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Magnetic relaxation in a Pr; 4sCey ;sCuO,_, single crystal has been studied as a function of field and
temperature. Two different regimes are evident in the relaxation process. The usual logarithmic decay
of the magnetization is observed at low fields. A crossover from logarithmic to exponential relaxation
takes place at higher fields. The magnetization decay becomes exponential as H approaches H;.(T), and
eventually any trace of relaxation disappears. The logarithmic decays have been used to estimate the
field dependences of the critical currents and the relevant activation energies at high driving currents.
The functional dependence U (J) has been evaluated by using Maley’s method. The extracted values for
U(J,T,B) are discussed in terms of the available models for flux motion; we conclude that the observed
behavior might be a signature of a crossover in the nature of the thermally activated process, from jumps
of elastically correlated flux volumes to plastic flux motion.

INTRODUCTION

Magnetic relaxation in type-1I superconductors is re-
lated to the decay of the persistent currents; it is thought
to be originated by the thermally activated jumps of (bun-
dles of) vortices over their pinning barriers, the so-called
flux-creep process. Anderson and Kim! showed that,
when the effective potential barrier U depends linearly on
the driving current J and U /kT >>1, the magnetization
should decay logarithmically with time. Beasley, La-
busch, and Webb? observed this logarithmic decay and
studied the relation between relaxation rate and effective
pinning energy. They showed that a linear dependence of
U on J is a good approximation when J is of the order of
the critical current J (7,B). This limit is usually
achieved in experiments with classical superconductors.
However, nonlogarithmic magnetic relaxations have been
observed in high-temperature superconductors (HTSC),
and even in some type-II alloys. This behavior cannot be
easily described in the framework of the Anderson-Kim
(AK) regime and several models have been proposed to
account for it. All of these models are based on the ob-
servation that HTSC exhibit unusually large magnetic-
relaxation rates, which are caused by higher measure-
ment temperatures and lower effective potential barriers. >
These high-relaxation rates imply that induced currents
can decay to rather small fractions of the critical current
J(T,B) within the experimental time window, and thus
new phenomena associated with this effect may become
observable. '

In the framework of vortex-glass or collective-creep
theory*? it is argued that the potential barriers grow in a
highly nonlinear way when decreasing J, thus leading to a
decay law m (¢t)a[In(z)]™!/* for t — e, where u depends
on the dimensionality of the flux line (bundle) as well as
on temperatures, applied magnetic fields, and driving
currents. Such nonlinear J dependences of U have al-
ready been observed in I-V curves® and magnetic-
relaxation measurements,’ where a Ua In(J) relationship
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was found. Vinokur, Feigel’man and Geshkenbein® have
shown that this logarithmic dependence is a good ap-
proximation to the collective-creep dependence
Ua(J /J,)"#, for small values of u. On the other hand,
the TAFF’ model predicts a crossover from the
Anderson-Kim logarithmic decay to an exponential one
at small driving currents J, associated with diffusive flux
motion, provided U does not diverge when J—0.1° It
has been shown!! that TAFF motion of defects in the
flux-line lattice is likely to occur at low enough J, where
the energy barriers associated with plastic motion (which
do not depend on J) become smaller than the ones of the
collective-creep or vortex-glass model.

The electron-doped superconductors,
Ln, ,Ce,CuO,_,, are significantly different from the
other high-temperature superconducting cuprates. '
Their critical temperatures and upper critical fields are
much lower. Consequently, the in-plane coherence
lengths are larger and the pinning energies are expected
to be higher than in other HTSC. The activation barriers
measured from ac susceptibility!>!'* and resistivity'> in
single crystals of this family are close to the values re-
ported for YBa,Cu;0, (YBCO) single crystals, and some-
what higher than those for Bi,Sr,CaCu,03 (BSCCO).
Hence, as the measuring temperatures are much lower,
the relaxation rates should be closer to those in classical
type-II superconductors. This fact seems to be confirmed
by the narrow reversible region in the H-T plane, which
has been observed from both inductive and transport
measurements. '3 16

