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%'e present a formalism to compute the optical-activity tensor in the long-wavelength limit neglecting
local-field corrections with a nearly first-principles approach. The calculation of optical activity requires
perturbation theory in the vector potential in order to describe the rotation of the plane of polarization
perpendicular to the direction of propagation. We contrast this approach with perturbation theory in
the scalar potential which can be used for the other optical response properties we compute. Band struc-
tures are obtained within the Kohn-Sham local-density approximation using standard plane-wave and
separable norm-conserving pseudopotential techniques. Self-energy effects necessary to obtain the
correct band gap are included by the use of a "scissors operator. "In the long-wavelength limit, two com-
ponents of the optical-activity tensor are computed for both selenium and o;-quartz. For selenium in the
low-frequency range, the optical rotatory power along the optic axis is about a factor of 2 too small com-
pared with some of the experimental data. For a-quartz, the ratio g»/g33 and the frequency depen-
dence of both components obey the phenomenological coupled-oscillator model and are in agreement
with experiment. Yet both g» and g33 (or the optical rotatory power) are about a factor of 5 too small
compared with the available experimental data. In addition, the dielectric constants and second-
harmonic-generation susceptibilities including local-field corrections are calculated for selenium and a-
quartz in terms of scalar-potential theory. Excellent agreement (discrepancies of a few percent) is ob-
tained with the experiments for these properties.

I. INTRODUCTION

In a previous paper, ' we presented a calculation of the
optical-activity tensor of trigonal selenium with a nearly
first-principles approach. The purpose of this paper is to
give a detailed derivation of the formalism and to expand
and correct our presentation of the calculations. We also
report our study of the optical response functions of +-
quartz.

Optical rotation describes the ability of a medium to
rotate the plane of polarization of linearly polarized light
that is transmitted through it. This effect was discovered
by Arago (1811) by propagating linearly polarized sun-
light along the optic axis of quartz. This observation at-
tracted a great deal of attention in the development of
19th century optics including work by such notable
figures as Airy (1836), Cauchy (1850), Clebsch (1859),
Lommel (1881), and Drude (1892), and led to the devel-
opment of stereochemistry. Optical activity was first ex-
plained by Biot (1812) and Fresnel (1816). They found
that linearly polarized light can be decomposed into two
circular polarizations with opposite handedness. In an
optically active material the two circularly polarized light
waves constitute normal modes and travel with different
velocities. After passing through the optically active ma-
terial, the two circularly polarized light waves recombine

and produce a linearly polarized wave with the plane of
the polarization rotated with respect to the original direc-
tion of the linear polarization. This optical rotation is
the most well-known phenomenon in optical activity.
The rotation of the plane of polarization is quantitatively
described by the rotation angle per unit length, which is
defined as optical rotatory power p. It is related to the
refractive indices for left (nL ) and right (nti ) circularly
polarized light by

CO

2c

In past work sign conventions have not been unambigu-
ous. We take our conventions from a careful analysis by
Glazer and Stadnicka.

There has been some success in making phenomenolog-
ical models and quantum-mechanical theories of this
phenomenon (see Ref. 6 for a review), one of the simplest
of which is a coupled-oscillator model which can be treat-
ed either classically or quantum mechanically. A
rigorous quantum-mechanical treatment including nu-
merical predictions has been missing, the needed expres-
sions being considered "dif5cult if not impossible to cal-
culate numerically. " The present paper pursues that
goal.

One form of the coupled-oscillator model ' yields a
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dispersion relation for optical rotatory power of Iij l fiji (2.2)

kco
p( )=

(6) COD)

(1.2)

where k and co0 are parameters. Analysis of the experi-
mental data on various optically active crystals shows
that Eq. (1.2) is a general dispersion relation for the opti-
cal rotatory power in the subband-gap regime. The
coupled-oscillator model is analogous to the single-
effective-oscillator model' (which has the same form as a
one-term Sellmeier equation"), which is successful in
describing the dielectric function of semiconductors and
insulators. More recently, a semiempirical model, '
which assumes that the response of a crystal to an elec-
tromagnetic field is a superposition of the responses from
individual atoms in the crystal, has been applied to quan-
titatively calculate the optical rotatory power. The polar-
izabilities of the atoms are treated as parameters to be ad-
justed to fit the experimental data. Such an approach
yields a considerable variation in polarizability of a given
atom in different crystals and as a result has limited
predictive power.

There have been considerable theoretical and computa-
tional advances in band-theoretic optical response calcu-
lations. ' ' With the inclusion of the self-energy effects,
the modified time-dependent local-density approximation
has been used to study the dielectric constants, ' '

second-harmonic susceptibilities, ' and the photoelas-
tic tensor with success. In this paper we extend this ap-
proach to the study of optical activity. The organization
of the paper is as follows. Section II contains a brief re-
view of the classical theory of optical activity, wherein
the characteristic quantities for optical activity are
defined. The detailed derivation of the optical activity
tensor for a periodic system from one-electron perturba-
tion theory is presented in Sec. III. Section IV reports
the computed results of the optical response functions,
including the dielectric function, second-harmonic sus-
ceptibilities, optical rotatory power, and the gyration ten-
sor component g&& of trigonal selenium and o,-quartz.
Section V is a summary. A more complete discussion of
this work may be found in Ref. 24.

so that only 9 of the 27 components in the third-rank ten-
sor g;zl are independent. In the absence of absorption
these components must be real.

