Coulomb potential produces values around 0.4. The mi-
croscopic calculation of the phonon-mediated interac-
tion in alkali metals finds R at least this far below —,'.
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