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We perform a thorough analysis of the critical behavior of the density of states at the metal-insulator
transition within the framework of the field-theoretic renormalization group. Of the previous,
conflicting results obtained by resumming the perturbation theory, and by frequency-momentum-shell
renormalization-group methods, we agree with the one yielding conventional power-law behavior. Em-
phasis is placed on a detailed technical derivation of this result, and on peculiarities in the
renormalization-group description that arises from the long-ranged nature of the Coulomb interaction,
and from the presence of multiple time scales in the problem.

I. INTRODUCTION

Interacting electrons in a random environment of static
scatterers display a zero-temperature phase transition
from an electric conductor to an insulator if the eftective
disorder is increased beyond a critical value. ' In contrast
to the corresponding Anderson transition of noninteract-
ing electrons, where the single-particle or tunneling den-
sity of states (DOS) is uncritical, this Anderson-Mott
transition is characterized by a critical DOS at the Fermi
level. The vanishing of the DOS at the metal-insulator
transition (MIT) has a precursor in the so-called
Coulomb anomaly of the DOS in the metallic phase, and
presumably finds its continuation in the Coulomb gap in
the insulating phase. The criticality of the DOS has
been observed in a variety of materials.

Our current theoretical understanding of the MIT is as
follows. There are four distinct universality classes. '
They are represented by systems with magnetic impuri-
ties (MI), systems in a magnetic field (MF), systems with
spin-orbit scattering (SO), and the generic case of no
spin-dependent external fields (G). Physically, the first
two classes (MI and MF) are distinct from the last two
because magnetic impurities or magnetic fields suppress
the particle-particle or Cooper scattering and interaction
channels, while the Cooper channel is present and
inAuences the critical behavior in the SO and G univer-
sality classes. Technically, a generalization of Wegner's
Geld-theoretic approach to the Anderson transition has
proved very successful in describing the MIT for the
classes MI and MF. The asymptotic critical behavior at
the transition is characterized by three independent ex-
ponents, v, z, and p. v describes the divergence of the
correlation length g according to g-t . z describes the
vanishing of the (dominant) frequency (0) or tempera-
ture (T) scale according to Q —T —g '. Finally, the
DOS at the Fermi level vanishes as X(s~)-t~. Here t
denotes the dimensional distance from the critical point
at zero temperature and frequency. The exponents v, z,
and p were calculated in Ref. 8 in lowest order in an s ex-

pansion about D =2. All other critical exponents are re-
lated to v, z, and p by scaling laws. The same problem
was treated in Ref. 9 by means of a di6'erent method.
The results agree with those of Ref. 8 except for the
DOS, for which Ref. 9 found not a power law, but rather
in% (sF ) ——(lnt), i.e., p = ~ . The reason for this
discrepancy is not easy to see, and the point has never
been clarified. Technically, the calculation for the DOS
in Ref. 8 is on less firm ground than the remainder of the
paper. The author at this point abandons the frequency-
momentum-shell renormalization-group (RG) methods
which he employed for all other quantities and resorts to
a direct exponentiation of perturbation theory. On the
other hand, the validity of the frequency-momentum-
shell RG employed in Ref. 9 is not obvious either, mainly
since the limits of criticality and a~2 do not commute
in the case of the DOS (see the discussion in Sec. IV C 1).

It is the purpose of the present paper to clarify this
point. Using field-theoretic methods we will derive the
scaling properties of the DOS and show that
Finkel'stein's result, Ref. 8, is the correct one. The
method used will also shed light on some subtle points re-
lated to the 1ong-ranged nature of the Coulomb interac-
tion and how to deal with it in the framework of the RG.
We also discuss the consequences of multiple time scales
in the MIT problem.

We will purposefully restrict ourselves to the MI and
MF universality classes. For the SO and G classes, where
cooperons are present, conAicting results have been ob-
tained' '" for quantities other than the DOS, and no ac-
cepted solution of the problem exists. However, some
technical aspects of the DOS problem are related to and
relevant for what we believe will be the solution of the
cooperon problem. ' These points will be mentioned in
the discussion.