The 9 independent components of g,-
l may be rewritten

in terms of the gyration tensor g;. , which is also common-
ly used to describe optical activity. (Others define

g;J differently. ' ) The gyration tensor is related to the
optical activity tensor g,.~l by

—1

gmj p Merml 1igl ~ (2.3)

g)) 0 0

0 0 g»

(2.4)

The relation between the gyration tensor and optical
rotatory power p can be obtained from the wave equa-
tion. In nonmagnetic semiconductors, the Maxwell equa-
tions can be written as

B=H,
1 BD 1 BE 4m

c Bt c dt c

(2.5)

(2.6)

In the /=0 gauge, the fields are related to the vector po-
tential by the relations

and

1 BAE= ——
c Bt

(2.7)

B=VXA. (2.8)

Equations (2.5)—(2.8) lead to the wave equation

where e, l is the completely antisymmetric unit tensor
and q is the magnitude of the wave vector. Crystal sym-
metry restricts the form of g; . For example, crystals
with 32 point group symmetry (to which both trigonal
selenium and a-quartz belong) are uniaxial with the optic
axis along the c axis (defined as the z axis) and the gyra-
tion tensor is of the form

II. CLASSICAL THEORY OF OPTICAL ACTIVITY 1 B A
V A — —V(V A)= — J,c2 Bt2 c

(2.9)

A system is called "optically active" if it has different
response to right and left circularly polarized light.
Mathematically, optical activity is defined through the
constitutive relation

where the induced current J can be written in terms of
the dielectric matrix and optical-activity tensor with the
use of the constitutive equation, Eq. (2.1), and the mono-
chromatic assumption A(r, t) = A e''i'

D, =g,.qEj+'9)~lV jEl, (2.1) i.J = — i.(D —E)q
where we adopt notation from Ref. 4 for the optical ac-
tivity tensor g,"&. The Einstein summation convention is
used in this paper. Equation (2.1) is a generalization of
the common constitutive relation D; =c; E. and can be
considered to be a Taylor expansion to first order in the
derivative of E, or first order in B. In other words, opti-
cal activity results from the spatial dispersion of the
dielectric response. In general g,jl is antisymmetric in
the first and third indices, i.e.,

CO
2

lCO(e„—5,, )j.A~+ rt...q, l A„.
4mc 4mc

(2.10)

COG
P (2.11)

The wave equation, Eq. (2.9), and Eq. (2.10) yield the
well-known "Fresnel's equation of wave normals. " In
the absence of the linear birefringence,



1386 ZHONG, LEVINE, ALLAN, AND WILKINS 48

CO CO

P(~) =
2 g33 2 92312n, c 2c

(2.12)

where n, is the refractive index of the ordinary ray
(which has its electric field in the basal plane).

Since G is small, optical activity can be considered as a
perturbation on the linear birefringence except for
propagation along the optic axis where linear
birefringence vanishes. The difference of the refractive
indices n, and n, for linear birefringence is of order
10 ' —10 while the difference between nl and nz of op-
tical activity is of order 10 —10 . For this reason,
observations of the optical rotation in a direction other
than along the optic axis are few. ' If the direction
of the propagation is not in the direction of the optic axis,
the solutions for the wave equation are two elliptically
polarized waves.

We have reviewed the basic macroscopic theory of the
optical activity. In the next section we study the micro-
scopic aspects of optical activity theory.

III. ONE-ELECTRON BAND- THEORETIC
FORMULA FOR THE OPTICAL ACTIVITY TENSOR

A. Introduction

As mentioned earlier, microscopic prediction of the op-
tical activity of crystals is still limited to semiempirical
models, ' ' ' ' ' while the nearly first-principles one-
electron band-theoretic approach has been applied to cal-
culate the dielectric constants, ' ' second-harmonic sus-
ceptibilities, ' and the photoelastic tensor with suc-
cess. The one-electron approach based on the time-
dependent local-density approximation has been present-
ed elsewhere.

In crystalline semiconductors and insulators, optical
response calculations from the Kohn-Sham local-density
approximation (LDA) inevitably encounter the famous
band-gap problem. The underestimation of the LDA gap
causes an overestimation of the dielectric function. To
solve the band-gap problem, the quasiparticle 68' ap-
proximation has been implemented. ' ' It was found
that the GS'band gaps are accurate within about 0.1 eV
of the experimental values; comparing the GR'quasipar-
ticle energies and the LDA eigenenergies for the systems
investigated, the LDA eigenvalues can be corrected by an
almost rigid shift on the conduction band for many ma-
terials. Moreover, the LDA wave functions are in almost
perfect agreement with the 68'quasiparticle wave func-
tions.

