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Universal behavior of harmonic susceptibilities in type-II superconductors
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Simple analytical expressions are derived for the harmonic susceptibilities in type-II superconductors,
using a critical-state model with a general dependence of the critical current upon magnetic field. It is
shown that the harmonic susceptibilities are determined by a single parameter, 6, which is a function of
the full penetration field of the sample and the applied alternating field. This implies that measurements
of harmonic susceptibilities as a function of any experimental variable, in any irreversible type-II super-
conductor, can be reduced to universal curves that describe the harmonic susceptibilities versus 5. In
particular, the maximum values that can be attained by the harmonic susceptibilities are universal con-
stants for irreversible type-II superconductors. Fitting of experimental data to the universal curves pro-
vides models for the dependence of the critical current density upon field and temperature. This is
demonstrated using data of the third-harmonic response measured in a sintered YBa2Cu307 q sample.

INTRODUCTION

Magnetic measurements using alternating fields have
been widely employed in the study of superconductors.
Commonly, a linear magnetic behavior is assumed and
the material response is studied in terms of the funda-
mental complex susceptibility g& =g& —iy&'. However,
recent studies have shown the importance of the non-
linear magnetic behavior of type-II superconductors. '

In such materials, the magnetization induced by an ap-
plied sinusoidal field H„sincot may be described as a sum
of sinusoidal components which oscillate at harmonics of
the driving frequency:

M (t)=H„g (y'„sinn cot y,"cos—n cot ),
n=1

where g'„and y„" (n =1,2, 3, . . . ) are defined as the in-
phase and out-of-phase components of the harmonic sus-
ceptibilities. Clearly, investigation of materials with a
nonlinear magnetic behavior requires the study of har-
monic susceptibilities beyond the fundamental suscepti-
bility y, .

The first prediction of harmonic susceptibilities in
type-II superconductors emerged from the original Bean
model of the critical state. This model attributes the
harmonic generation to the hysteretic, nonlinear relation-
ship between the magnetization and the external field due
to Aux pinning. Ishida and Mazaki studied harmonic
susceptibilities in a multiconnected superconductor,
which they modeled as a multiconnected Josephson net-
work. Recently, various new models have been proposed
to explain the nonlinear magnetic behavior of high-
temperature superconductors. Jeffries et al. investigat-
ed magnetic nonlinearity in granular YBa2Cu307
(YBCO), proposing a model of Aux-quantized super-
current loops with Josephson junctions. Xenikos and
Lemberger observed nonlinear magnetic behavior in
YBCO crystals and interpreted it as a consequence of the
nonlinear magnetoresistance of the crystals near T„due

to Aux creep. Ji et al. have extended the Bean model by
taking into account the field dependence of the critical
current. Using a simplified Kim model, in which the crit-
ical current density is inversely proportional to the local
field, they derived analytical expressions for the magnetic
hysteresis loops. Using these equations, they numerically
computed g„and compared it with experimental data.
Ishida and Goldfarb reported a detailed experimental
study of the field and temperature dependence of the har-
monic susceptibilities in YBCO ceramics and showed
good agreement between the predictions of Ji et al. and
the experimental data. Although the model of Ji et al.
has successfully explained a broad range of experimental
results, no universal picture on the dependence of the
harmonic susceptibilities on the various physical parame-
ters has emerged from this model.

In this paper we derive analytical expressions for the
harmonic susceptibilities using the critical-state model
with no specific assumption regarding the field depen-
dence of the critical current. Our analysis shows that the
harmonic susceptibilities are determined by a single pa-
rameter 6 which measures the extent of penetration of
the applied alternating field into the sample. This result
implies that measurements of harmonic susceptibilities as
a function of any experimental variable, in any irreversi-
ble type-II superconductor, can be reduced to universal
curves which describe the harmonic susceptibilities
versus 6. A particular result of this analysis is that the
maximum values which are attained by the harmonic sus-
ceptibilities, as a function of any experimental variable,
are universal constants for irreversible type-II supercon-
ductors. We illustrate the application of this analysis by
fitting experimental data taken in a sintered YBCO sam-
ple to a universal curve. In this process we decide upon a
suitable model for the dependence of the critical current
density on field and temperature.