The remainder of this paper is organized as follows. In
Sec. II we first recall the basic structure of the theory and
the loop expansion. The relevant one-point vertex func-
tion is then given in perturbation theory to one-loop or-
der. In Sec. III the theory is renormalized and a Callan-
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Symanzik equation for the DOS is derived. The solution
of this equation in Sec. IV yields the leading scaling
behavior as well as corrections to scaling. The paper is
concluded with a discussion of our techniques and re-
sults, and of the light they shed on some unsolved aspects
of the MIT problem.

II. STRUCTURE OF THE THEORY,
AND THE LOOP EXPANSION

A. The generalized nonlinear o model

Our starting point is the fermionic generalization ' of
Wegner's matrix nonlinear cr model to the case of in-
teracting electrons. The action reads

2

S[Q]= f dxtr VQ(x)+ —A(x)[Q(x), r3@s0]26 C

+2H fdx tr[QQ(x)]+b f d xtr[r 3@s 3Q( x) ]

mNz f d xgtr[X; Q( x)] +S;„,[Q] .
S i=1

(2.1)

m~0 m &0

(1—qq+ )'~ —1

+ —(1—q+q)'~ +1
n&0

n (0.
(2.2a)

Here the q are matrices with spin-quaternion valued ele-
ments q„~; n =0, 1, . . . ; m = —1, —2, . . . . They are
conveniently expanded in a spin-quaternion basis,

3 3

qg(x)= g g,"qg(x)r„s;,
r =Oi =0

(2.2b)

where ~0=s0=12 with 12 the unit 2X2 matrix, and

The matrix field Q(x) comprises products of fermionic
degrees of freedom, and depends on replica labels a,P
( a,P= 1,2, . . . , N ) and on Matsubara frequency labels
n, m. The number of replicas 1V will be set to zero after
calculations, since the replica trick is employed in dealing
with the quenched disorder. Q is traceless, Hermitian,
and unitary, and can be parametrized,

ri =sj = —i o~ (j = 1,2, 3) with o the Pauli matrices.
The matrices ~„and s, describe the particle-hole and spin
degrees of freedom, respectively. The coupling constant
G, which plays a role analogous to the temperature in a
finite-temperature phase transition, is G =Se /~o. with o.
the bare (i.e., self-consistent Born) conductivity. e is the
electron charge, and we use units such that A= 1. G is a
measure of the disorder strength. H=mN~/4 with N~
the bare DOS at the Fermi level is a frequency cou-
pling parameter, and 0„=5 g„co„r0 sa, with
co„=2~T(n + —,

'
) a fermionic Matsubara frequency, is the

external frequency matrix. A denotes the vector poten-
tial, and b =~N~gL p~B/2 is proportional to the corre-
sponding magnetic field B. gL is the Lande factor, and

pz the Bohr magneton. ~, is the spin-Aip time due to
magnetic impurities, and (X;)„=5i' „~3s;.

In the absence of S;„, this model describes the localiza-
tion of noninteracting electrons. ' The motivation for
and derivation of the model have been discussed many
times. ' ' Let us mention only that the critical behavior
at the MIT, as at any continuous phase transition, is
governed by the slow modes of the system. The slow
modes described by Eq. (2.1) are the difFusive ones that
are related to the conservation of particle number, spiri,
and energy density. The basic underlying assumptions
are that (a) there are no other slow modes, and (b) all
massive excitations are irrelevant for the critical
behavior. An inspection of Eq. (2.1) shows that in the
presence of either a magnetic field (A, bAO) or magnetic
impurities (I/r, &0) the modes with r =1,2 (which de-
scribe the particle-particle or cooper channel) are mas-
sive. According to the above-stated assumptions they can
therefore be neglected. In addition, magnetic impurities
introduce a mass into all spin-triplet models (i =1,2, 3),
while with only a magnetic field present only two of the
three spin-triplet modes (i = 1,2) become massive.