However, if one naively switched from the LDA eigen-
values to the quasiparticle eigenenergies in optical
response calculations, the calculated dielectric function,
when compared with the experiments, would go from too
large to too small. Levine and Allan' ' proposed a new

where G —=g J I, l, ; ( l, l~, l, ) are the direction cosines of
the wave vector q, and n is the mean refractive index for
the direction of propagation. Using Eqs. (2.3) and (2.11)
we find, for crystals belonging to the 32 point group, the
optical rotatory power along the optic axis depends on
the gyration component g33 (or g23] ) by the relation

effective Hamiltonian

Hk —Hk +2k, (3.1)

The first-order correction to the Hamiltonian which
describes the interaction of an electromagnetic field with
a system can be written in general by

H ' (t)= —a Jdr J' '(r). A(r, t), (3.2)

where the superscript indicates the order of A(r, t),
which is the electromagnetic field in terms of a vector po-

in which Hk is the LDA Hamiltonian and the self-energy
correction is approximated by the "scissors operator"
Rk=b, &P,k, where P,z is a projection operator onto
conduction-band states. The effect of the scissors opera-
tor is to shift the conduction bands upward by
without changing the wave functions. This simple
correction goes outside of density-functional theory to in-
corporate an approximation to the electron self-energy as
revealed in GR'calculations. In practice, Ak has been re-
placed by a k-independent parameter 5, which is deter-
mined from the GR' approximation if available or from
the experimental band gap. Due to the introduction of
the self-energy, the velocity operator in the k.p perturba-
tion theory also needs' ' to be renormalized, i.e., the re-
placement p~p+Vz(b, kP, &) is required in perturbation
theory. This approach has proved to be very effective in
optical response calculations in various crystals. "

Most of the optical response functions are derived in
terms of scalar-potential perturbation theory for real sys-
tems. ' ' ' In scalar-potential perturbation theory,
the polarization of the field is assumed to be parallel to
the wave vector, i.e., only the longitudinal part of the
field is considered. Therefore, scalar-potential perturba-
tion theory is not suitable to describe the optical
responses in which the directions of both the polarization
and the wave vector of the field are important. The ap-
plicability of scalar-potential perturbation theory to cal-
culate the dielectric constants in the long-wavelength lim-
it can be understood through the arguments of Ambegao-
kar and Kohn. With a general many-body physics ar-
gument, they proved that in a cubic system, the response
to a long-wavelength electromagnetic field can be de-
scribed by a single dielectric constant regardless of the
polarization of the field when local-field corrections are
neglected. (As far as we know, there is no theory on the
compatibility of scalar- and vector-potential perturbation
theories to calculate the dielectric constants when local
fields are included. )

To describe optical activity, one needs to use a vector
potential to describe the field so that the direction of the
polarization and the wave vector can be distinguished. In
vector-potential perturbation theory (in the /=0 gauge)
the perturbing electromagnetic field is represented by the
vector potential A and the response of the system is writ-
ten in terms of the induced current density J, whereas in
the scalar-potential perturbation theory the external field
is represented by P and the response by the induced
charge density p.

B. Formulas
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tential and can be assumed to be in a monochromatic
form

A(r t)= A e' q' ~ = A(r)e
q

(3.3)

Atomic units are used hereafter; note that
1/c~a=e /(Pic) in atomic units. In Eq. (3.2), J' '(r) is
the unperturbed charge current operator at position r,
which is related to the velocity operator U' '=( —i}[r,8]
as shown in Eq. (A3). Equation (3.2) is a generalization,
which is still valid when a nonlocal potential is present,
of the commonly used expression (a/2)(p A+ A p),
which is still valid when a nonlocal potential is present.
A detailed derivation of the perturbed Hamiltonian for a
system with a nonlocal potential under the inhuence of an
electromagnetic field can be found in Appendix A. The
nonlocal potentials in our calculation are (1) the nonlocal
pseudopotential, which is introduced to replace the
effects of the core electrons in the band-structure calcula-
tion, and (2) the self-energy Xi„introduced through the
scissors operator.

For a periodic system, the wave function can be writ-
ten as

(r~g„j,&=(NQ )' e'"'(r~nk&, (3.4)

where N is the number of unit cells, 00 is the volume of
the unit cell, n is the band index, and k is the Bloch wave
vector. The unperturbed Hamiltonian which operates on
state ~nk& is

8„=-,'(p+k)'+ f'„,
with

(3.5)

(3.6)

where P'z = V'+ P'z", P' and P'i, ' are the local and nonlo-
cal parts of the potential, respectively. Specializing Eq.
(A9) to the periodic potential of the crystal, we find the
first-order correction to the Hamiltonian, which also
operates on state

~

n k &, can be written as

Bi,Ii'=a[ Aq V&A&+ —'A Vi,(q V&PI, )]+O(q ) . (3.7)

The charge current operator which is coupled to A in

the above Hamiltonian is

JI, = —Vg8g —
—,'V„(qV„Ha}+O(q ) .

