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Critical exponents of the three-dimensional classical plane-rotator
model on the sc lattice from a high-temperature-series analysis
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High-temperature-series expansions of the spin-spin correlation function for the plane rotator (or
XY) model on the sc lattice are extended by three terms through order P . Tables of the expansion
coeKcients are reported for the correlation function spherical moments of order l = 0, 1, 2. Our
analysis of the series leads to fairly accurate estimates of the critical parameters.

In three dimensions the two-component vector model
is the simplest spin model in the universality class of
the superQuid A transition of He and of the ferromag-
netic transition of magnets with an easy magnetization
plane. Until this work and contemporaneous work of
Adler et al. no high-temperature- (HT) series studies of
this model have appeared in the last two decades in spite
of remarkable experimental measurements of the critical
parameters in superQuid He and intense theoretical ac-
tivity in renormalization-group calculations and by direct
Monte Carlo simulations.

In particular we should mention that the critical index
v, which describes the leading singularity of the super-
Quid &action in He near the superQuid transition tem-
perature, has been measured with high precision in a long
series of experiments by Ahlers and his collaborators.
As stressed by Ahlers, the superQuid &action is the most
accurately known singular parameter at a critical point,
and correspondingly v is the most accurately known crit-
ical index. The most recent experiments yield the value
v = 0.6705 + 0.0006.

Unfortunately the critical exponent p cannot be mea-
sured in liquid He and, as far as magnetic systems are
concerned, no precise measurements exist either for p or
for v. A review of static critical properties of He can be
found in Ref. 4 and a general discussion of the interpre-
tation of the measurements on He in connection with
the problem of conQuent singularities is given in Ref. 5.

The Hamiltonian of the three-dimensional plane-
rotator (or XY) model is

Here s(x) is a two-component classical spin of unit length
associated to the site with position vector x = nisei +
n2e2 + nses ——(ni, n2, ns) of a three-dimensional simple
cubic lattice and ei, e2, e3 are the elementary lattice
vectors. The sum over x extends to all lattice sites.

It has been rigorously proved that the model exhibits
a ferromagnetic phase transition. We present here series
which extend by three terms, to order Pi, the series of

Ref. 7. The shorter series were used in the investigation
by the authors of Ref. 2. They have been computed by
a FORTRAN code which iteratively solves the Schwinger-
Dyson equations for the correlation functions.

We have tabulated the HTE coefBcients of the two-
point correlation function

(2)

for all inequivalent sites x for which the expansion is non-
trivial to order Pi

We have analyzed the series for the spherical moments
of the correlation function ml ) (P) defined as follows:

(here ~x~ = gn2i + n22+ n2s ), l ) 0 and the sum extends
over all lattice sites. The zeroth-order spherical moment
ml i (P) is the (reduced) susceptibility and is also denoted
by x(P).

In Table I, we report the HTE coeKcients of the spin-
spin correlation function (s(0)s(x) ) with x = (1, 0, 0). In
Tables II, III, and IV we report the expansion coefEcients
for the moments ml'i(P) with l = 0, 1, and 2.

Our analysis of this O(2) symmetric model parallels
that of the corresponding series for the O(0) symmet-
ric self-avoiding walk (SAW) model and the O(l) sym-
metric Ising model on the sc lattice. ' Using both
first-order and second-order differential approximants,
we first analyze the susceptibility series. We find that
if the degree of the inhomogeneous polynomial is too
low (( 3) the approximants cannot adequately accom-
modate the analytic background term. On the other
hand if the degree of the inhomogeneous polynomial is
too large () 8), there are insufhcient series terms to ad-
equately represent the singular part of the series. For
intermediate values of the degree of the inhomogeneous
polynomial however, the approximants are stable, al-
lowing the unbiased estimates P, = 0.45406 + 0.00005,
p = 1.315 + 0.009 to be made. The unbiased estimates
from second-order approximants were more erratic, giv-
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TABLE I. HTE coefficients of the nearest neighbor corre-
lation C(0, 2:) with 2: = (1, 0, 0).

TABLE III. HTE coefficients of the first correlation mo-
ment m& ~.

Order Coefficient Order Coefficient

1
3

7
9
11
13
15
17

0.50000000000000000000000000000000
0.43750000000000000000000000000000
1.01041666666666666666666666666667
2.49169921875000000000000000000000
7.48240559895833333333333333333333
24.7292479338469328703703703703704
86.7042412409706721230158730158730
317.800753506891941898083560681217
1205.06602454131493586174488161069

ing P, = 0.4541 + 0.0001, p = 1.32 + 0.01. The results
remain essentially unchanged using either the Fisher-Au
Yang —Hunter-Baker definition (no regular singular point
at the origin) or the Guttmann-Joyce definition of the
DA s (a regular singular point at the origin), the differ-
ence being mostly in the dispersion of the data (in partic-
ular of the background), which is somewhat greater with
the former definition. As discussed below, the Monte
Carlo value of P, is slightly higher than our estimate, the
consensus value being around P, = 0.45420. If we bias
our approximants at this value, we then get p = 1.326.
However, by analogy with the O(0) and O(1) analyses,
we favor the lower value obtained by series analysis.