The term S;„, in Eq. (2.1) describes the electron-
electron interaction. It is a four-fermion term and there-
fore quadratic in Q. As mentioned in the Introduction,
we are restricting ourselves to systems with either b&0
(universality class MF) or I/r, &0 (universality class MI).
According to the above discussion, we therefore have to
consider only the interaction in the particle-hole channel
(r =0,3). The corresponding part of S;„, can be writ-
ten"

fdxdy g 5„+„„+„gg ( —)" tr[r„sDQ„„(x)]Jt, (x—y) tr[r„s0Q„„(y)]
n3n4

3

+ g tr[r„s;Q„„(x)]K, 5(x—y) tr[r„s;Q„„(y)] . (2.3a)
i=1

Here T is the temperature, and K, is the spin-triplet in-
teraction amplitude which can be considered pointlike in
our long-wavelength theory. E„the spin-triplet interac-
tion amplitude, is the statically screened Coulomb in-

teraction. Its Fourier transform is

K, (p)=, , [p 'F0+~D '(1+F0)] . (2.3b)
P +KD
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Here Fo is a Landau parameter, H=H/(1+F0)
=(m/8 )Bn/Bp is proportional to the thermodynamic
density susceptibility dn IBp, and i~D = (m 2 'e Bn I
Bp)'~' " is the screening wave number in D dimen-
sions. Notice that X,(p =0)+H =0. We therefore must
keep the p dependence of K, lest we lose the generic
structure of the density propagator, cf. Eq. (2.4b) below.

tematic loop expansion. ' In our case this amounts to an
expansion in powers of G.

The quantity of central interest for this paper is the
single-particle DOS at zero temperature as a function of
disorder and energy or temperature, which we will denote
by N(s)=N(iA„~~e —EF~+i0). At zero-loop order,
N(e) =NF—. In general, N can be expressed in terms of a
one-point correlation function,

B. Propagators, vertex functions, and the loop expansion N(Q„) =N~(DQ„„(x)), (2.5)

The next step is to expand the action in powers of q by
means of Eq. (2.2a). At the Gaussian or zero-loop level
(i.e., keeping only the terms quadratic in q) one can ex-
press arbitrary q-correlation functions in terms of three
propagators,

2)„(p)=[p +GHA„]

2)'„(p)= [p +G [H+K, (p)]Q„(

2)'„(p)=[p +G(H+K, )Q„]

(2.4a)

(2.4b)

(2.4c)

Here Q,„=2~Tn (n =0, 1, . . . ) is a bosonic Matsubara
frequency. Terms of higher order in q in the action can
be taken into account perturbatively by means of a sys-

where the average is to be taken with the full action
S[Q]. The corresponding vertex part is the one-point
vertex function, which we denote by I'".To one-loop or-
der one easily obtains for I'" (Ref. 1)

I "'(0„;G,H, ~D ) = 1+—g g ~'i+„(p)+O(G2),
8 1=1 p

i+f1

(2.6a)

where ~&(p)=2)&(p) —Si(p). In what follows we will
prefer a cuto6' regularized theory over the dimensional
regularization employed elsewhere. ' ' Accordingly, we
introduce a momentum cutoff A and a frequency cutoff
AD=A /GH. We also analytically continue to real fre-
quencies and find

r'"(0;G,H, ii;A)=1+ GHv'+'t—dc@J dp, , +O(G ),
p +GHco ~~+'p' '+GHco

(2.6b)

where G =GSD /(2n) with SD the surface of the D-dimensional unit sphere. Equation (2.6b) holds for the MI class. In
the case of the MF class, there is an additional term with ~' in Eq. (2.6a) replaced by ~'=23' —2). Inspection shows
that for D ~2 the singlet contribution is more singular due to the well-known log singularity that exists in D =2 and
was first discussed by Altshuler, Aronov, and Lee. The one-loop spin-triplet contribution to the exponent P, to be
determined in Sec. IV, is of the same order as the two-loop spin-singlet contribution. We therefore neglect it here.
Equation (2.6b) gives the leading contribution to I "' for both the MI and the MF universality classes. ' Performing the
frequency integration in Eq. (2.6b) yields

(i) dx x' '+(AGHIA )(A/~D)'+'r'"(n; G, H, ~, ;A) =1+ A'— ln
o x' ' x(HIH)(A/—v~)'+' x +AGHIA x' '+(HIH)(A/s~)'+'

(2.7)

Notice that for ~D = ~ and for A~ ao one has
I "=1+(G/4s )[1+0(E )]A' (the 1/s prefactor
reflects the strong singularity mentioned above) while for

the integral is finite even for A~~. From a
purely perturbative point of view, the cutoff is therefore
not necessary. However, in the next sections we will ob-
tain very useful information from studying the depen-
dence of I'" on A.

