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Spin and charge Auctuation in an extended Hubbard model of oxide superconductors
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Antiferromagnetic spin Auctuations and charge-transfer correlation are studied in an extended Hub-

bard model of cuprate superconductors. We have carried out finite-temperature Monte Carlo and varia-

tional Monte Carlo simulations of Cu02 lattices described by a three-band Hubbard model. Using pa-
rameters derived by local-density-functional theory, our results appear to be consistent with experimen-

tal data. At half-filling, we find strong antiferromagnetic correlation with large local moment on copper
sites and evidence of a charge-transfer gap. Upon doping, the antiferromagnetic correlations decrease;
the excess holes primarily go onto the oxygen sites, while additional electrons prefer the copper sites.
Equal-time pairing correlation functions suggest that extended s-wave and d-wave pairing are possible in

this model.

I. INTRODUCTION

A common feature of all high-T, oxide superconduc-
tors is the existence of Cu02 layers. The intermediate
layers existing between any two such planes serve as
charge reservoirs for doping, also stabilize the long-range
order of the superconducting phase. It was proposed that
the electrons, in the two-dimensional Cu02 planes are
highly correlated and quantum fluctuations beyond the
mean-field approximation are important. The electron-
electron correlation can be described by the extended
three-band Hubbard model on a square Cu02 lattice,
which is often approximated, either by a one-band Hub-
bard model, or in the large-U limit by the one-band t-J
model. ' Many theories of electronic origin have been
proposed as the pairing mechanism for superconductivi-
ty. In particular, the RVB theory' proposed by Ander-
son and co-workers, the spin-bag theory of Schrieffer,
Wen, and Zhang, and the anyonic theory of Laughlip,
are all based on single-band model. The single-band
model is valid when the on-site energy difference between
the Cu-d and 0-p bands is large compared to the band-
width. It is a Mott insulator at half-filling. Away from
half-filled limit, however, photoemission experiments
have suggested that holes are predominantly oxygen in
character, which raise some doubts about the validity of
the one-band models. On the theoretical side, Varma,
Schmitt-Rink, and Abrahams have identified the insulat-
ing material as a charge-transfer insulator. They pro-
posed a mechanism for superconductivity with attractive
pairing interaction arising from charge-transfer excita-
tions, e.g. , Cu +0 ~Cu'+0', where the energy is
lowered by the interband Coulomb repulsion. This
theory does not require the presence of large-U terms,
rather it needs 1ow density of the carrier and near degen-
eracy of the oxygen-p and copper-d levels. Another
mechanism which requires a multiband extended Hub-
bard model is due to Emery. In this theory, supercon-
ductivity in the doped system is due to presence of oxy-
gen holes. Hybridization between the copper and the oxy-
gen orbitals gives rise to a strong antiferromagnetic

(AFM) exchange interaction between them, which des-
troys the Cu-Cu AFM correlation. The extra p holes
may form superconducting pairs mediated by the mag-
netic interactions.

These theoretical models of superconductivity are all
plausible solutions to the extended Hubbard model in
different parameter spaces. Numerical simulations guid-
ed by the experimental data serve to determine the physi-
cally relevant parameter space for the cuprate supercon-
ductors. The extended Hubbard model has been studied
quite extensively using various methods, e.g., quantum
Monte Carlo methods, variational Monte Carlo simula-
tion, exact diagonalization of small clusters, and vari-
ous perturbative schemes. The complexity of the model
renders examination of the phase diagram difficult. The
effects of the intersite Coulomb repulsion are of particu-
lar interest, because several calculations using exact diag-
onalization of small clusters and slave-boson technique'
seem to indicate that the intersite Coulomb term may be
responsible for the origin of electron pairing. Further-
more, Lin, Hirsh, and Scalapino, " have shown that a
single-U Hubbard model, which is responsible for antifer-
romagnetism, cannot account for superconductivity.