The study of magnetic relaxation in the electron-doped
superconductors is interesting from two points of view.
First, it provides another determination of the activation
energies relevant in thermally activated flux motion, and
their dependence on the driving current J. Consequently,
information on the nature of the moving flux volumes,
and thus about the characteristics of the mixed state, can
be gained. Second, since the values of the upper critical
field along the c-axis direction are puyH ,(0)=~6 T (Refs.
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15, 17, 18), all the points in the (T, H) diagram of these
materials are experimentally accessible. This fact is in
strong contrast with the case of the p-type HTSC cu-
prates, in which the very high values of H_,(0) make im-
possible the study of flux-motion processes near H ,(T) at
low temperatures.

In this paper we report a study of magnetic relaxation,
as a function of magnetic field and temperature, in a
highly irreversible Pr, _, Ce,CuO,_, single crystal. The
hysteresis loops do not show any reversible regime within
our experimental resolution, and thus they indicate that
the irreversibility line H; . (T) should lie very close to the
upper critical field.! We have observed logarithmic re-
laxations at the lowest fields and temperatures, crossing
to an exponential decay at higher fields and longer times.
At fields close enough to H; (T) no relaxation is ob-
served. The implications of these facts, together with the
height of the activation barriers and their dependence
upon J, are discussed.

EXPERIMENT

The single crystal used in the present study was grown
by the self-flux method?® and has an estimated composi-
tion Pr, 35Cej 15Cu0,_,. It is a platelet of dimensions
1.80X0.95X0.03 mm?, the shortest length being the one
parallel to the ¢ axis. The critical temperature was ex-
tracted from the onset of diamagnetism in the dc magne-
tization, measured after a zero-field cooling process
(ZFC) at H=1.6 G. It is T.,=19.2 K, with a transition
width of about 1.5 K.

The measurements were performed by means of a
Quantum Design superconducting quantum interference
device (SQUID) magnetometer with a scan length of 3
cm. The relaxation data were taken by cooling the crys-
tal down to the desired temperature in zero field and then
the field parallel to the c¢ axis was applied. The first data
point is taken typically 50 s after the application of the
field. Fields ranging from poH =0.1 T up to puoH =2 T
were used and the magnetization was recorded for 3 h.
The data analyzed here correspond to the irreversible re-
gime, above the full penetration field H,(T), for tempera-
tures T=4.5, 6, and 9 K. The boundaries of this zone
were determined from magnetic hysteresis measure-
ments. 1’

RESULTS

Figures 1(a) and 1(b) show some typical curves of mag-
netization decay at T=4.5 K, for different fields. Clearly,
the data corresponding to uyH < 1.2 T are well described
by a linear expression m (¢)a In(z). At higher fields, even
though an initial logarithmic decay is observed, a cross-
over to a nonlogarithmic decay becomes apparent. This
second issue will be addressed later.

Let us concentrate now in the low-field regime. The
deviations observed at ¢ <300 s can be attributed to tran-
sitory effects or to the difficulty in defining properly the
origin of time; in any case, these effects may be taken into
account by adding a constant time #;. This time deter-
mines the transient period after which the logarithmic re-
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laxation is observed.?! It is a macroscopic, nonintrinsic
constant, related to the nonlinear flux diffusion through
the sample, which essentially depends on initial condi-
tions, particularly the field sweep rate H used to establish
the measuring field. In Fig. 2 we have depicted some fits
to the experimental data by using the equation,

m(t)=plIn(t +¢;,)+gq , (1)

where p and ¢ stand, respectively, for the slope and a con-
stant term in the logarithmic law describing the data. It
can be appreciated that the addition of #; provides a
reasonable description of the first measured points. It
turns out that in all the cases a value of about ¢; =30£10
s is obtained. An approximate expression for this time
constant is?! t;,~kT/[U.(T,B)]{[m.(T,B)]/H}, where
m (T,B)=m (t =0,T,B) is the nonrelaxed irreversible
magnetization, which is proportional to the critical
current J,(T,B) in a critical-state model. U,(T,B) is the
linear extrapolation to J=0 of the effective energy barrier
at J=J (T,B). Using m (T,B)=2 T and U,/kT =30
(see below), a typical value u,H =103 T/s provides an
estimate of #;=70 s, which is in reasonable accordance
with the extracted values from the fits.