G =p Zgg (3.la)

(2.7). In doing so we assume that the theory is renormal-
izable with four renormalization constants: One each for
the three coupling constants, G, H, and K„and one field
or wave-function renormalization. ' We define renormal-
ized coupling constants g, h,

H=Z~h . (3.1b)
III. RENQRMALIZATIQN

A. The renormalized one-point vertex function

We now apply the canonical field-theoretic renormal-
ization scheme' to the one-point vertex function, Eq.

Here p is the arbitrary RG momentum scale, and the re-
normalization constants Zg and Z& are functions of the
renormalized coupling constants, and of A/p and A/~D.
The loop expansion corresponds to an expansion of Z
and Zh in powers of g,
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z ), =1+0(g) . (3.1c)

K'D —pZ K'DR (3.ld)

If we define a renormalized screening wave number aD by

Notice that the field renormalization constant Z is di-
mensionless and can depend on A only through the corn-
bination A/p. We eliminate the arbitrariness in the
choice of Z by requiring the following normalization con-
dition:

then the argument A/~D of Z~& gets replaced by KD.
The renormalized one-point vertex function is r~(')(Q=p /gh;g, h, zD;p, A)=1 . (3.3)

rz'"(0;g, h, vD;p, A)

=Z' (g, h, lr", A/p)r'"(0;G, H, a;A) . (3.2)
From Eqs. (3.2) and (3.3) we obtain for the field renormal-
ization constant

Z(g, h, ~D, A/p) =1——
4 p

1 dx
() x' ' —x (H/h)(A/p)'+'/(x )'+'

x ' '+ (H Ih )(p/A )
' 'l()~D )

'+'
Xln

x + (p IA ) x ' '+ (H Ih )(A Ip ) '+'l(~" )
'+' (3.4)

and for the renormalized vertex function,

r())(~ h R A) 1 g f &/p dx
1

X. +ghQ/p2 D

8 () x ' —x (H/h)/(Ir )
+'

x ' +(H I-h) I(~~o )'+

x' '+(H/h)(gh0/p )/(~D)'+'

(3.5)

We see that I R' is indeed finite as A~~ with fixed re-
normalized coupling constants. For A ))p we have

2 E

d ()) g ~ ghO,
d ln(A/p) 8 A

X[1+0(p/A)'+'] . (3.6)

B. Callan-Symanzik equation

gp =GA',

hp =H/H,

kp=A/AD .

(3.7a)

(3.7b)

(3.7c)

We note that the thermodynamic density susceptibility
H —Bn /Bp does not get renormalized. The scaling
properties of hp are therefore the same as those of H. KD,
on the other hand, is given by e Bn/Bp, and the charge
might get renormalized at a MIT. In general we there-
fore expect nontrivial scaling behavior of kp. We will
come back to this point.

We now use standard arguments to derive a Callan-
Symanzik (CS) equation for the bare one-point vertex
function. ' Note that the bare theory is what we are in-
terested in, while the renormalized theory is an artifact
that has no direct physical meaning (this is the opposite
of the situation in high-energy physics). It is therefore
natural to derive an equation directly for the bare vertex
function.

Let us define dimensionless bare coupling constants gp,
hp and kp by

Xr("(n;x, ;A) =O((p/A)'-') . (3.8)

Here xo= Igo, ho, . . . I collectively denotes the bare cou-
pling constants, and the RG functions P, g, etc. are
defined as

dgp
p(xo) =A (3.9a)

dhp
g(xo) =A (3.9b)

dkp
p(xo) =A (3.9c)

d lnZ
y(xo) =A

dA
(3.9d)

with all derivatives taken at fixed renormalized theory
Strictly speaking, the RG functions will in general de-
pend on p, /A as well as on xo. However, since the bare
theory cannot depend on p, these dependencies must can-
cel against the (p/A) dependence of the inhomogeneity
on the right-hand side of Eq. (3.8). We therefore con-
sistently neglect these (p/A) dependencies. Thus we ob-
tain the CS equation, i.e., Eq. (3.8) with the right-hand
side replaced by zero, and the RG functions calculated in
the limit A/p —+ ~.