To take the Pauli principle into consideration in the
single-particle formalism, we choose to derive the optical
response functions with the density-matrix approach. '
Let the particle density-matrix operator be represented
by R'. (The corresponding charge density-matrix operator
is denoted by p. ) In first-order perturbation calculation,
one can write the particle density matrix as
8'=6' '+ &'", with 8' ' and 8''" being the density-matrix
operators of the unperturbed and the first-order per-
turbed system, respectively. The Liouville equation can
be written as

ae'"
i = [H, R'"]+[H'" R' ']'

at
(3.10)

[f(e„j,) —f (e i, + )](m, k+q~Hi, "~nk &

~nk+ ~ ~m, k+q
(3.11)

The first-order (in A) induced electron charge density
p"'(r, co) and current density Jq '(r, co) can be obtained
from '

and

p'"(r, o~)= —Tr(R" (co) r&(r~) (3.12)

J"'(r,co)=Tr(R' (co)J' '(r))+Tr(R' 'J"'(r, )), (3.13)

where ~r &(r~ is the particle-density operator in the coor-
dinate representation and J' '(r} and Jq" (r, co) are the
charge-current-density operator for zeroth and first order
in A, respectively. We are interested in the long-
wavelength limit without considering local-field correc-
tions. In this limit, the induced charge and current are
pq"(co) and Jq'"(co) with

pq"'(co)=Qo ' f drpq"'(r, co) (3.14)
0

where, from the definition of the density matrix,
~ g„q&

=f (e„i,) ~ Q„I,&, with
~ g„j,& an eigenstate of the

unperturbed Hamiltonian Hk and f (e„i,) its Fermi occu-
pation number.

With the monochromatic assumption &' '

=e'q' "R''"(oi) and the help of Eqs. (3.5) and (3.6),
Eq. (3.10) yields

(m, k+q~ &q" (co)~nk&

Similarly, the induced current operator to first order in
A is

J'"(co)=Q ' Idr J"'(r,co),
0

(3.15)

J„"'=—V„A'I,' —
—,'V„(qVIPk" )+O(q'), (3.9)

where the minus signs in Eqs. (3.8) and (3.9) are due to
the charge of the electron ( —1 in atomic units).

where the integration is over a unit cell and Q0 is the unit
cell volume.

With Eqs. (3.11), (3.12), and (3.14), the induced charge
density p'"(co) can be written as

[f(e„i,—f (e i,+~)](nk rn, k+q&(m, k+q~A„"~nk&

pq (~)= Qo dk g
nm nk+ & 6m, k+q

(3.16)

where we have defined Qo =Go/(2m. ) . Likewise, with Eqs. (3.8), (3.9), and (3.11), the induced charge current density for
electrons J&"(~)can be written as
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[f(&.k) —f (~ k+q)]&nkl~kq'lm, k+q&&m, k+qlHk", I«&'
BZ ,k+ ~ Cm, k+q

[f(ink) —f (emk+q)] &n k v„H„+—'vk(q'vkHk)lm k+q&= —aQ0 dk
nm ~nk+~ ~m k+q

X &m, k+ql Aq VPk+ —,
'

Aq V„(q.V„H„)lnk&

+ g f (e„k)&nklVk( Aq. VkBk)+Vk[q Vk( Aq VkHk)]Ink&+O(q ) . . (3.17)

In semiconductors or insulators, the Fermi surface is specified by the band index and is independent of the Bloch
wave vector k. We can therefore write the Fermi occupation number f (e„k)as f„andf (e k+q) as f . To further
simplify the equation, one may (i) consider only zero temperature and (ii) replace k+q by —k under the summation in
the f„=1 term of Eq. (3.16). The valence- and conduction-band states (f„=1 and 0, respectively) will be referred to
with the symbols U and c. For derivation of the dielectric function and the optical activity tensor, we need only expand
Eqs. (3.16) and (3.17) to first order in q. We use the following relations, which hold to first order in q,

VkHk = VkHk —Vk(q. VkHk ),
Vk( I kHk — ) Vk(q VkHk)

(3.18)

(3.19)

(3.20)

Following similar procedures, we can rewrite Eq. (3.17) as

and time-reversal symmetry (specifically, e„k=e„kand & n, —kl m, —k &
=

& m k n k & ) to transform Eq. (3.16) into

U c &mkln, k+q&&n, k+ql A VkHk+ —,
'

Aq Vk(q VkHk)+O(q )Imk&
p"'(co) =aQo dk g g g +

n m + En, k+q —CO
—

Emk

&mkln, k+q&&n, k+ql A VkHk+ —,
' A Vk(q VkHk)+O(q )Imk&= —2acoQO dkg gBZ (e,k+q+~ e k)(~,k+q

& mklVkIIk+-, 'V, (q.V,H, ) ln, k+q&
J(q"(co)= —aAO dk g +2(e„k+—e k)

BZ
n m ~n, k+q+& 6mk ~n, k+q ~ ~mk

X &n, k+ql A VkHk+ —,
'

Aq Vk(q VkHk)lmk&

U

+ g &nklVk(A VkHk)+Vk[q Vk(Aq. VkHk)]Ink&+O(q ) (3.21)

To obtain the dielectric function and the optical activi-
ty tensor in the long-wavelength limit, we compare the
microscopic expression for the current with the macro-
scopic relation, Eq. (2.10). We need to expand the micro-
scopic expression Eq. (3.21) to first order in q. First-
order k.p perturbation theory gives

In, k+q& =
Ink &+G„k(qVkBk)Ink&+O(q') (3.22)

e„k+=e„k+q Vke„k+0 (q ), (3.23)

where G„k=G„k(0)is the Green function at zero frequen-
cy. The frequency-dependent Green function is defined
as

Imk&&mkl
Gnk ~

~, ink+~
(3.24)

In Eq. (3.24) the intermediate state m can be in either a
valence or conduction band. If the intermediate states
are restricted to valence bands, we use a superscript U on
the Green function; if restricted to the conduction bands,
the superscript is c. If not specified, for example, as in
Eq. (3.22), relation G„k=G„'k+G„'kholds.