In this paper we present results for the three-band
Hubbard model on a square Cu02 lattice, using (l) finite-
temperature quantum Monte Carlo (FTQMC) simula-
tions, and (2) variational quantum Monte Carlo simula-
tions (VQMC) with Gutzwiller wave functions. ' For
smaller Cu02 lattices, we found excellent agreement be-
tween these two methods. The eKciency of the VQMC
method has enabled us to study up to 6X6 lattices. Re-
sults are presented for spin- and charge-correlation func-
tions. It is anticipated that experimental observations
will put severe constraints on the parameters of this mod-
el Hamiltonian.

Although there have been several quantum Monte Car-
lo calculations on the multiband Hubbard model, our
work compliments earlier calculations by including a
more complete and/or more realistic parameter regime.
For example some of the earlier calculations chose a
phase factor such that all the hopping parameters have
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the same sign. In this work, on the contrary, the parame-
ters for the extended Hubbard model are chosen as es-
timated by either a supercell or cluster geometry calcula-
tions within the local-density approximation. ' ' Our
calculations indicate that the appropriate choice of these
parameters is important in order to study high-
ternperature superconductivity. Otherwise, similar calcu-
lations but with different parameters may result in, as we
have shown in one particular case, qualitatively different
conclusions. Recently, VQMC simulations were reported
by Coppersmith, where (1) the oxygen-oxygen hopping
was taken to be zero, and (2) the staggered magnetic field,
that generates the variational antiferromagnetic wave
functions, was kept a small but fixed value. Near half-
filling, we found stronger antiferromagnetic correlations,
but most of our conclusions are qualitatively consistent
with Coppersmith's calculations.

II. THE EXTENDED HUBBARD MODEL

Near EF, the most important feature of the band struc-
ture' of all high-T, copper oxides is the antibonding pdo.
band, which is exactly half-filled in stoic hiometric
LazCu04. This pdo. band can be viewed as the mean-field
solution of the following extended Hubbard-Anderson
model:

H=t „g [d, p, +H. c. ]
i, 1, o.

+rpp X Ipt, pm +. H. c. ]+Ud g nd;tnd;t
l, m, o. l, o

+ Up g np ltnp, li+Upd X ' I+Eg npi
l, o. i, lo

where i, l, and m run over copper and oxygen sites, re-
spectively; the set of points l Ei are positions of four oxy-
gen sites surrounding the copper site at i, and the set of
points I E l are positions of two nearest-neighbor oxygen
to the oxygen site at I; o denotes the spins. The d (d) and
p (p) create (destroy) a hole on the copper 3d, , andx —y
Opp sites. The parameters Ud, Up and Upd are the on-
site Coulomb repulsion on the copper and oxygen sites,
and the intersite Coulomb repulsion between nearest-
neighbor copper and oxygen sites, respectively: e is the
bare on-site energy difference between copper and oxygen
sites. The parameters t d, t are the amplitudes for a
hole to hop from an oxygen site to an adjacent copper site
and oxygen site, respectively. The Slater-Koster parame-
ters tpd =+(3/3/2) Vpd hybridizes the nearest-neighbor
CU3d and Ozp orbitals and t =+V 1 /2( V —V ) al-
lows direct 02p 02p hopping. The + signs are according
to the Salter-Koster table for two centered integrals. '

Note that many of the existing theoretical calculations
have chosen phase factors such that all the t 's and all

pp
the tpd's have the same hopping sign. Our calculations
suggest that such an approximation may result in
different qualitative conclusions.

Much of the theoretical efforts have been devoted to
estimate the appropriate parameters using either super-
cell' ' or cluster geometry, ' within the local-density
approximation (LDA). The Coulomb repulsions are cal-

culated from the total energy either as a function of the
occupation of Cu3d and Oz orbitals, or based on the
transition-state approximation. The resulting parameters
are in the range Ud = 5 —12 eV, U =4 —14 eV, and
U d =0.6—2 eV. The rest of the parameters can be ob-
tained from the tight-binding fit to first-principle energy
bands. However, the limitation of the LDA to stabilize
the AFM ground state in La2Cu04 is well established,
and the uncertainties in certain parameters (e in particu-
lar) may be quite large. According to the classification of
Zannen, Zwatsky, and Allen' for an Anderson impurity,
Upd 0 6—2 eV may fal 1 into the category of charge-
transfer insulator with large Auctuations in the metallic
phase.