THEORETICAL ANALYSIS

Our analysis is based on a critical-state model assum-
ing no specific relationship between the critical current

0163-1829/93/48(18)/13871E, '10)/$06.00 13 871 1993 The American Physical Society



13 872 S. SHATZ, A. SHAULOV, AND Y. YESHURUN 48

density J and the local magnetic field h. To illustrate the
theoretical arguments, consider an infinite superconduct-
ing slab in a steady field Hd„parallel to its surface. In
order to measure the harmonic susceptibilities, a small al-
ternating field H„sin(cot) is applied in the same direc-
tion. A basic assumption of our analysis is that the alter-
nating field can be considered as a small perturbation to
the steady field, i.e., H„«Hd, We argue that in this
case the Aux profile in the regions of the slab affected by
the alternating field is approximately linear with a slope
S=+4'J(Hd, ) /c. (Obviously, the whole fiux profile
need not be linear. ) Accordingly, the alternating part of
the magnetization becomes a function of a single parame-
ter: the slope S. To prove this point, let us review some
basics of the critical-state model.

This model predicts that the magnetic field induces
internal currents of a critical density J(h) in a direction
determined by the spatial change in the magnetic field.
The Aux profile within the slab is calculated using
Ampere's law dh/dx =(4~/c)J and assuming a certain
relationship between J(x) and h (x). Various models
have been proposed for this relationship. For example, in
the original Bean model, J is independent of h, and one
obtains linear Aux profiles. In the Kim-Anderson model,
J is inversely proportional to h. This yields nonlinear fIux
profiles which are illustrated by the solid lines in Fig.
1(a). As a measure for the variation of the local field
within the slab, we define 5* as the difference between
the field at the surface and the field in the middle of the
slab. In the original Bean model, 6' is a constant H'.
In general, 6' decreases as the external field H is in-
creased, because J is always a monotonically decreasing
function of h. For example, in the Kim-Anderson
model, 6*=H[1—+1—(H /H) ], where H is the
smallest field that penetrates the whole sample. (See Ap-
pendix A. )

In any model, when the applied field H is much larger
than 6*, the variations of the local field h are very small
compared to the field at the surface. Hence J(h) can be
approximated by J(H), yielding linear fiux profiles with a
slope S=4irJ(H)/c [upper solid line in Fig. 1(a)]. When
H is not high enough to linearize the whole Aux profile,
one can still approximate the Aux profile near the surface
by straight lines with the slope S [dashed lines in Fig.
1(a)].

Let us now assume that H is decreased from H „by a
small amount AH. If H is of the same order of 6*, then
the fIux profiles are nonlinear. However, the condition
AH «H implies AH « 6*; hence, the fIIux profile
changes only near the surface, where it is linear [dotted
line in Fig. 1(b)]. If H »b, *, then the whole profile is ap-
proximately linear, and b,H may be larger than b, * [dot-
dashed line in Fig. 1(b)]. We conclude that in both cases
the Variation of the magnetization can be calculated as-
suming linear profiles with a slope S=4m.J(H)/c.

2H,

A
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1.3H
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V
X

The magnetization induced when the field H is cycled
between H „and H;„can now be calculated in terms
of 6=2Sa, where 2a is the width of the slab. When H is
decreasing from H, by AH =H „—H & 6, the magne-
tization is

M(bH&b, )=M(H, „)+bH 1—AH

When AH ~ 6 the magnetization is proportional to the
area of the triangle indicated by a dot-dashed line in Fig.
1(b) and it is independent of b,H:

M(bH & b, ) =M(H, „) .

Similarly, when H is increasing from H;„by
AH =H —H;„,

M(bH &6)=M(H;„) bH 1——AH
4A

and

M(bH&b, )=M(H, „) .

The corresponding expressions for H (t) =Hd,
+H„sin(cot ) are as follows: For decreasing H (t),

I

-10 -05 00 05 10 -10 -05 00 05 10
r/a x/a

FIG. 1. Magnetic Aux profiles in superconducting slab calcu-
lated on basis of Kim-Anderson model (a) in a steady field H
and (b) after H is reduced by AH. Note that the curves for
H~2H~ are already linear and that for the nonlinear profile
changes occur only near the surface, where it is linear.