Assuming a flux-creep relaxation process in the critical
state, and taking a linear dependence on J for the energy
barrier, U(T,B,J)=U.T,B)1—J/J,) (which is a

t (s)

FIG. 1. Magnetization decays at T=4.5 K for different fields:
(a) poH=0.2, (0), 0.3 (@), 0.4 (A), 0.5 (A), 0.7 (0O), 1 (M), and
1.2 (O) T; () poH=1.4 (0), 1.5 (O), 1.7 ({), and 1.9 (A) T.
m (t,) is the first measured point at each field.
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FIG. 2. Relaxation curves at T=4.5 K, for uoH=0.3 T (0O)
and 1 T (O); the lines are fits to Eq. (1) in the text.

reasonable approach when U >>kT), Anderson and
Kim! showed that magnetization should decay in time
according to a law,

m(t,T,B)—m(T,B)
t+t;

T

kT

:mc(T,B) UC(T,B)ln

1_

‘, (2)

where 7 is the characteristic relaxation time and
m(T,B) is the equilibrium magnetization. In a type-II
superconductor m.q(7T,B) is usually much smaller than
m.(T,B), provided we are far enough from the reversible
region; we will thus neglect this contribution!”!® in the
analysis of the low-field relaxations.

Comparing Egs. (1) and (2), it may be appreciated that
the fits shown in Fig. 2 provide two relationships between
the three parameters involved in the relaxation process,
namely, m (T,B), U ,(T,B)/kT, and 7. Consequently, we
have a set of two equations and three unknown factors.??
In order to get a unique determination of these three fac-
tors, we need either a new relation between them or the
value of one of these unknown factors evaluated from
some other analysis. Since In(7) is not expected to
change appreciably with field and temperature, the evalu-
ation of the normalization time 7 seems to be a good
starting point in order to achieve this goal. According to
Feige’'man, Geshkenbein, and Vinokur,?* a lower limit
for this characteristic time can be obtained from

2p, UT,B)
,Uod2 kT

1= , 3)

where p,=~p,B /B, is the flux-flow resistivity and d is a
sample dimension. The method of Maley, to be described
below, shows that there is a constant value
U.(T,B)/kT =30 for all tested temperatures and fields.
Estimates of 7 using Eq. (3) with the above values for the
activation energy, the normal-state resistivity in these
materials p, =3X107° Q m (Ref. 15), an effective sample
dimension d=0.74 mm, and the upper critical field
B.,=6 T (Refs. 17, 18), gives a value for the characteris-
tic relaxation time 7~107°-1071%s. The nonlogarithm-
ic relaxation data and the analysis of Maley also point to
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a value of 7 of this order of magnitude, as will be shown
later. We will thus take the value 7~ 10" s as a fixed pa-
rameter in the study of the logarithmic fits, observed for
uoH =1.2T.

Once the value of 7 has been fixed, the fits of the exper-
imental m (¢, T,B) data to Eq. (1) can provide a straight-
forward estimate of U.(B) and m (B) at 4.5 K; results
are shown in Fig. 3. The potential barrier shows a very
smooth field dependence which can be roughly described
by a power law U,(T,B)~Uy(T)B ~%', with Uy(T=4.5
K, B=1 T)=13 meV. The values of these energies are
almost one order of magnitude smaller than those report-
ed from ac-susceptibility and resistivity measurements on
other electron-doped superconducting single crys-
tals.!?7!* The field dependences of the activation bar-
riers determined from these different methods are also in
contrast with the one determined here. This discrepancy,
common to other superconducting oxides, may be related
to the fact that different driving currents are involved in
the relaxation processes and ac-susceptibility or resistivi-
ty measurements. In the framework of a model with a
highly nonlinear dependence of the effective energy bar-
rier on J, such as those of vortex-glass or collective-creep
models, the use of these different experimental techniques
would imply that very different regions of the U (J) curve
are sampled in each experiment, and therefore, different
results should be expected. We will deal with this issue
later in the discussion.