III. METHODS

Different numerical techniques may provide valuable
insights to the physics of strongly correlated electron sys-
tems in absence of exact solutions. The method of exact
diagonalization tends to be limited by finite-size eff'ects,
while FTQMC strictly applied to finite temperature. For
ground-state properties, the VQMC method is numerical-
ly more stable and more practical for larger systems. A
direct comparison of the results of the FTQMC and
VQMC for smaller lattices or simplified model Hamil-
tonians, would shed some light on the question of (1) the
role of finite temperature, (2) the validity of the variation-
al wave functions, and (3) finite-size effects. Unless other-
wise specified, results presented here are based on VQMC
simulations of up to 6X61attices.

A. Finite-temperature Monte Carlo simulations

For FTQMC simulations we used the computer simu-
lation programs developed previously by McQueen and
Wang' for quantum simulation of the Anderson lattice
Hamiltonian, where the algorithm of Blankenbecler,
Scalapino, and Sugar for fermionic Monte Carlo simu-
lation is used in a manner similar to Hirsch's simulation
on the Hubbard model. ' In this approach the discrete
Hubbard-Stratonovich transformation is used to replace
the two-fermion interaction with that of a free electron
interacting with a time-dependent Ising field, and the
Metropolis method is used to carry out the sum over the
Ising spins. The intersite Coulomb repulsion between
nearest-neighbor copper-oxygen atoms are incorporated
exactly, by introducing additional Ising spins between
neighboring copper and oxygen sites. In order to achieve
stability at low temperature, we also implemented the
modified-Grams-Schmidt decomposition scheme intro-
duced by Loh and Gubernatis.

B. Variational Monte Carlo simulations

For VQMC we used a stochastic algorithm developed
by McQueen and Wang, which maps the Gutzwiller
matrix elements onto a statistical model that can be eval-
uated in a manner similar to FTQMC scheme. This ap-
proach has been applied successfully to study the Ander-
son model, ' and more recently to study the role of gen-
eralized Aux phases in a single-band Hubbard model.
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The trial wave function is a
Gutzw 11zwi er wave function:
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We note that the bandwidth of either band is

W='t/(e/2) +8—e/2 .

When Ud )e) 2 the charge-transfer energy exceeds the
bandwidth 8' but less than the Coulomb energy Ud. The
system is then characterized by a charge-transfer gap. '

If e) Ud, however, the oxygen levels are so far away that
one can integrate out completely, and the system be-
comes a Mott insulator at half-filling.

A. Dependence on n for Ud=6, Up 0 Upd 0,
a=2, and tpp =0

Figure 2(a) shows the VQMC simulation of ( nd ) and
( n ) as a function of the hole filling factor,
n = (n +2nd ). Clearly, these parameters are in the
charge-transfer regime because the extra holes beyond
half-filling primarily go to the oxygen sites, while addi-

I

0.75
I

1.25

FIG. 3. Magnetic structure factor S(~,~) as a function of
doping n = (nd +2n~ ) on a 4X4 lattice for U„=6.0 and e =2.0.
Lines drawn through the points are a guide to the eye.
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sults are in excellent agreement with that obtained from
our FTQMC simulations shown in Fig. 2(b).