377M —&cut &
2 2

M(H, „)+H„[(1—simot ) ——,'5(1 —sincot ) ], singlet & 1 —2/fi

M(H;„), otherwise,

and for increasing H(t),
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3' 5mM &at &
2 2

M(H;„)—H„[(1+singlet )
—

—,'5(1+ singlet ) ], singlet ~ 2/5 —1

M(H, „), otherwise . (6)

Here we have introduced a parameter
5=H„/Sa =2H„/b, which may be viewed as a measure
for the extent of penetration of the alternating field into
the slab. In the original Bean model, 6=H„/H*, and in
the Anderson-Kim model, 6=2H„Hd, /H . The deriva-
tion of these expressions as well as additional expressions
for 6 in other models are given in Appendix A.

Based on Eqs. (5) and (6), the in-phase and out-of-phase
harmonic susceptibilities y'„and y„", respectively, can be
calculated:

2~f M(t)sin(neet )d(cot ),~H„o
f M(t)cos(n cot )d(cot ) .~H„o (8)

In these expressions the magnetization [Eqs. (5) and
(6)] is normalized by H„; therefore, the only parameter
left after integration over one cycle is 6. This result im-
plies that the harmonic susceptibilities depend on a single
parameter 6, which measures the extent of penetration of
the ac field into the slab. Hence the harmonic suscepti-
bilities as a function of any experimental variable (e.g. , ac
field, dc field, temperature, and dimensions) can be re-
duced to universal curves, which describe the harmonic
susceptibilities versus 6. Consequently, the maximum
values which can be attained by the harmonic susceptibil-
ities as a function of experimental variables are universal
constants (as calculated below).

The integrals (7) and (8) can be performed analytically.

I

Expressions for the harmonic susceptibility up to n =7
are given in Table I. Table II lists the peak values and
positions of the harmonic susceptibilities for n =3, 5, and
7. General expressions for y'„and y'„' are derived in Ap-
pendix B. Plots of g'„and y„" as a function of 6 are
shown in Fig. 2 for n =1, 3, 5, and 7. These curves also
describe y'„and y'„' versus H„, since in any model 6 is
proportional to H„. In the Kim-Anderson model, 6 is
linearly dependent on Hd, as well. Therefore, in this
specific model, the curves of Fig. 3 also describe the
dependence of g'„and y'„' on Hd, . The parameter 6 may
also be changed by varying the temperature. The "defor-
mation" of the 6 scale depends on two relationships:
first, the specific relationship between 6 and physical pa-
rameters that may vary with temperature (e.g. , H ), and
second, the dependence of these parameters on tempera-
ture. As an example, Fig. 3 shows ly3l versus tempera-
ture in the Kim-Anderson model for three Hd, values, as-
suming

H (T)=H (0)[1—(T/T, ) ]+1—(T/T, )

The salient features of these curves, i.e., the shift and
broadening of the peaks and the invariance of the peak
values, have been observed in many experiments. ' Fit-
ting of such theoretical curves to experimental data may
help in deciding which model is suitable for a specific ma-
terial. In the next section we illustrate this process using
experimental data taken in a polycrystalline sample of
YBCO.

5&1

TABLE I. Expressions for y„.
6&1

25
3'

(5/2 —1)(a/~ —
2 )+(6/2+2/36 —

3
)cosa/m.

e = sin '(1 —2/5), ~/2 + a ~ 3~/2
2

(3—2/5)
3+5

0
26
15~
25
15~

—32( 1 —1/5) /157T5

2(16/5' —40/6 +30/5 —5) /15~5

2(20/6 —44/5+ 25 )
' /157T5

0
25

105~
25

105m

32(1—1/5) / (32/5 —32/5+ 5)/105m. 5'/

—2(512/5 —1792/5 +2352/5 —1400/5 +350/5 —21)/105m5

2( 896/54 —3072/5 +3892/5 —2156/5+ 441) /105m 5'

0
25

315m

25
315m.