By writing the total differential on the left-hand side of
Eq. (3.6) explicitly, and using Eq. (3.2), we obtain a par-
tial differential equation (PDE) for I '",

A +P(xo) +g(xo) +p(xp) + p(xo)
a a a

BA agp p p
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C. The RG functions

Before we can solve the CS equation (3.8) we need the
RG functions, Eqs. (3.9). Let us first consider y(xo).
From Eqs. (3.9d) and (3.4) we obtain, in the limit
p/p —+ oo,

g I 1+6

y(xo) = — g2c hp

with

+O(go), (3.10a)

dx 1
g(z) =E

o x' '+zx +1 (3.10b)

&m(xo)=Ego go/4+O(go),

gm(xo) =goho /8+0 (go ) .

For the MF class one has

(3.11a)

(3.11b)

1 1 p~MF(xo)=ego ~go 1 ——1+ 0 l, +O(go),
2 r',

(3.12a)

with y, =IC, /H, and I, =ln(1+y, ), and

4rF(xo) = Sgoho(1 —y, )+0 (go ) .

r, obeys a fiow equation of its own,

(3.12b)

For later reference we note that g(z =0)=1+0(E), and
that for D =2 we have y(xo)-go In(ko/ho).

For the functions P(xo) and g(xo) we use the known
results from the literature. ' IFor possible ko dependen-
cies of these functions, see the discussion after Eq.
(3.10').] For the MI class one has

(A~A/b), and let the anomalous dimension of ko be—1 —x, i.e., ko(bazoo)-b ' ".x is determined by the
renormalization of the charge in the screening wave num-
ber: The running charge will go as e(b)-b"' "~ . In
a charged system, e cannot scale to zero, so x ~0. ' x is
related to a dynamical exponent. From perturbation
theory, Eq. (2.7), we know that one of the combinations
in which the external frequency occurs is QgpHkp+'/A .
This de6nes a frequency scale and a dynamical exponent
which was denoted by z3 in Ref. 1, Q —b ' with
z3=D —(I+e)(1+x). The other two frequency scales,
and their dynamical exponents (denoted by z, and z2, re-
spectively) are related to the combination QgoHho/A in
Eq. (2.7) and to a combination involving the spin-triplet
interaction constant k„' which we have neglected. In
terms of z3 we can effectively write

D —z 3
p(xo) = ko, (3.14)

with z3=1+O(E )&1.
The scaling behavior of the irrelevant operator kp

determines a critical exponent, viz. , z3. However, this is
of no consequence for the DOS since the time scale deter-
mined by z3 is not the dominant one, as we will see. Con-
sequently, all kp does is to produce corrections to scaling.
These can be derived from including kp in the scaling
functions, and the kp dependence of the RG functions we
do not have to keep as well. We therefore replace Eq.
(3.10a) by its values at k0=0,

d '
A

dA
= ,'gol —1 —(yi)'—f+O(go) . (3.12c)

y(xo) = —go/2E+0(go ) . (3.10')

Note that the signs of these RG functions differ from
those in, e.g. , Ref. 1 since we consider the bare theory
here.

Finally, we need the RG function p, Eq. (3.9c). We
have performed a one-loop renormalization of the singlet
propagator, Eq. (2.4b), and found'

p(xo)=ko+O(go) . (3.13)

We see that ko is an irrelevant operator (its bare dimen-
sion is —1), and to one-loop order it has no anomalous
dimension. While we do not know whether or not this re-
sult will hold to all orders, we note that an anomalous di-
mension of ko (i.e., a renormalization of the charge)
would have profound consequences for the scaling
behavior of the conductivity at the MIT. The DOS, on
the other hand, would not be qualitatively affected. We
can therefore restrict ourselves to the following scaling
considerations. Let b be the cutoff dilatation factor