An estimate for the irreversible magnetization at t=0,
m,(T,B), can be obtained by taking 7~10"° s and com-
paring Eq. (2) with the fits to Eq. (1), as described above.
Under these considerations, it may be seen in Fig. 3 that
m (T, B) exhibits an exponential decrease with magnetic
field as follows:

m (T,B)=m(T,B =0)exp(—B/B,) , (4)

with By=~0.47 T and pym. (4.5 K, B=0)=2.3 T. As-
suming a critical-state model, these m.(T,B) values can
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FIG. 3. Field dependence of the nonrelaxed irreversible mag-
netization m. at 4.5 K, extracted from the fits to Eq. (1) with
7=10"% s. The point corresponding to uoH=1.5 T, obtained
from the logarithmic decay at short times, is also displayed.
The solid line is a fit to m,~exp(—B/B,), with B,~0.47 T.
Inset: Field dependence of the activation barrier U, at 4.5 K,
extracted from the same fits.
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be used to estimate the critical current of the sample. It
turns out that J,(4.5 K, 1 T)=~10® A/m2 The observed
field dependence of m_(T,B) [Eq. (4)] is in good agree-
ment with the field dependence of J, extracted from hys-
teresis cycles!® and with the exponential decay of the re-
laxation rate S(B)=dm /d In(t) observed in the same
crystal data. !

We would like to emphasize the fact that the estimates
of m (T, B) are nearly twice as high as the first measured
point in any run. This means that, at the first measure-
ment, the magnetization has already decayed to an im-
portant fraction of its original value. Relaxation effects
are thus rather important. It is well known that these
effects mask the evaluation of the critical current (its
value and temperature and field dependences) from the
hysteresis curves, J.aAm, by means of a critical state
model.?* Equivalently, the field dependence of the relax-
ation rate S (B) should reflect the ratio of the field depen-
dences of m (B) and UC(B).25 However, the exponential
dependence on field in our estimates of m_.(B) [Eq. (4)] is
much stronger than the field dependence of the relevant
activation energies (Fig. 3). Thus, it dominates the global
field dependence of Am (B) and S (B), which may be con-
sidered as a good approximation of the actual field depen-
dence of the critical current in these electron-doped su-
perconducting oxides.

We turn now to the high-field relaxation data, shown
in Fig. 1(b). As mentioned above, at higher fields
(uoB =2 1.4 T for T=4.5 K) the magnetization does not
show a logarithmic decay in the whole time window, but
crosses to another regime of slower decay at a time ¢,
and eventually becomes constant at the highest fields and
longest times. There are several theoretical frameworks
in which a nonlogarithmic decay of magnetization may
be expected. In the simplest case of an effective energy
barrier displaying a linear dependence on J (Anderson-
Kim model), the logarithmic relaxation would be left at
the time when m (¢) reached a value much smaller than
m (T,B). In this situation, U(J,T,B) could be con-
sidered as independent of J and the thermally activated
flux motion would take a diffusive nature (TAFF regime).
Magnetization would thus decay exponentially to its
equilibrium value. The crossover time from logarithmic
to exponential relaxation can be estimated by'©

Ty=71exp| U (T,B)/kT] . (5)

The assumption of a linear U (J) implies that the elastic
interactions between segments of vortices are not taken
into account. However, the collective-creep and vortex-
glass models*> have shown that the elastic nature of the
vortex system cannot be ignored. Incorporation of its
effect into a thermally activated flux motion provides ac-
tivation barriers with a power dependence on J as fol-
lows:

J TH

UWJ,T,B)=UUT,B) m

(6)