—32(1—1/5) / (64P/5 —12gP/5 +ggp/5 —240/5+21 )/315~5 /

2 10240 46 080 84 480 80 640 42 336 11 760 1470
3 15~5 57 56 65 54 53 52

1/2
2

315m.5
19200 85 760 155 520 145 920 74 340 19404

56 65 64 53 52
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TABLE II. Extrema values of g„(SI).

5
2.7

1.2
2.1

6.9

1.1
1.4
2.0
3.8

13.0

x—0.048

0.0023
—0.0062

0.011

—0.0004
0.0011

—0.0020
0.0030

—0.0041

5
1.4
9.6
1.1
1.5
3.3

26.0
1.0
1.2
1.7
2.7
6.3

51.0

x
0.056

—0.10
—0.0066
—0.0017
—0.15

0.0022
0.0021
0.0012
0.0036

—0.0004
0.0058

—0.0008

5
1.7

1.1
1.5
3.7

1.0
1.2
1.7
2.6
8.8

x
0.061

0.0067
0.0018
0.17

0.0021
0.0012
0.0036
0.0004
0.0058

ANALYSIS OF EXPERIMENTAL RESULTS

Figure 4 describes measurements of the third-harmonic
signal V3I in a slab of a sintered YBCO (1XSX7.4
mm ). The measurements were performed as a function
of temperature in various dc fields applied parallel to the
long dimension. A constant ac field of amplitude 43 mOe
and frequency 20 kHz was applied in the same direction.
As predicted by our analysis, the width and peak position
of these curves vary with the applied dc field, while the
peak values remain the same. As an illustration, we fit
these data to our theoretical model and in the process we
decide upon a suitable model for the critical current
versus field and temperature.

First, 5(T,Hd, ) is found by the following method:
Each curve is normalized relative to its peak value, and
the temperature Tp k of the peak is found. Then, using
Tables I and II, having in mind that T & T „k corre-
sponds to 5) 5 „k, 5 is calculated linearly (if T & T~„k

(9)

where

P(T) = Po

1 —(T/T, )
(10)

varies slowly with temperature.
To find T; and 3, we take only values of 5 )5, where

P ( T) can presumably be neglected relative to the ex-

and V3/V3, „&y3/y3, „) or by numerically solving a
transcendental equation (otherwise). The extracted
values of 5 versus field and temperature are shown in Fig.
5 (discrete points). Second, a suitable model for the rela-
tionship between J and h is chosen. The very strong and
sharp dependence of 5 upon T (and, for fixed T, upon
Hd, ) suggests the exponential model (see Appendix A).
Therefore, we assume
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0.20

0.15

0.10

0.050

0.040

0.030

0.020

accuracy. However, within the error margins, (T, —T, ) is
positive and in general increases with Hd„as expected.

The values of 5, as calculated from the above fit, are
shown in Fig. 5 by dashed lines. Once 5 is calculated for
each T, the universal curve is formed by plotting the
measured

~ V3 versus 5, as calculated from the parame-
ters of Table III, and the measured temperature. Figure
7 demonstrates the universality of the curves for any
scale of 6.

0.05
0.010

DISCUSSION

straightforward data analysis is a combination of these
two models.

The numerical values obtained for the two constants of
the model are Ho(0) =2500+200 Oe and ao(0) =29+2.5

COe cm . We note that in this model the parameters T,
and T; have the meaning of the transition temperature
and the irreversibility temperature, ' respectively. This
physical meaning becomes apparent from the above ex-
pressions for ao and a(T). The preexponential coeKcient
ao( T), and consequently the critical current J, vanishes at
T, even when H=0. The exponential part of a vanishes
at any temperature if Ho vanishes, when even the small-
est external field H is applied. The statistical errors in 3
and p0 do not allow us to determine T; and T, with high

300

1000
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100

I 00
gl

II

10
0 't0 100

0
0 10

I

30 40

FICi. 7. Universal curve formed by plotting data of Fig. 4 vs
5 in linear and logarithmic (inset) scales.

0gg ' ~ ' ' ' ~ ~ ~ »' ~ ' ~ ~ ' ' gggg
0 10 20 30 40 50 60 70 80 90 100 110

H„, (oe)

FIG. 6. Extracted values of A and po [Eqs. (9) and (10)] vs

Hd, . Solid lines represent the best linear fits.