Our results, derived from the VQMC and the FTQMC
simulations are compared in Table I. At half-filling, the
system is antiferromagnetic. Accordingly, the results of
our calculations using AFM trial wave functions are very
close to that of finite-temperature simulations. Figure 3
shows the density dependence of magnetic structure fac-
tor S(ir, ir), derived from VQMC, for Ud=6 and @=2.
Away from half-filling, the AFM correlation is
significantly suppressed.
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B. Dependence on efor Ud=6 Up:0 Upd 0&

@=2,and tpp =0

At half-filling, the variation of (a) (nd ) and (n~ ), (b)

(ndtndt ), and (c) the copper-site local moment, are
shown, as a function of e, in Fig. 4. As e increases, holes
move from the oxygen to the copper sites. The local mo-
ment at the copper site increases to avoid on-site
Coulomb repulsion Ud, and ( nd 1nd & ) decreases gradual-
ly. This can also be understood from the second-order
perturbation theory. The effective bandwidth for the
copper-copper hopping is given by t,~=t /e. As e in-
creases, the ratio Ud/t, s. increases. Therefore, (nd&ndt )

TABLE I. Comparison of FTQMC and VQMC results for a
4X4 lattice for Ud =6.0 and @=2.0 at half-filling. The temper-
ature for FTQMC was 0.15625t d.

FTQMC

FICr. 2. (a) VQMC and (b) FTQMC simulations of copper
and oxygen hole occupation as a function of doping
n =(nd+2n~) on a 4X4 lattice for U„=6.0 and @=2.0 at
half-filling. The temperature for FTQMC was 0. 156 25 t~d

Lines drawn through the points are a guide to the eye.

0.691+0.003
0.312+0.003

—1.960+0.01
0.009+0.0001
0.239+0.005
0.674+0.005

0.691+0.003
0.309+0.003

—1.978+0.01
0.010+0.0001
0.251+0.005
0.634+0.005
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FI(s. 4. (a) site occupancies (nz ) and (n~ ), (b) double occupancies (nztnzt ), (c) moment (p,z), and magnetic structure factor
S(m, m) as a function of on-site energy difFerence e for Uz =6.0 on a 4X4 lattice. The symbols in (a) have the same meaning as in Fig.
1(a). Lines drawn through the points are a guide to the eye.

is suppressed, while the magnetic moment, given by

pq=(nq;t nq;t) =nq—t +nql 2n„tn„)-2= 2 2

increases monotonically as a function e.
As can be seen from Fig. 4(d), the AFM structure fac-

tor increases monotonically with increasing e. Antifer-
romagnetism promotes hopping so that holes are delocal-
ized. As e increases, there is a cancellation of energies
between kinetic energy and copper-site Coulomb repul-
sion. These results are consistent with the results of Scal-
lettar et al. , although they have chosen the hopping
phases to be uniform.

C. Dependence on t» for U&=10 Up 0 Up& 1,
n =1, and a=2

The role of t is of particular interest, because the ear-
lier calculations of Li and Callaway for a small Cu2O4

cluster exhibited a drastic phase separation, with holes ei-
ther localized on the oxygen sites or on the copper sites
near t -0.8t &. We consider identical parameters em-
ployed by Li and Callaway: U&=10, U&=10, Up=0,
Up&=1, and @=2, with uniformly negative tp&= —1.0,
and keeping all the t values uniformly positive. For a
2X2 lattice, the results of our VQMC calculations are in
good agreement with the results of Li and Callaway for
exact diagonalization. The copper and the oxygen hole
occupations are shown in Fig. 5(a) as a function of t
There is a clear phase separation for t ~ 0.85. However,
the phase separation is exaggerated by the Gnite-size
effects, which is evident from the results for a 4 X4 lattice
show in Fig. 5(b). Moreover the phase separation disap-
pears when appropriate signs for t & and tpp are taken
into account: The results for 2X2 lattice are shown in
Fig. 5(c), while results for the 4 X 4 lattice are shown in
Fig. 5(d).
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Il
FIG. 7. Dependence of copper and oxygen hole occupation

(n„) and (n~ ) on (a) e at half-filling, and on (n =nd+2n~ ) for
Ud=8. 0, U~=3.0, Used=0. 9, tpp=0. 5, and v=2. 8. Appropri-
ate hopping signs for cuprate superconductors are taken into ac-
count. The symbols have the same meaning as in Fig. 1(a).
Lines drawn through the points are a guide to the eye.

pancies are shown in Fig. 7(b) as a function of
n =

& n +2nd ). Similar calculations have been reported
by Coppersmith using a different VQMC scheme. In
Coppersmith's calculation, the staggered magnetic field h
that generates the AFM wave function [see Eq. (3)] was
kept at small but a fixed value. Vfe found qualitatively
bigger differences in'energies between paramagnetic and
antiferromagnetic states, specially at and near half-filling.
But qualitatively our results are consistent with
Coppersmith's calculations.