These enhanced effective barriers are the result of the fact
that the jumping flux-bundle size and jumping distance u
increase as J—0. Evidently, in the presence of potential
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wells of the type (6), the logarithmic decay predicted by
the AK model is not valid any more; instead, magnetiza-
tion should decay according to a law,

t+r ||

T

KT
U.(T,B)

m (t,T,B)—m(T,B)~

@)

for t — o0. The value of the exponent u is predicted to in-
crease from nearly zero at J=J, to £ or 3 (depending on
whether the flux-line lattice is 2D or 3D). Hence, the
Anderson-Kim logarithmic decay, which assumes a
linear dependence of U(J), is a good approximation at
high-current densities J, i.e., in the first stages of the re-
laxation. But as J/J, decreases, the linear approxima-
tion becomes worse and the description of the data by
means of Eq. (7) becomes more suitable. Experimentally,
a dependence of the type,

J

U(J,T,B)=U,(T,B)ln W

) (8)

has also been observed in HTSC,%7 which would imply
that the relaxation process is governed by a law,

—kT/U_(T,B)
t+t ©

m (6, T,B)=mo(T,B)~ | —

9)

Vinokur, Feigel’man, and Geshkenbein® have shown that
the dependence (8) is a good approximation of (6) for
small values of u, i.e., in the stage that appears immedi-
ately after the Anderson-Kim regime. On the other
hand, Eq. (6) predicts a divergence of U(J) as J—0.
This implies that no relaxation should be expected at low
driving currents, and thus a nondissipative vortex-glass
state would appear. Nevertheless, as has been pointed
out in Ref. 10, this divergence can be cut off in a 2D
flux-line lattice (FLL) or in a 3D vortex-fluid phase. In
these cases, plastic excitations and defects, such as dislo-
cations or bending, cutting, and reconnection of flux
lines, are likely to appear in the vortex system. The ener-
gies U, (T,B) associated with creation and motion of
these defects are independent of the driving current J.
Consequently, a crossover from collective creep to plastic
motion (TAFF) is expected to take place as J—0, at the
point where U pl( T,B) becomes lower than U (J,T,B) and
comparable to kT. The barriers U, (T,B) are expected
not to be excessively high in the layered superconducting
oxides, as a consequence of the high anisotropy and large
k values of these materials, which soften the FLL.!' The
plastic TAFF process would, hence, be a real possibility
in HTSC. In this case an exponential decay of the mag-
netization, typical of diffusive phenomena, would be ob-
served. According to this picture, in a magnetic-
relaxation experiment which was carried out at long
enough times, one should expect three different succes-
sive regimes as J /J,, decreases: first, when J =J_, the sin-
gle vortex (bundle) creep dominates the relaxation pro-
cess, leading to a m (¢#)aln(¢) decay (Anderson-Kim re-
gime); second, collective creep would take place when de-
creasing J, giving a decay governed by Eq. (7); and finally,
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when J/J, was small enough, TAFF of defects would
play a major role in the relaxation process, leading to an
exponential decay of the magnetization before its equilib-
rium value was reached. The nonlogarithmic relaxations
observed in our data would, hence, indicate that the
Anderson-Kim regime has already been surpassed and
that expressions (6) or (8), which take into account the
nonlinearity of U (J), might be more suitable to describe
the relaxation process.

An accurate analysis of the nonlogarithmic relaxation
data has been performed in view of the above two inter-
pretations (AK or collective flux-creep and vortex-glass
models). First, we have checked to what extent experi-
mental data may be described by Egs. (7) and (9). What
we found is that these expressions are not able to fit the
experimental data at long times. Nevertheless, a good
description of the data for long-time relaxation, ¢t >t ,
and high fields uo = 1.4 T can be obtained by using an
exponential decay. Figure 4 shows the data taken at
poH =1.5 T. The solid line is a fit of the points <1200 s
to the logarithmic law (1) and the dashed line corre-
sponds to a description of the data at ¢ > 1600 s by using

m (t,T,B)—m(T,B)aexp(—t/7,), (10)

with 7,~ 1500 s; m (T, B)~43 G is the value of the equi-
librium magnetization determined from the hysteresis
loops. A clear crossover from the logarithmic to the ex-
ponential regime is noted at ¢, =~7,. This crossover shifts
to shorter times as the field is increased; at uo =1.7 T
(also shown in Fig. 4) a value ¢, =800 s is found. An ex-
ponential decay of magnetization is observed in the whole
time window as H is further increased, until any trace of
relaxation disappears at fields close enough to
poH . (T=4.5 K)=2 T, at which the equilibrium magne-
tization has been obtained [see, for instance, the curve
corresponding to uoH =1.9 T, in Fig. 1(b)]. The same
general trend with an even sharper transition between
both regimes has been observed for higher temperatures,
at lower fields and time ranges.