We have analyzed the alternating magnetic response of
type-II superconductors on the basis of the critical-state
theory, assuming a small applied alternating field which
probes the magnetic state of the sample. The alternating
response is a function of several experimental variables,
e.g. , the amplitude of the alternating field, the steady bias
field, temperature, and dimensions of the sample. Experi-
mentally, only one variable is changed while all the other
are kept constant. A variety of such experiments has
been performed in high-temperature superconductors
varying the temperature, the amplitude of the alternat-
ing field, " ' the steady bias field, and the dimensions of
the sample. ' Our analysis shows that all these measure-
ments are basically the same, as they all can be reduced
to universal curves which describe the harmonic suscepti-
bilities as a function of the parameter 6. Moreover, our
analysis shows that in such measurements a peak always
appears, and it always has the same value, regardless of
the physical parameter that varies in the measurement.
For example, the peak value reached in measurements of
the third-harmonic susceptibility ~g&~ as a function of
temperature should be the same as the peak value
reached in measurements of ~y3~ as a function of the
steady bias field. In either case, the value of 5=—1.7,
which corresponds to the peak of y3, is achieved by
changing the steady bias field or temperature. Our
analysis also predicts that the peak values of the harmon-
ic susceptibilities are the same for all type-II supercon-
ductors for which the critical-state theory is valid.

The magnitude of the harmonic susceptibilities rises as
6 and falls as 1/5; hence, the mathematical explanation
for the existence of peaks is clear. The physical origin of
the peaks may be understood considering the ratio be-
tween the amplitude of the alternating field and the
difference between the local fields in the middle and at the
surface of the sample. When this ratio is small, the alter-
nating field does not penetrate much into the sample; the
whole signal is small and so are its harmonics. Any in-
crease of this ratio will result in a larger signal; however,
beyond a certain point, the alternating field penetrates
the whole sample and the signal attains its maximum pos-
sible value. Any further increase of the ratio will not
change the signal, but the resulting normalized harmon-
ics (relative to H„) will be smaller.

Our analysis assumes that volume pinning dominates
and neglects surface barrier effects. The opposite ex-
treme case„where surface currents dominate, was dis-
cussed by Gilchrist and Konczykowski. ' Their analysis
also predicts a peaked behavior of the harmonics. Simi-
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larly to our parameter 6, they define a parameter j and
express the harmonics in terms of it. The details of their
results are different from ours, because they studied
current loops and not a slab. However, the ability to de-
scribe the behavior of the harmonics in terms of a single
parameter and to produce the peaks are common features
of both analyses.

The critical-state model, on which our analysis is
based, assumes that the magnetic response of the materia1
is independent of the frequency of the applied alternating
field. Our analysis may be extended by taking into ac-
count the dynamics of Aux motion within the sample.
The parameter 6 may still be defined, although its value
may depend on the frequency of the alternating field.
Clearly, the frequency dependence will introduce an addi-
tional parameter to the model. However, for a fixed fre-
quency the qualitative observations of our analysis will
remain valid.

We have illustrated the application of our analysis by
analyzing one example of experimental data taken in a
sintered YBCO sample. Clearly, more analyses of experi-
mental data are necessary to demonstrate the validity of
our results. Beside demonstrating the universality of the
alternating magnetic response, such analyses will provide
models for the dependence of the critical current density
upon field and temperature.
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APPENDIX A: CALCULATION
OF THE PARAMETER 5 IN VARIOUS MODELS

1. Bean model

Fig. 1). However, the curves for H )H are nearly linear
with a slope

S(x)=H /2ah(x)-=H /2aH . (A6)

In this linear limit,

and

A*=H /2Hd, ,

A=H /Hd, ,

(A7)

(A8)

5=2H„Hd, /H (A9)

The pinning force here is some (fractional) power of
the local field:

a, =ao(h /Ho) (A 10)

For y =1, the pinning force is linear in h; therefore, J, is
constant and one obtains the Bean model. The Kim-
Anderson model is obtained with y=o. Therefore we
write below only the final results. The derivation and ar-
gumentation are the same as in the above model. The full
penetration field is

where H has been replaced by Hd„assuming H„«Hd, .
Consider the case H=H~ (nonlinear field profile). If

H„ is small enough, the variation of H (t) influences only
the region near the surface, where the slope is a con-
stant. The general criterion for local linearity is
J(H,„)=J(H;„). In the Kim-Anderson model, where
J is inversely proportional to H, this condition is
equivalent to the condition H;„=H, , i.e., H„«Hd, .
This means that the above 6 can be used in all the expres-
sions for g, even in the highly nonlinear cases, as long as
H„«Hd, .