A similar analysis of the first moment m( )(P) is less
satisfactory. Most of the approximants are defective,
but the few that are not are centred around a slightly
lower temperature, P, = 0.4542 + 0.0003, with exponent
p+ v = 2.00 + 0.03. Due to the more accurate estimate
of P, obtained from the susceptibility series, we reana-
lyzed the first-moment series using this value. Biasing
the approximants at P, = 0.45406 gives mainly defective
approximants, slowly decreasing in value, so that we can
only estimate p + v & 2.00. The second correlation mo-
ment series m(2)(P) is somewhat better behaved, though,
like the analogous SAW and Ising series, unbiased ap-
proximants at first glance give a lower critical tempera-

TABLE II. HTE coefficients of the susceptibility m

0
1
2
3

5
6
7
8
9
10
11
12
13
14
15
16
17

0.00000000000000000000000000000000
3.00000000000000000000000000000000
11.4852813742385702928101323452582
35.3919166429113710288472410676167
100.391645797382835211177404733391
270.169140885332810622174619548742
703.928165009702962171567107355945
1789.19653133764917963889959830865
4468.32789180460469625866305929854
11000.8726669685811734428842857616
26788.0560947846126416923232831814
64627.3429637161982839763298977200
154749.818273239775925845196634614
368132.797893714045088109726930470
870977.871997489895140365839695762
2050710.75491296809029207572988208
4808405.28831745065018387682551317
11232374.4966970585972846903939187

ture than do the susceptibility series approximants, no-
tably P, = 0.4542+0.0002, and p+2v = 2.69+0.02. This
behavior of the series m(2) (P) was also noted for the Ising
and SAW model series. It appears that longer series are
needed for higher moments of the correlation function.
Biasing the second-moment series at P, = 0.45406 gives
p + 2v = 2.67, but this must be regarded as an upper
bound as the sequence of estimates of p + 2v decreases
with increasing numbers of terms —just as observed pre-
viously for the corresponding Ising series. While it is dif-
ficult to extrapolate this slowly declining sequence, the
limit 2.66+0 o2 is likely to be sufFiciently conservative to
include the correct value. In reaching this conclusion
we have not only extrapolated this sequence, but have
studied the behavior of analogous sequences for the Ising
and SAW models, where we also have exact results for

TABLE IV. HTE coefficients of the second correlation
moment m~ ~.

Order

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Coefficient

1.00000000000000000000000000000000
3.00000000000000000000000000000000
7.50000000000000000000000000000000
18.3750000000000000000000000000000
43.5000000000000000000000000000000
102.343750000000000000000000000000
237.054687500000000000000000000000
546.946289062500000000000000000000
1252.00488281250000000000000000000
2858.81752929687500000000000000000
6496.15140787760416666666666666666
14735.3746412489149305555555555555
33314.7537746853298611111111111111
75222.2566392081124441964285714286
169444.488235923222133091517857143
381306.311343971793613736591641865
856543.263379992410619422872230489
1922537.91945074856684251367029620

Order

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Coefficient

0.000000000000000000000PQGPPGPPGPP
3.00000000000000000000000000000000
18.0000000000000000000000000000000
72.3750000000000000000000000000000
247.500000000000000000000000000000
770.593750000000000000000000000000
2261.34375000000000000000000000000
6360.66503906250000000000000000000
17343.7773437500000000000000000000
46158.4210449218750000000000000000
120515.319303385416666666666666667
309746.425031873914930555555555556
785831.296427408854166666666666667
1971809.99205790928431919642857143
4901417.59164962163047185019841270
12084656.3170853394364553784567212
29584235.7640201335230832377438823
71970593.8709586784015817546900548
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the two-dimensional models to guide us. If this estimate
is accepted, we find &om the above estimate of p that
v = 0.67+ 0.01.

We may also construct the series with coefBcients c„=
m( /m„and study its singularity at z = 1 which should
have an exponent 2v+ 1. Then we get v = 0.68 + 0.01,
with again a decreasing sequence of exponent estimates,
suggesting that v is in fact a little lower.

In conclusion our estimates of p are fairly precise
and, as shown later, in good agreement with the
renormalization-group (RG) results. However our esti-
mates of v cannot yet compete either with the precision
of the experimental data nor with the RG or Monte Carlo
determinations, although they are perfectly compatible
with both. This is probably due to the slow conver-
gence of m( ) (P), and as noted above, has already been
observed in the study of high-order expansions for the
SAW and Ising models. Longer series are then required
in order to make a more accurate analysis possible and
in particular to account properly for the conHuent singu-
larities.