Consequently, the present relaxation data can be de-

6 10°

0.2 | ‘
2 108

4103 3
t (s)
FIG. 4. Magnetization decay at T=4.5 K, for uyoH=1.5T
(0)and 1.7 T (O). The solid (dashed) lines are fits to a logarith-
mic (exponential) law at short (long) times. A change of regime

is clearly seen at ¢, ~1500 s for uoH=1.5 T and ¢, ~800s s for
uoH=1.7T.
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scribed by logarithmic or exponential laws, but no traces
of any other regimes (as those expected in collective flux-
creep or vortex-glass models) have been observed. Fur-
thermore, the evaluation of the crossover time 7, predict-
ed in the AK model [Eq. (4)] by using the value of
U.(T,B) at B=1.5 T, obtained from the fit of the experi-
mental data to Eq. (1), with 7=~10"° s, gives 7,~10°~10*
s, in good accordance with the crossover time observed in
the relaxation data. This good agreement gives support
to the interpretation of our data as a crossover from sin-
gle flux creep to diffusive flux motion, within the frame-
work of the Anderson-Kim assumption of a linear U (J).
Besides, this estimate gives further support to our earlier
assumption of a characteristic time 7~1077s.

The above interpretation, if true, would imply that in-
teractions between vortices could be ignored and thus,
collective creep would not take place. Nevertheless, the
elastic interactions in the FLL cannot be usually ignored
at small driving currents. They should lead to a non-
linear U(J), not compatible with the above interpreta-
tion. It would thus be interesting and desirable to get an
evaluation of the actual U(J) dependence in our crystal.
An estimate can be obtained by means of the analysis of
Maley et al.” This method consists in plotting
UWJ,T,B)=kT[C(T,B)—1In|dm /3t|] vs m —mal, at
different temperatures, for a given field. The constant C
is chosen to get a unique U(J) curve. The actual U(J)
function can only be obtained when the temperature
dependence of U, and m, are accounted for. This can be
achieved by choosing C in order to scale
U, T,B)/(1—T/T,)", instead of U (J, T,B).?® The fac-
tor (1—T/T,)" here stands for the global dependence on
temperature of the activation barrier, coming from both
the temperature dependences of the critical current
J (T,B)am (T,B) and the effective barrier energy
U(T,B) at J=JJT,B). Introducing  U(T)
~(1—T/T.) and J(T)~m (T)~(1—T/T_)" into the
effective energy U(J) given by Eq. (6), one has
n =v—+un. Cis assumed to have no dependence on tem-
perature, since this would be very smooth, of the type
C(T)=Cy+n'In(1—T/T,)=C,, with n’ close to unity.

In the case of electron-doped superconductors, as a
consequence of the low values of H,, and T,,'" the
analysis of Maley is restricted to a very narrow window
of fields and temperatures. In the present study, using
temperatures between 4.5 and 9 K, the range of accessible
fields is 0.2 T=<pu,H <0.5 T. The lower limit is the full
penetration field at T=4.5 K, H,(4.5 K), and the upper
limit corresponds to the highest field at which exponen-
tial relaxations are not yet observed at 7=9 K.?’ In Fig.
5 we show the results we have obtained by using the
analysis of Maley described above. The parameters n and
C have been chosen in order to get the best collapse of
the experimental data recorded at different temperatures.
We have obtained n =7 and C =172 for all the fields.