3. Power-law model

In the original Bean model, a constant J, is assumed.
Therefore

H =[4~(2 y)a a/H$]—' '

the local field is

(Al 1)

and

H* =4aaJ, /c,
a =26*=2H*,

(A 1)

(A2)
h (x)= [+H —r(x /a —1)+H r]—

and the maximum field variation is

(A12)

5=H„/H

2. Kim-Anderson model

(A3)
b, *=H h(0)=H[+1+-[I+—(H /H) r]' '

(A13)
In the linear limit,

This model assumes a constant pinning force a, which
balances the driving force acting on the Aux vortices:
F=JXh/c=a. The full penetration field H depends
on the slab dimension a and on the pinning force
a: H =&8~aa. The local field is

and

b, =2/(2 —y )H /H'

S =(2 q)H.,H,'; r /H, '—r. -

4. Exponential model

h(x)=Q+H~(x/a —1)+H (A4) The exponential model assumes

h*=H —h( )=0[H+I+Ql (H+/H) ] . (A5)

When H,„=H the nonlinearity of h (x) is apparent (see

where the plus and minus signs relate to increasing or de-
creasing external field, respectively.

The maximum field variation is

J(h ) =Joexp( —h /Ho ) .

The linearity condition can be evaluated directly:

J(H;„)/J(H, „)=exp [(H,„H;„)/Ho]—
=exp(2H„/Ho) =—1 .

(A14)

(A15)
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Hence H„«Ho is a sufficient condition, and there is no
restriction on Hd, (which may approach zero).

Field-profiles are given by

h(x) =Holn[+(4'/c)(J„a/Ho)(x/a —1)+exp(H/Ho)],

(A16)

where the plus and minus signs refer to ascending and
descending branches, respectively. Substituting H =H
and h (x =0)=0, we get 5=2HO(expH /Ho —1)exp( Hd—, /Ho ), (A19)

b, *= + H Din[1+ (exp H /Ho —1 )exp( H—/Ho) ] .

(A18)

When H ))Ho, the constant term in Eq. (A15) is much
larger than the varying one, and so the ln function can be
expanded to the first order in x/a, which yields a linear
Aux profile. However, the linearized model is valid for
any value of Hd„as indicated above.

Taking H„((H d„h is determined by J (H):

H =Holn(4trJoa/cHO+1) .

The maximum field variation is

(A 17) and

5=H„exp(Hd, /Ho)/Ho(expH~/Ho —1) . (A20)

APPENDIX B: DERIVATION OF GENERAL EXPRESSIONS FOR y„

The integration (7) and (8) yields:

y'„= [[(n —4)(n +1)sin xo+n (n —1)cos xo —(n l)(—n —2)]cosnxo

+6n cosxosinnxo] /2'(sinxo —1)n(n —4)(n —1),
y'„'= [2( —1)'" " (n —4)sinxo —2( —1)'" " (n 1)—

+ [ —(n —4)(n + 1)sin xo n(n ——1)cos xo+ (n —1)(n —2) ]sinnxo

+6n cosxosinxocosnxo }/2'(1 —sinxo )n (n 4)(n——1),
where

sinxo =1—2/6 .

These expressions are similar to those derived by Ji et al. They can be related to the Tchebychev polynomials

T„(c)=cos(n cos 'c ), U„(c)=sin[(n + 1)cos 'c ]/sin(cos 'c ) .

In our case,

c =cosxo =+4/6(1 —I/5),
s =sinxo=1 —2/6 .