We close this section with four remarks. (1) In the case
of the MI class, ho also fiows to zero, cf. Eq. (3.11b).
However, it does so much more slowly than kp, and so
ko+'/ho in Eq. (3.10a) still fiows to zero. (2) In contrast
to kp, hp determines the leading critical time scale and
the leading dynamical exponent z &. It is therefore
dangerously irrelevant for the dynamics and must be
treated with care. (3) A recalculation of the RG func-
tions P and g might also reveal a dependence on ko (the
results quoted above were obtained by effectively setting
k0=0). These dependencies on the irrelevant operator ko
can be neglected for the same reason as in the case of r.
(4) If we had not introduced ko but instead kept the
length scale I/sD, then the RG function y, Eq. (3.10a),
would depend on A through the combination A/~D.
(This would be a particularly tempting option if z3 was
equal to 1, i.e., if sD was not renormalized. ) This would
be, of course, equivalent to solving the kp-Aow equation
and inserting the result in the other RG functions. This
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is a, somewhat trivial, counterexample to the widespread
conviction that RG functions must not depend on the
scale. This erroneous belief seems to originate in the use
of momentum-shell RG methods, which indeed do not al-
low for such a scale dependence. This question is
relevant for the MIT problem in the presence of coope-
rons, and we will come back to it in the discussion in Sec.
IV.

IV. SCALING PROPERTIES
OF THE DENSITY OF STATES

A. Solution of the Callan-Symanzik equation

As a linear PDE of first order, the CS equation can be
solved by the method of characteristics. For our pur-
poses it is convenient to write the solution in the form'

I'"(0;go,ho, ko;A)=exp —,' f—dly(go(e')) I'"(Qb, go(b), ho(b), ko(b);A) .
p

(4.1)

Here b is again the cutoff dilatation factor (A~A/b),
and the running coupling constants are given as solutions
of the ordinary differential equations,

„=—/3(go(b) ),dgp

d lnb

dhp

d lnb

dkp
=p(ko(b) ),d lnb

= —g(g(i(b), ho(b), y, (b)),

(4.2a)

(4.2b)

(4.2d)

with /3, g, and p given by Eqs. (3.11) and (3.12). In the
case of the MF class, where g depends on y„we need the
additional fiow equation, Eq. (3.12c),

=Sgo(b)I1 —[y, (b)] ]+O(go) .

t(b)=tb'~ with v= —1//3'(go ) the correlation length
exponent. The Aow of hp is characterized by an exponent

ho(b)=hob, and that of ko by the dynamical ex-
ponent z3 as explained in connection with Eq. (3.14). Fi-
nally, the value of the DOS exponent P is determined by
the FP value of the RG function y: /3= —vy(xo )/2.
Asymptotically close to the critical point we can replace
y(go(e')} in Eq. (4.1) by y(go ). We then find for the
DOS a homogeneity or scaling relation,

N(n, ;t,h„k, ;A)

=b ~ N(Qb b', hob'', kob ';A),
(4.4)

with 0= ~E
—EF ~.

The exponents are easily obtained to one-loop order
from Eqs. (3.10)—(3.12). We obtain

The initial condition for Eqs. (4.2) is xo(b = 1)=xo, with
xo the set of physical parameters defined by Eqs. (3.7). v= 1/E+O(1), (4.5)

B. Asymptotic scaling, and corrections to scaling

Let us first derive the general asymptotic scaling prop-
erties of the DOS from Eqs. (4.1) and (4.2). The fixed
points (FP) of the RG are given by those points xo in pa-
rameter space for which the parameters do not charge
under scaling. For our simple Bow equations, xp is given
by the zeros of the RG functions, P(x 0 ) =g(x 0 )

. =0. From Eqs. (3.11)—(3.13) we find for the MI
class

—+O(l) (class MI)

+O(1) (class MF)
2c, 1 —1n2

(4.6)

and

for either universality class. The exponents P and a are
different for the two universality classes under considera-
tion. One finds

(xo )M, =(go, ho, ko )=(4E,O, O),

and for the MF class

(xo )MF=(go ho (ri)* ko )

(4.3a)

—E/2+0(s ) (class MI)
0+O(s ) (class MF) .