The constant C(T,H) can be written in terms of mac-
roscopic quantities as follows:

_ m (T,B) kT
C(T,B)=In . U(T.B) (1n

c
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FIG. 5. Plot of Maley for uoH=0.2 (A), 0.3 (0 ), and 0.4 (O)
T. The activation energy 1is defined by U(J,T,B)
=kT(C —1In|dm /3t]); a value of C=17 has been used for all
fields. The lines correspond to logarithmic fits.

for an infinite slab, when U, >>kT. 8 U,(T,B) is the
linear extrapolation to J=0 of the barrier height at J =J,
and 7 is the macroscopic characteristic relaxation time
introduced earlier. The experimental value is in excellent
agreement with that obtained from Eq. (11) by using our
estimate 7=10"7 s, that is, C=18. The incorporation of
the field dependences of m, and U, (see above)
into C gives a field correction of AC(B)=In[exp(—B/
By)B® '], which implies AC (uoB =0.2 T)=—0.06 and
AC(uoB =0.5 T)=—2. These values fall within the er-
ror made when determining C, and thus justify the use of
a field-independent C.

Regarding the dependence of the activation energy on
the driving current J, it can be described by a logarithmic
law [Eq. (8)], with U(B)=~11-16 meV, in agreement with
the U, (T,B) values determined from the logarithmic re-
laxations. Logarithmic dependences have been reported
from relaxation measurements® and I-V data’ in hole-
doped HTSC. A potential U(J) dependence has also
been observed in YBa,Cu;0;_5, 8<0.2. Recent
I-¥V  and  magnetoresistance = measurements  on
Sm, §5Cep 15Cu0,_, single crystal have also provided evi-
dence of a logarithmic U(J) dependence.’® As men-
tioned above, some theoretical studies® have shown that
in the case of small exponents p of the power-law depen-
dence expected in the framework of the collective-creep
theory [Eq. (7)], logarithmic approximations may account
in a suitable way for the experimental data; actually, our
data can also be reasonably described by
U(J,B)=U(B)[(J/J.)"#—1] and provide small values
of u, ranging from 0.14 to 0.25, as expected.

DISCUSSION

Our relaxation data show two main features that can-
not be easily reconciled: (i) the relevant activation ener-
gies for thermally activated flux motion display a non-
linear dependence on the driving current J; (ii) at each
temperature, a crossover from logarithmic to exponential
decay of the magnetization is observed as the magnetic
field is increased. No signatures of other creep decays,
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associated to the nonlinearity of U(J), have been ob-
served.

The observed nonlinearity of U (J) in our crystal rules
out the simplest explanation of the experimental cross-
over from logarithmic (J=J_) to exponential relaxation
(J—0) in terms of the AK model. However, the explana-
tion in the framework of the collective-creep—vortex-
glass model has the difficulty of the absence of the
collective-creep decay at long times [Eq. (7)] which
should become observable between the logarithmic and
the exponential decays. In fact, in YBa,Cu;0,_5, § <0.2,
the interpolation formula (7) has provided an adequate
description of the relaxation data. An explanation for
our apparently contradictory experimental observations
might be found by taking into consideration the role
played by the characteristic barriers for plastic motion,
Upl(T,B ). Let us assume that they are low, of the same
order of magnitude as that of U.(7T,B). In this case, the
plastic TAFF regime [i.e., the exponential decay of m (¢)]
might take place immediately after the AK logarithmic
decay, without the observance of any collective-creep re-
gime. The barrier for plastic motion has been estimated
to be Uy,~®fag/(T'?u8m*A?) (Ref. 11), with
I'=m_,/m, the anisotropy ratio, and A the in-plane
penetration depth. Using A,,(00=800 A,'” a value of
Upl(B)zl.4(I“B)_°’5 eV is found. Even though many
different values have been reported for I' in these materi-
als, it seems likely that I" > 1000;3! hence, an energy
U,(T,B)<45(1—T/T,)/B~%° meV is obtained. This is
only slightly higher than the experimentally determined
values, U,(T,B). Therefore, not only plastic motion can
be possible, but it can also be responsible for the observed
crossover. At this point, it is worth mentioning that ac-
tivation energies of U(T,B)=40(1—T/T.)B %% meV
have been reported'>!* from ac-susceptibility measure-
ments with very low ac-excitation fields; these values are
very close to those estimated for U, (T,B). Actually, the
possibility of plastic motion in the flux-line lattice of
these materials has been already considered in Ref. 14.