In order to indicate the orders both in A and q, two
superscripts are used; the first superscript indicates the
order of A and the second the order of q; for example,
p'"' ' is the induced charge density of nth order in A and
mth order in q. It is straightforward to show from Eq.
(3.20) that to zeroth order in q the induced charge densi-
ty vanishes by observing that the wave functions of the
conduction band m and valence band n are orthogonal:
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& mk nk & & nkl Aq Vkgk lmk &

(e„k+CO—e k)(e„k—CO
—e „)

With Eqs (316) (3.22), and (3.23), we obtain the induced density to first order in q

&mklG. k(q VkHk)ink&&nkl A VkHklmk&
pq""(~)= —2a~Qo dk g gBZ (e,k+ ~ e~k)(e„k—~—emk)

U

2—a~f10f dk& &«l(Aq Vkhk)G„'k(co)G„'k(—co)G„'k(q.VkHk)ink&,
BZ

(3.25)

(3.26)

noting that G„'k(co)G„'k(—co)=g' lmk&&mkl/(e„k+co —e k)(e„k—co —e k).
To zeroth order in q, the induced current density from Eq. (3.21) is

&mklvkHklnk&&nkl Aq vkHklmk&J" '(co)= aA—of dk g +2(e„k—e k) + g &nklVk( A VkHk)ink& .
Bz (E~k+& 6~k 6~k & Ernk

U

aQ—of dkg g &nklAq VkHkG„'k( co)VkHklnk&+&nklVk(Aq VkHk) nk&
BZ

(3.27)

Also from Eq. (3.21), the induced-current density to first-order in q can be written as

U

Jq""(co)= 2aQ—Of dk g I &nkl A VkHk(E„k—Hk)G„'k(co)G„'k(—co)—,Vk(q VkHk)ink&
BZ

+ & nkl —,
' A .Vk(q. VkHk)(e„k—Hk )6„'k(co)G„'k( co)VkHk l

—nk &

+ & nk A VkHk(e„k—Hk)G„'k(co)G„'k(—co)Vk&kG„kq VkHkl«&

+ & nklq. VkHkG„k A VkHk(e„k—Hk)G„'k(co)G„'k(—co)VkHk ink &

—
& n k

I Aq VkHk [(e„k—Hk ) +co ][G„'k( co )G„'k( co ) ] VkH k I

—n k & & n k
I q V krak n k & I .

(3.28)

Equations (3.25) —(3.28) are obtained by directly expanding Eq. (3.20) or (3.21) and collecting all the terms which are
zeroth or first order in q.

Equations (3.27) and (3.28) can be used to extract the expressions of the dielectric function and the optical activity
tensor by comparing with Eq. (2.10). Define the linear susceptibility y," from the relation

c.; =—5; +4m'; (3.29)

We obtain from Eq. (3.27),

U

f dkg g &nkli. v 8 G' (+co)j v' Hklnk&+&nk[i v' j.(vk8k)ink&
Qj BZ

(3.30)

and from Eq. (3.27),

U

irjji = —
z f dkg [&nklI VkQk(e„k—Bk)G„'k(co)G„'k(—co)—,'i.Vk(j Vkhk)ink&

BZ

+ &nkl , I.Vk(j VkHk)(e„k——Bk)G„'k(co)G„'k(—co)i.VkAk ink&

+ & nkl I VkPk(e„k H)Gk„' (cok)G„' ( —k—co)i Vk@kG„kj BVklnk&k

+ & nk I j Vk~kG„kI Vk~k(e„k .Hk )G;k(~)G—:k( —~)i.Vk&k lnk &

—&nkll. VkOk[(e„k—Pk) +co ][G„'k(co)G„'k(—co)] i @Vkln k&k&n lj kVk@k ink&] . (3.31)
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The optical activity tensor g has units of length; in the
equation above, it takes the atomic unit of length, bohr.

C. Symmetries and sum rules

that the relation

( n, —k
I V „H—,I m, —k &

= —
& « I V,H, I

m k &
* (3.32)

An important check on the microscopic formulas is to
see if the quantities derived have the desired symmetry
properties obtained from the macroscopic theory. The
dielectric function c; and the susceptibility g;& are real
symmetric matrices, while g;.k is real and antisymmetric
in the first and third indices. » We can use time-reversal
symmetry to show that y and g of Eqs. (3.30) and (3.31)
have the desired symmetry properties.

If the Hamiltonian is invariant under time-reversal
symmetry, it has been shown that e„k=e„j,and
(rln, k) = (rln, —k)*. With Eq. (3.5), it is easy to show

holds. In Eqs. (3.30) and (3.31), one can freely change the
dummy integration variable k to —k for all the terms in
the Brillouin-zone integration. Writing out the Green
function as shown in Eq. (3.24) and using Eq. (3.32), one
can obtain +Ij pj and q;~I

=q,.~I, or y,j =gj; and
g;~I= —gIj;, which are the desired symmetry properties
from the macroscopic theory.