It follows from Eq. (B3) that

U„,(c)= [1—T„(c)]/s

Using Eqs. (B3)—(B6) yields

y'„= {U„,(c)6cn(1 —c )+ T„(c)(2n c 6+4c )] /vr—n(n 1)(n —4)(s——1),
y'„'= [U„,(c)s(2n c —6+4c )+T„(c)6scn+(—1)'" " (Ss —2n s —2+2n )]/urn(n —l)(n —4)(s —1),
~y„~ =(U„,(c)( —1)'" "~ [8(n —4)(n +2)c +8[s(n +2)(n —1) (n 4)(n—+5—)]c —24[s(n —1)+4 n]]-

+T„(c)(—1)~" "~ [ —24n(n —4)c —24n(4 —s+sn —n )c]+4(n —4)(n —1)c +4(n —4)(n —7)c

—8(n —4)(n —1)s+104 40n +Sn—)' /mn(n —4)(n —1)(s—1) .

The explicit form of the Tchebychev polynomials is

(B1)

(B2)

(B3)

(B4)

(B5)

(B6)

(B7)

(BS)

(B9)

(B10)

(N +j)~2 ~+'
T„(c)=rc( —1) g ( —1)' .

,

-'
. c ',

(N —j)!(2j+ 1)!
N N+ f2'~+'

,(c)=c(—1) g ( —1)' . ',
,

c ',
(N —j)!(2j)!

where

(B1 1)

(B12)
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N=
2

(813)

Using Fqs. (81 !.) and (812), collecting terms of c, and substituting Eqs. (84) and (85), we g«

1 )N5
—3/2

Xn

5/2 22n+1(1 1/5)N —1

1 —— ( 1)N+1
6 n (n + l)(n+2)

( —1)J+ 2"J+'j (n+1 —2j)(N+1+j)!5 (1 1/5)
( n + 1+2j )(2j+3)(2j+ 1)(2j)!(N+ 1 —j )!(n —1)

(814)

( 1)N5
—1

+n
3 —2/5 1

n (n —4)
2

1 ——
5

22ng1 —N

)( ( 1)N+1
n (n +1)(n +2)

+ g
'

(
—1)J2 J+'(2j —1)(n+1—2j)(N+1+j)!5' J(1 —1/5)~

(n +1+2j )(j+1)(2j)!(N+1—j)!(n —4)
(815)

and

12/53 —34/62+ 28/6 —5. 4
n (n —4)

1+ 1 ——
5

2
4 2n (23 —20/5) —4n (1—1/5) 2 "+ 5 1+( —1) 1 ——
3 2( 2 4)2 n (n +1)(n +2) 5

N

(n + 1 )(n —1 )2/5+n —3n —gn +2g1)N —1
1 ——

n (n —2)(n —1) (n+2) 5

N —1

1+ 1 ——
6 j =2

2
N —2

( 1)J24J+3(„+1 2j)(N+1+ .
) 52—J(1 1/5)J —2

(n + 1+2j )(j+ 1)(2j)!(N + 1 —j)!(n —4)

' 1/2

(816)

where

AJ =(n —1)(n+1+2j)(n —1 2j)/5+(4j +6j —7)n —4j 12j+ 19—. — (817)

The above formulas are quite detailed and are given here for the sake of completeness. Nevertheless, several properties
can be deduced from these general expressions.

(1) The harmonic susceptibilities and their components are polynomials of 5. The in-phase components have in addi-
tion two factors of fractional power. In the limits 5= 1 and 6= ~, the behavior is

(818)

y„"(1)=( —1), , y'„'(5~ ~ ) = (
—1) 5

em (n —4)

Ix. I(»=, , Ix. I
(5

2 2

em (n —4) mn6

(819)

(820)

(2) All the even harmonics vanish.
(3) For 5 ( 1, all out-of-phase components of n (odd) ) 1 are proportional to 5 and all in-phase components vanish.
(4) For 5))1, all out-of-phase components decay as 5 ', and all in-phase components decay as 5
(5) All odd harmonics for n ) 1 have at least one peak. The out-of-phase components have n —1 extreme points, half

of them maxima and the other half minima. The in-phase components and also the absolute values have n —2 extreme
points, of which (n —1)/2 are maxima and (n —3 )/2 are minima.
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