If a change from the creep of an elastically correlated
flux volume to plastic flux motion is indeed responsible
for the experimental crossover in magnetization decay,
the observed logarithmic relaxations would be a conse-
quence of the fact that the time interval in which
UJ,T,B)< U, (T,B) is too short for the nonlinearity of
U (J) to be observed. In this case, the activation energies
and critical currents extracted from the logarithmic fits
may not reflect the actual U.(T,B) and J (T,B) coming
from collective pinning in an elastically correlated
volume V.. This is clearly appreciated in Fig. 6, where a
nonlinear U (J) is depicted. Though in both A4 and B re-
gions the J dependence of U can be well approximated by
a linear function, it can be seen that the determinations of
U, and m, using region B represent, respectively, an
overestimate and an underestimate of the actual values.
On the other hand, region A4, which lies closer to
J/J.=1, would provide much better estimates of the ac-
tual U, and m.. As a consequence, the experimentally
determined energies and critical currents coming from
the logarithmic fits and their field dependences have to be
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FIG. 6. Nonlinear effective energy U(J). It can be shown
that the dependence on J in regions 4 and B can be well ap-
proximated linearly, so that relaxation would be, in both cases,
logarithmic; however, the extrapolated values of U, and J, are,
respectively, larger and smaller than the actual ones; this effect
becomes more important as the considered J/J, values de-
crease.

considered as approximations to the actual ones; since
the relaxation process is expected to become more impor-
tant for increasing fields and temperatures, the field
dependence of U, (J,) determined from the logarithmic
fits would be smoother (stronger) than the actual one.
Nevertheless, as Figs. 3 and 4 are obtained for a low tem-
perature, T=4.5 K, we expect this effect not to disturb
appreciably our evaluations of U,(B) and m (B) at this
temperature.

The above considerations allow one to get a deeper in-
sight into the earlier mentioned discrepancy between the
field dependence of the potential barrier obtained from ac
susceptibility and the one coming from relaxation mea-
surements. The activation energy extracted from loga-
rithmic relaxation data is related to the creep of single
bundles of elastically correlated flux lines. The energies
extracted from ac-susceptibility and resistivity measure-
ments, which are usually carried out at low driving
currents, may be either related to the same kind of creep,
though at different J /J, values, or to plastic motion, de-
pending on the exact value of J/J (T,B) at which they
are determined. Both energies are thus expected to
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display different values and field dependences, as ob-
served. Nevertheless, it comes out from the previous dis-
cussion that their orders of magnitude should lie close,
the energies coming from ac susceptibility and resistivity
being slightly larger; this fact has also been reported. !4 1°

CONCLUSIONS

The magnetic relaxation in a single crystal of the
electron-doped superconductor Pr; gsCej ;sCuO,_, has
been studied as a function of field and temperature. Two
clearly different regimes have been found in the relaxa-
tion process, with a sharp crossover between them. The
usual logarithmic behavior is observed at low fields but
changes to exponential at high fields, and eventually any
trace of relaxation disappears at even higher fields, at
which the equilibrium magnetization is reached. The
change of regime becomes sharper with increasing tem-
perature, and even at the lowest temperature we have not
found any trace of the intermediate behavior in which the
interpolation formula for the relaxation process could ap-
ply. Such a sharp transition from the Anderson-Kim re-
gime to a diffusive one may be due to the conjunction of
the rather large values of £ and I in these materials that
may enhance, respectively, pinning and bending of flux
lines, leading to rather low values of the ratio
U,(T,B)/U.(T,B); a crossover from creep of individual
(bundles of) correlated vortices to plastic flux motion
would thus become more likely. In this sense, it would be
interesting to perform relaxation measurements in wider
time intervals and at lower temperatures (7<4.5 K),
where the crossover should be smoother, in order to
check whether the nonlinear U(J) dependence in the
creep regime becomes evident. This would be manifested
in the appearance, between the logarithmic and exponen-
tial decays, of the relaxation law predicted in the
collective-creep—vortex-glass regime.
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