For any complex quantity x, Re(x)= —,'(x +x*) and
Im(x)=(1/2i)(x —x'). With the use of these identities
and Eq. (3.32), the linear susceptibility, Eq. (3.30), can be
rewritten as

U

2 f dk& Re & &nklt. VqBi, G„'I,( co)j.(VqHk)Ink)+(nkrt. V&j VIHi, lnk) . ,
Q) BZ

(3.33)

and the optical activity tensor, Eq. (3.31), becomes

8~GO f dk+ Im[(nkll VqAq(e„q 8„)—G'z(~) G'~( —~)—,i Vk(j VaHk)lnk)
BZ

+(nkl —,I Vk(j ViH&)(e„z—Pk)G„'z(co)G„'k( co)i V&A—k nk)

+ (nk I V&8&(e„& B)Gk„'&(co—)G„'&( co)i VkA—i,G„&j V&HI, lnk)

+&«lj Vi@iG QI Vg~i(~ g IIi, )G g(~)G:~( —~)i Vk&i, lnk&

—
& «II Vk~g[(e. k

—Hk)'+~'][G:k(~)G:I, ( —~) l i V~Hk I«& & «I j V~Hk I«&] .

(3.34)

A= A e'q'
q

(3.35)

The Maxwell equations show that there is no electric
field under the assumption Eq. (3.35) in the /=0 gauge.
The induced current J is given by J
=(I/4ma)(VXB)=(l/4ma)[VX(VX A)]. Using Eq.
(3.35), we obtain

J = [q A —q(q A)].1
(3.36)

Next we show sum rules for the dielectric constants
and the optical-activity tensor. With the use of these sum
rules, the dielectric constant and the optical activity ten-
sor have well-defined e—+0 limits. Consider a system un-
der the inhuence of a static field described by

f dkg [(nklt Vg+kG„'gj Vg+I, lnk)

+—'(nkli Vzj (VzHz) nk)] =0, (3.37)

where the induced current is taken to be in the i direction
and A in the j direction in Eq. (3.27). This is equivalent
to Eq. (2.33) of Ref. 20. Similarly, Eq. (3.28) for the
current, to first order in q, leads to the sum rule

The above equation shows that in powers of q, the first
nonvanishing induced current due to the influence of a
static field is of order q . In other words, the induced
current to the zeroth and first order of q must vanish.
Using Eq. (3.27), for the current to zeroth order in q, we
obtain a sum rule

f dkg [(nkll Vk@qG„'z—,'i.V&(j VAI)inlk)+( nk'l I Vk(j V&8 )Gi„'zi V&8&Ink)
n

+(nkll V&8i, G„'zi.V&B&G„j,j V&@ knlk) +(n kljV&P&G„II V&8'&6„'ki.VkHklnk)

—(nkll VzAz(G z) i „'V&8klnk)(nklj V&8&Ink)] =0, (3.38)

where Jq'" is taken to be in the i direction, q in the j direction, and A in the I direction. With the help of the sum



BAND-THEORETIC CALCULATIONS OF THE OPTICAL-. . . 1391

rules Eqs. (3.37) and (3.38), we can explicitly show that formulas for y and q, which are applicable only to semiconduc-
tors, have no apparent divergence in the static limit. Subtracting Eq. (3.37) from Eq. (3.33), Eq. (3.38) from Eq. (3.31),
and using the relation

(e„k H—k)G„k(co)G„k(—co) —G„k=coG„k(co)G„k(—co)G„k=coQ„k(co),

where we have defined

(3.39)

Q„k(cg)) =G„k(co)G„k(—m)G„k (3.40)

[(e„k—Hk) +co ]G„k(co)G„k(—co) —G„k=co [3(e„k—Hk) —co ]Q„k(co),

we obtain

(3.41)

and

yj = —2Qof dkg Re{nk[i VkPkQ'k(co)j. Vkhk~nk)
n

(3.42)

g, (
———8~QO f dk $ Imt {nk~/ VkHkg'„k((o) —,'i.Vk(j.Vkgk)~nk)

n

+ {nk~ —,'/ Vk(j VkHk)Q'„k(co)i V Akink)+ {nk / VkPkQ'„k(co)i VkBkG„k(j Vkhk)~nk)

+&nkl(i Vk~k)G k/ Vk~k~ k(~)t Vk~klnk&

+{nk~l VkBk[ —3(e„k—Hk) +co ][9'„k(co)]i VkPk~nk) {nk~j VkBk.~nk) I . (3.43)

Equation (3.42) agrees with Eq. (A17) of Ref. 20 derived with the scalar-field perturbation theory.
From the microscopic expressions for induced charge and current and the sum rules Eqs. (3.37) and (3.38), we can

show that the continuity relation V.J+Bp/Bt =0 holds to second order in q. For example, using the sum rule Eq.
(3.37), we can rewrite Eq. (3.27) as

Jq' '(co)= 2aco —Qof dkg (nk~ Aq VkHkG„'k(co)G„'k(—co)G„'kVk8k~nk) .
BZ

(3.44)