For the same set of parameters, we have performed
FTQMC on four unit cells. In Tables II and III we have
compared our results for FTQMC with VQMC results
for four unit cells, both at half-filling, and at a hole densi-
ty of 1.25 per site. It is evident that the agreement is
good. In FTQMC all the interaction terms are treated
exactly, including the nearest-neighbor Coulomb interac-
tion. In VQMC, this term was treated in the mean-field
approximation. At exact half-filling we get almost the

TABLE II. Comparison of FTQMC and VQMC results for a
2 X 2 lattice for Ud =8.0, U~ =3.0, U~d =0.9, @=2.8, and
t~p

=0.5 at half-filling. The temperature for FTQMC was
0.045t,d.

&n, )
&n, &

(n, n, &

&KE&
(n„$n„&

&p, )
Energy

FTQMC

0.679+0.005
0.321+0.005
0.236+0.003
—2.5+0.01
0.009+0.0001
0.659+0.005

—1.35+0.05

VQMC

0.691+0.003
0.309+0.003
0.240+0.003

—2.39+0.01
0.010+0.0001
0.684+0.005

—1.24+0.01

same value of &n nd ) from both sets of calculations.
Away from half-filling, the value of & n~ nd & from
FTQMC is —10% less than what we get from VQMC.
Nonetheless the agreement is reassuring.
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TABLE III. Comparison of FTQMC and VQMC results for
a 2X2 lattice for Ud=8. 0, U~=3.0, U~d=0. 9, @=2.8, and
t =0.5 at (n ) =1.25. The temperature for FTQMC was
0.045tpd.

&nd)
&n, &

&n, n, &

(KE)
(ndtndt )

&Pd &

Energy

FTQMC

0.784+0.005
0.466+0.005
0.517+0.003

—2.93+0.05
0.034+0.0001
0.717+0.005

—0.85+0.05

VQMC

0.750+0.003
0.500+0.003
0.578+0.003

—3.07+0.01
0.044+0.0001
0.662+0.005

—0.72+0.01

0.45

0.41

F. Finite-size eÃects of magnetic structure factors

To show how the physical quantities scale with lattice
size, our VQMC results for 2 X 2, 4 X 4, and 6 X 6 lattices
are compared in Table IV. At half-filling, the system ex-
hibits an AFM peak in the magnetic structure factor.
Away from half-filling it is less prominent. The scaled
magnetic structure factor at half-filling is shown in Fig. 8
as a function of lattice size, while the temperature depen-
dence is shown in Fig. 9.

G. Superconducting correlation functions

Electron pairing from purely electronic origin has been
discussed for both the single and multiband Hubbard
models. In a finite-size system, true off-diagonal long-
range order cannot be studied because the particle num-
ber is not conserved. In addition, the lowest temperature
attainable in FTQMC is close to magnetic ordering, while
superconductivity occurs at a much lower energy. Since
the temperature scale of the effective interaction is ex-
pected to be higher than T„ it may be possible to deter-
mine if the effective interaction is attractive. In particu-
lar, pairing susceptibilities can be calculated in the
particle-particle channel. In the case of a one-band Hub-
bard model White et al. pointed out that the pair sus-
ceptibility may be misleading. To study the sign of the
effective interaction, it is important to subtract out the
uncorrelated susceptibility.

In FTQMC simulation, two-particle interactions are
replaced by space and imaginary-time-dependent

I

0.05
I

0.15

I/N
FIG. 8. Size dependence of magnetic structure factor S (~,m)

at half-filling for 2X2, 4X4, and 6X6 lattices ( Ud =8.0,
U~ =3.0, U~d

=0.9, t» =0.5, and e =2.8 ). Lines drawn through
the points are a guide to the eye.