All of these values agree with Ref. 8. For z3 we have

z3=1+O(e ),

(4.7)

(4.8)

(1+y, ), 1,0
1 —ln2' 2

(4.3b)

In our case the FP value of gp coincides with the physical
critical disorder gp, gp=gp. We denote the deviation
from the critical value by t =1—gp/gp. For gp close to
gp, and for values of b that are not too large, t grows as

for either universality class.
Let us now consider the disorder dependence of N at

Q=O. Since X is dimensionless, at 0=0 it cannot de-
pend on A. The kp dependence vanishes asymptotically.
x. is either negative (class MI) or zero (class MF). By set-
ting b = t we find
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N(Q=O, t)-t~ . (4.9a)

In order to find the corrections to this asymptotic scaling
behavior we have to keep the irrelevant operators ho and
ko. From perturbation theory, Eq. (2.7), we know that at
n =0 they appear only in the combination J o

=k 0+' /h 0.
Further, for small values of Xo the leading Ko depen-
dence is Xo"with

a (s)= 6(—' —E)+6(E—
—,
'

) .
1 —c,

(4.9b)

This yields

a (c)v(D —z3+ i~.)N(Q=O, t)-t~[1+co sntXt '
j . (4.9c)

The term in the square brackets is the leading correction
to scaling due to the irrelevant operators ko and ho. Of
course there are also corrections to scaling that are due
to not being asymptotically close to the critical point, but
have nothing to do with the irrelevant operators. These
are analytic in t, and we have neglected them.

We now turn to the energy dependence of Xat the crit-
ical disorder, t =0. Perturbation theory, Eq. (2.7), tells
us that 0 appears in two combinations, viz. ,
QJ =QHgoho/A and 02= QHg(}k0+'/A . We thus
find

N(n;t =0)-b t"N(ni -",nb"),
where

(4.10a)

z) =D+v . (4.10b)

Since the two frequency arguments enter additively, the
largest dynamical exponent is the dominant one. To—1/z )one-loop order this is z&. Setting 6 =0 ' we obtain

P/vz ) a(E)(I —z3/z& )N(n, t =0)-n '[1+constXQ ' ' ] . (4.11)

Here n can either be interpreted as
~
s —EF ~

at zero tem-
perature, or as temperature at c.=a~. The asymptotic
scaling behavior is again in agreement with Ref. 8. To
obtain the correction to scaling we have used the pertur-
bative result, Eq. (2.7), that far from criticality (i.e., large
n, ) and small nz, N depends on its second frequency ar-
gument like 0&". The leading correction to scaling in
Eqs. (4.9) and (4.11) due to ko and ho is the same as one
would obtain from keeping the ko and ho dependence of,
e.g., the RG function y(xo). This justifies the replace-
ment of Eq. (3.10) by (3.10').

C. Discussion

Relation to previous results

As we have mentioned before, our results for the
asymptotic critical behavior of the DOS, Eqs. (4.9) and
(4.11) with exponents given by Eqs. (4.5)—(4.7) and
(4.10b), agree with those obtained by Finkel stein in Ref.
8. They disagree with Ref. 9. The source of this
disagreement is the behavior of the RO function y(xo),
Eq. (3.10a). As we have mentioned after Eq. (3.10b), in

D =2 y is a singular (viz. , logarithmic) function of the ir-
relevant variable ko. If we used, in the spirit of the c ex-
pansion, this two-dimensional (2D) form of y in Eq. (4.1),
then we would recover the results of Ref. 9. Effectively,
this procedure turns the 1/s in the exponent P, Eq. (4.6),
into a lnt or lnQ. The principal problem with this pro-
cedure is that it ignores the fact that ko is dangerously ir-
relevant in D =2, but not in any D )2. Therefore using
the 20 result in the FP description leads to a spuriously
strong singularity in D =2+v.. Our treatment is in the
spirit of Parisi: ' We apply the RG directly in D =2+@.
dimensions rather than expanding everything about
D =2. This avoids the problem Inentioned above. Of
course, in D =2 the dangerous irrelevancy of ko should
have consequences, some of which are discussed in the
next subsection.