By comparing Eqs. (3.26) and (3.44) one may see that the continuity relation holds to first order in q.
If the sum rule for the optical activity, Eq. (3.38), or the optical activity tensor, Eq. (3.43), is used directly in numeri-

cal evaluations, it is possible to encounter the following situation: two occupied states with almost equal energy from
the Green function G„"k=g" ~„mk){mk~ /(e„k—e k) in the third and fourth terms of Eq. (3.38) or (3.43) such that
each of the two individual terms form these two states contributes a large magnitude, yet they nearly cancel when
summed up. This type of the situation greatly a8'ects the accuracy of the numerical calculation. To solve this problem,
we follow Aspnes's convention to further analyze the formulas in terms of conduction and valence contributions. In
other words, with G„k=G„'k+G„'k,one can divide Eq. (3.38) or (3.43) into ccu, vuc, and cu terms, where ccv denotes that
there are two 6' or two unoccupied virtual states in a term, ' vuc denotes there is one G" and one 6' in a term; and cu
denotes there is only one Green function, 6 in a term. A similar procedure was followed to avoid numerical difficulties
for second-harmonic susceptibilities. '

The sum rule (3.38) can be written as

X" =X"-'+X'-"+X"=0ij l ij l ij I ij l

where

(3.45)

U

X,".'I'= f dkg I (nkl/ VkBkG„'.ka VkBkG„".k) Vkhk~nk. )+(nk~g. VkPkG„'k/ VkA'kG„'kt Vkdk~nk)
BZ

—(nkl/'VkHk(G„'k) i VkHk~nk)(nk~j VkAk~nk)] . (3.46)

We have included the last term (diagonal term) here, although it belongs to the cu term. These three terms can be com-
bined together in a manner sinular to Eq. (12) of Ref. 22 to obtain the uvc term,

X;J'I'= —f dk g {nk~l V'kHkG„'kG'ki V kH~ kkm)( km~j VkAk~nk) . '

BZ
7

The ccv and cv terms are straightforward and can easily be obtained from Eq. (3.38):

(3.47)
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v

'! = f dk g I & «II VkHkG ki VPkG:k j V~Hk I«& + & «I j.V~H~G:~1 VkH~G'~~i VkH~ Ink & }BZ
(3.48)

and

U

rg, = f dkg I&nkll VkHkG„'k—,'i.V&(j V„H„)lnk&+&nkl—,'I Vz(j.VkH~)G„'ki V&Hglnk&}
BZ

(3.49)

Numerically, we evaluate the quantity

y vvc+ ycev+ ycv
ij I ij l ij1

I

yuucl + Iyccvl + Iycv
(3.50)

to test the sum rule. Ideally, S; I =O.
One can go through similar algebra and obtain from Eq. (3.43)

'r~)J (lcd) ='q;
/ (co)+'l7; ( (co)+g;"$(co)

with

U

~'&'(cu)=8mIIO f dk + Im&nklj V&HI, mk&
BZ

X &mkli VPkQ' t(m)[~ —(e „—8k) —(e„~—H„)
HQ )( ~.g —Hk ) ]&:k(~)I VgHg Ink &

U

r)'z'~(co)=8mQof dkg imI &nkgi V~H~Q'„k(co)1 VkH~G„'zj VkBk Ink&

(3.51)

(3.52)

and

—
& nkll V&8kQ'„k(co)i V&HqG„'qj VkH& Ink& }, (3.53)

U

g'~;(co)=4mQof dk+ImI&nkti V~8„Q'„„(co)1Vj(j V„Bk)Ink&—&nkll V„A~VI,(co)i V~(j V&8~)lnk&I .
n

(3.54)

As shown above, we have eliminated terms such as
1/(e„z—e I, ), where both n and m are occupied bands
from Eqs. (3.38) and (3.43). The final expression of the
sum rule, Eqs. (3.47) —(3.49) and the optical activity ten-
sor, Eqs. (3.52)—(3.54), are computationally tractable.

Finally, to obtain the formula for the optical activity
tensor with the self-energy correction in the form of a
scissors operator, one needs to follow the procedures
similar to those shown in Refs. 20 and 22. The final ex-
pression of the optical activity tensor g, &

can be found in
Appendix B.

IV. OPTICAL RESPONSE FUNCTIONS
OF TRIGONAL SELENIUM AND a-QUARTZ

A. Dielectric function and the second-harmonic susceptibility

Based on the LDA band-theoretical calculations and
the one-electron scalar-potential perturbation theory with
the self-energy effect considered at the 1evel of the scis-
sors operator, we have computed the dielectric constants
and the nonlinear susceptibility for second-harmonic gen-
eration of trigonal selenium and a-quartz. This is a con-
tinuation of the optical response calculations of a series
of semiconductors, including Si, Ge zo A1P, A1As, RaP,
and G aAs. ' The plane-wave coeKcients for the
ground-state wave functions are computed by an e%cient

I

iterative algorithm using separable nonlocal pseudopo-
tentials and a rational polynomial parametrization for
the local exchange-correlation functional. The seleni-
um pseudopotential is generated using Hamann's
method, while the oxygen and silicon pseudopotentials
use two projection operators for each angular momen-
tum and match logarithmic derivatives over a larger en-
ergy range to enhance transferability.