Let us now brieHy review previous high-temperature-
series analyses. Bowers and Joyce computed sc series to
order P and gave the following estimates: P, = 0.4530 6
0.0016, and p = 1.312+ 0.006.

In Ref. 12 the sc series were extended to order Pii.
The estimated inverse critical temperature was P,
0.4539 + 0.0013 and the corresponding estimates for p
and v were p = 1.32 + 0.05 and v = 0.675 + 0.015. In
that paper, the bcc and fcc lattice series were also consid-
ered, with similar exponent values being found (see Table
V). A comparison with our results shows that our cen-
tral values for P, and p are significantly lower and that
the claimed precision in our estimates has improved by
a factor 2. After this work was completed, we received
Ref. 2, in which the preexisting shorter series were ana-
lyzed. The estimates P, = 0.45407 and p = 1.325 were
obtained, with no confidence limits quoted. They, like
us, also found that the unbiased value of P„as obtained
&om the second-moment series, was slightly higher.

Reliable Monte Carlo simulations with good statisti-
cal accuracy, on reasonably large lattices, have become
possible only recently after the invention of algorithms
with reduced critical slowing down. The largest accu-
rately studied lattice is still only 64s sites large (present
practical limits seem to be around 100 sites), which
means that a very accurate treatment of finite size ef-
fects is required and that the estimate of systematic er-
rors is very delicate. The oldest analysis is due to Li and
Teiteli4 who performed a Metropolis simulation (supple-
mented by an over-relaxation method) on lattices up to
16 sites. A finite size scaling analysis of their data yields
P, = 0.4533 + 0.0006 and v = 0.67 + 0.02. (The model
actually simulated is a clock model with 512 states. )

More recently Hasenbusch and Meyer used the
Swendsen-Wang multiple cluster algorithm on lattices up

TABLE V A summary of the estimates of the critical
indices by various methods.

Method and ref.

HTE on sc (this work)
Super6uid He (3)

R.G. fixed dim. (21)
R.G. e exp. (22)

Monte Carlo (15)
Monte Carlo (16)
Monte Carlo (17)
HTE on fcc (12)
HTE on bcc (12)

1.315 + 0.009

1.316 + 0.0025
1.315 + 0.007
1.327 + 0.008
1.324 + 0.001
1.316 + 0.005
1.323 + 0.015
1.32 + 0.03

0.67 + 0.01
0.6705 + 0.0006
0.6695 + 0.001
0.671 + 0.005

0.664 + 0.006
0.670 + 0.002
0.670 + 0.007
0.673 + 0.01

to 96 sites. From a fit of the data to y oc (p —p)
they found p, = 0.454 21+0.00008 and p = 1.327y0.008.
A recent update of this study, using the WolfF sin-
gle cluster algorithm on lattices up to 112 sites, gave
P, = 0.45420 6 0.00002, p/v = 1.976 6 0.006, and
v = 0.662 + 0.007, &om which the estimate of p quoted
in Table V may be deduced.

Janke also used the WolfF single-cluster algorithm on
lattices up to 48 sites. Prom a study of the fourth-
order cumulant he obtained P, = 0.4542 + 0.0001 and
v = 0.670 + 0.002. Fitting data to the formula y cx

y+(P, —P) ~ he obtained P, = 0.45408+ 0.00008, and
1.316 + 0.005. Repeating his fit with fixed P,

0.4542 the estimate of p increases to p = 1.323 + 0.002.
The previous computations should also be compared. to
the estimates by the renormalization group applied to an
O(2) symmetric P field theory model.

Sixth-order perturbation expansion in three dimen-
sions by Baker, Nickel, and Meiron, gave p = 1.316 +
0.009 and v = 0.669 + 0.003. Subsequently, taking into
account the large order behavior of the perturbation se-
ries coeKcients, Le Guillou and Zinn Justin refined
these estimates and obtained p = 1.316 + 0.0025 and
v = 0.6695 + 0.001.

Performing the computation by the Wilson-Fisher
E = 4 —d expansion Borel resummed to order e, Le Guil-
lou and Zinn Justin subsequently obtained the following
estimates: p = 1.315 + 0.007 and v = 0.671 + 0.005.

It thus appears that the RG results for p are slightly
smaller than the old HT and some of the new Monte
Carlo estimates, but perfectly compatible with the results
of our analysis, while our estimate of v is compatible
with, but less accurate than, the most recent RG results.
This can easily be seen &om the information presented in
Table V, which gives a summary of the various estimates
of p and v as obtained by various methods.
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