Hubbard-Stratonovich field. The interactions are calcu-
lated by Monte Carlo sampling over these fields. If the
averaging on the single-particle Green's function is per-
formed before taking their products, then the eff'ects of
the interaction are removed, and one gets the correspond-
ing uncorrelated susceptibilities. By subtracting out this
uncorrelated part from the actual susceptibilities, one can
study the effects of the interaction. White et al. intro-
duced this method and studied the particle-hole and
particle-particle pairing susceptibilities in the single-band
Hubbard model. Near half-filling, they found d 2 & sus-

x —y
ceptibility most attractive.

We have studied the static particle-particle susceptibil-
ities in the multiband extended Hubbard model. Similar
calculation was done by Li and Callaway using the exact

TABLE IV. Comparison of VQMC results for 2 X 2, 4 X 4,
and 6X6 lattices for Ud 8 0 Up 3 0 Upd 0 9 6' 2. 8, and
t» =0.5 at half-filling.

(n„&
&n, &

(n, n, )

(n„,n„t &

&p, &

Energy

2X2

0.705+0.003
0.295+0.003
0.240+0.003

—2.39+0.01
0.010+0.0001
0.684+0.005

—1.24+0.01

4X4

0.717+0.003
0.282+0.003
0.230+0.001—2.239+0.005

0.0061+0.0005
0.705+0.004—1.163+0.005

6X6

0.719+0.001
0.281+0.001
0.230+0.0007

—2.251+0.002
0.0085+0.0004
0.702+0.004

—1.163+0.005

I

0.3
I

0.6

Temperature

l

0.9

FIG. 9. Magnetic structure factor S(~,~) as a function of
temperature for Ud =8.0, U~ =3.0, U~d =0.9, t» =0.5, and
@=2.8 on a 2X2 lattice. Lines drawn through the points are a
guide to the eye.
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diagonalization method. We consider the following
cases.

Local singlet:

1.2

5, =60 .

Extended s waUe:

b,, =(h, +b, , +b, +b, ) .

d wave:

(9)

(10)

0.9

bQ

0.6—
~ W

0.3

where 6 is given by

b, = gd, +,td, l . (12)

The sum over a should be different for different sym-
metries. The equal-time pair correlation is given by

(13)

Subtracting the single-particle contribution, the pairing
interaction is given by

(d, +,td, l )(d, ld, +, t ) —(d, +,td, +,t ) (d, id, l ) .

(14)

V. CONCLUSION

In summary we have tried to identify the parameter re-
gime of an extended Hubbard model of oxide supercon-
ductors, within experimental constraints. For parameters

Here the operator d, creates a hole on either copper or
oxygen sites.

The first of the above expression is evaluated using
Wick's theorem. The second part is the product of aver-
age Green's functions G&(r+a, s+a) and G&(r, s). In
Fig. 10, we have plotted the extended-s and d-wave pair-
ing as a function of temperature. Both of them become
increasingly positive at lower temperature indicating the
possibility of pairing in the extended Hubbard model.
Our results are consistent with similar calculations of
Sclattar et al. and a recent random-phase approxima-
tion calculation.

0
I

0.1

I

0.3 0.5

Temperature

I

0.7

FIG. 10. Variation of d-wave (crosses) and extended-s wave
(plus signs) pairing as a function of temperature for Ud=8. 0,
Up 3 0 Upd 0 9 tpp 0 5 and 6' 2. 8 on a 2 X 2 lattice. Lines
drawn through the points are a guide to the eye.
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consistent with the LDA, we find the ground to be anti-
ferromagnetic with local moment of about 0.70. The
single-particle features, e.g. , site occupation, local mo-
ment, etc. are also consistent with a simplified model, in
which U and U~d are set to zero. From our FTQMC
calculations, we note that a mixture of the extended-s and
d-wave pairing is possible. But in absence of a proper
finite-size scaling, it is not possible to settle this issue.
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