N (Q ) —exp — (inn )
go
2

(4.12)

where n is either ~1 —s/E~~ at T =0, or T/To with some
microscopic temperature scale To at c.=c~. Equation
(4.12) is valid in an intermediate energy or temperature—

1&goregion where 0 is larger than a scale 0*-e '. For
Q ~ Q* a crossover to some unknown behavior occurs.

3. General aspects of scaling and the structure of the RG

I.et us conclude by discussing two general aspects of
the RG method employed in this paper and putting them
in the appropriate contexts.

The first point concerns the irrelevance of ko, and pos-
sible scale dependence of the RG factors. As we already
mentioned at the end of Sec. III, an alternative to intro-
ducing the irrelevant operator ko would have been to
keep ~D as an additional momentum scale. This would
have led to a scale dependence of the RG function y. It
may be more natural, especially if the additional momen-
tum has an anomalous dimension, to introduce an addi-
tional coupling constant as we have done, but the two
descriptions are equivalent. One might think of situa-
tions where the structure of the theory is more complicat-
ed, and the coupling constants are harder to identify than
in the present case. Under such circumstances, the field-
theoretic RG would take any additional (irrelevant)
operators that have not been identified explicitly into ac-
count by means of a scale dependence of the RG func-

2. Some remarks concerning D =2

In D =2 the system always scales towards strong cou-
pling, i.e., large go, and there is no nontrivial FP and no
phase transition. However, in many respects the system
still shows critical behavior near go=0 just as, e.g. , the
10 Ising model shows critical behavior near zero temper-
ature. While the nature of the ground state is not known,
we can still apply our RG methods to describe the rem-
nants of critical behavior at intermediate scales before the
crossover to strong-coupling behavior occurs. For
go && 1, and scale factors b small enough such that
go(b) =go, we c—an solve Eq. (4.1) to obtain

t
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tions. By contrast, a Wilson-type momentum-shell RG,
which does not allow for scale-dependent RG functions,
would effectively replace the additional operators by their
asymptotic values. In this way any corrections to scaling
by the additional operators will be lost. We suspect that
this is relevant for recent discussions concerning the MIT
in the presence of cooperons. Reference 11 obtained loga-
rithmic corrections to scaling from scale-dependent RG
functions. While this is inconsistent with previous treat-
ments of the problem by means of frequency-
momentum-shell methods, ' the above discussion could
explain this discrepancy. If this was indeed the case, it
should be possible to consistently introduce marginally ir-
relevant operators that produce the logarithmic correc-
tions to scaling and eliminate the scale dependence of the
Aow equations. Efforts in this direction are under way. '

The second point concerns the existence of several time
scales at the MIT. While their existence is already sug-
gested by perturbation theory, ' a full analysis of the
consequences requires the RG. For the two universality
classes studied here, we have two different time scales and
associated dynamical exponents. A third exponent, z2,
which is related to the spin-triplet channel, is absent in
the MI class and equal to z, in the MF class. 3 priori it is
impossible to tell which time scale is the dominant one:
Depending on the particular combination in which the

various time scales appear in the scaling function, it is
conceivable that either the largest or the smallest dynam-
ical exponent is the dominant one. In the present case,
one-loop perturbation theory suggests the former, i.e., z&

is the dominant exponent and z3 is related to an ir-
relevant time scale. Of course, the irrelevant time scale
could be dangerous, but perturbation theory gives no in-
dication of this to be the case. If at higher loop order it
should turn out that z3 & 1, then the corresponding time
scale would indeed be dangerously irrelevant for the con-
ductivity, but not for the DOS. The reason is that the
conductivity is proportional to e —(A/ko)' ", and
thus is a singular function of A/ko for A/ko~O. No
such singular dependence is expected for the DOS, which
depends on the charge only through the singlet propaga-
tor 2)', Eq. (2.4b). At zero frequency the propagator is
massless, and z3 just determines how the soft propagator
at zero frequency is approached. Since the corresponding
time scale is not the dominant one, this does not affect
the asymptotic scaling behavior, but manifests itself only
in the corrections to scaling, Eqs. (4.11) and (4.9).
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