Both trigonal selenium and a-quartz belong to the
point group 32. Each crystal may occur in two enan-
tiomorphs of opposite handedness, with space groups
P3221 and P3&21. The calculations in this paper were
conducted using the space group P3z21 (with right-
handed coordinates). Although there is ambiguity in the
older literature, modern consensus indicates that trigonal
selenium and quartz ' crystals in this space group pro-
duce "right-handed" or dextrorotatory rotation of the
plane of polarization, i.e., p) 0. Our theoretical results
unambiguously produce p&0 for this space group for
both selenium and a-quartz. Right-handed optical rota-
tion simply means that linearly polarized light has its
plane of polarization rotated clockwise for light coming
towards the observer. Crystals of the opposite handed-
ness will have the opposite sign for p. These crystals con-
sist of helical chains centered on a hexagonal lattice and
have a threefold nonsymmorphic symmetry along the
helix in the z direction and a twofold symmorphic sym-
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metry along an axis which passes through a lattice site in
the xy plane. Crystals belonging to this symmetry group
are uniaxial with z being the optic axis. There are two in-
dependent components in both the second-harmonic ten-
sor (d» and d, 4) and the optical activity gyration tensor
(g» and g33). The relationship between the apparent
handedness of the structure and the handedness of its op-
tical rotation is not trivial, all the more so because in a-
quartz one can find helices of both handedness within the
same crystal structure. A connection between the most
polarizable helices and the handedness of optical rotation
has been worked out.

Table I shows the calculated electronic part of the
dielectric constant in the static limit (e„),compared with
experiment. For a-quartz the small (2%) difference be-
tween the calculation of Gonze, Allan, and Teter ' and
ours is mostly due to the difference of the lattice con-
stants. We use the experimental lattice constants
a =9.290 bohrs and c =10.215 bohrs, and the internal
atomic coordinates u =0.4697, x =0.4135, y =0.2669,
and z =0.1191 as our input parameters.

As shown in Table I, for both selenium and o,'-quartz,
LDA overestimates the dielectric constants even when
compared with the largest available experimental value.
For selenium, the estimated LDA direct gap is 1.2 eV
compared to the experimental band gap of the range of
2.0—2.3 eV. There is no 68' calculation available for
selenium; we therefore choose the parameter in the scis-
sors operator 6 to be 1.1 eV. For a-quartz, our LDA cal-
culation predicts a direct gap of 6.03 eV. There is a rath-
er wide range (from 5.6 to 11.5 eV) of experimental band
gaps reported over the years. ' We follow Xu and
Ching' and Gonze, Allan, and Teter ' in choosing
6=1.8 eV, which aligns the calculated optical conduc-
tivity with experiment. With the correction of the scis-
sors operator, our calculated dielectric constants are in

agreement with experiment within the error bars.
To obtain a converged value for the dielectric constant

for selenium we use a plane-wave energy cutoff of 10 har-
tree and a total of 144 special k points in 4 of the Bril-
louin zone for the Brillouin-zone integrations. (We did
not invoke the threefold nonsymmorphic symmetry in
this case. ) For a-quartz, we need a larger energy cutoff of
23 hartree so that oxygen, which is a first-row element, is
adequately described. As a-quartz, an insulator, has a
much wider band gap than the semiconductor selenium,
we need fewer k points to sample the Brillouin zone. We
found 18 k points in —,

' of the Brillouin zone to be
sufficient for a converged calculation.

We also calculated the frequency-dependent dielectric
functions for frequencies well below the absorption edge.
Figures 1 —4 show the frequency-dependent ordinary and
extraordinary dielectric function of trigonal selenium and
n-quartz. The single-oscillator model' suggests that
[E,(co)—1] ' or [s, (co) —1] ' is a linear function of the
frequency squared co . As shown in the figures, LDA cal-
culations with or without the scissors operator comply
with the single-oscillator model quite well. The experi-
mental data for the ordinary and extraordinary dielectric
function of selenium shown in Figs. 1 and 2 in the low-
frequency range suggest a straight line. There are only
two data points in the high-frequency range. These two
sets of experimental data unfortunately do not line up
with each other. For u-quartz, as shown in Figs. 3 and 4,
there are also two sets of experimental data; ' data in
the higher-frequency range do suggest a straight line. At
the lowest frequencies, the curvature away from the
straight line is readily explained by the onset of phonons
participating in the screening of the electric field. This is
easily modeled using known phonon frequencies in a gen-
eralized Lyddane-Sachs- Teller relation. Since these
effects are left out of the present calculation we consider

TABLE I. The static electronic (c.„)dielectric constants of trigonal selenium and a-quartz. c, is the
ordinary dielectric constant (polarization in the basal plane) and c,, is the extraordinary one (polariza-
tion along the optic axis). "Scissors" stands for the calculations with the scissors operator and "long"
indicates the long-wavelength approximation (i.e., neglect of local fields). The column "Lattice con-
stant" specifies if the lattice constants which minimize the LDA total energy or the experimental lattice
constants are used in the calculation. We have used 144 k points in selenium and 18 k points in a-
quartz to sample 4 of the Brillouin zone. The parameter 6 in the scissors operator is 1.1 eV for Se and
1.8 eV for a-quartz.

LDA'
Scissors'
LDAy long
LDA, long
LDA
Scissors, long
Scissors
Expt.

Lattice
constant

LDA min.
LDA min.
Expt.
Expt.
Expt.
Expt.
Expt.
Expt.

&0

11.8
10.3
9.0
7.9

6.2-8.4'

Se

16.4
15.2
12.3
11.5

10.2-13.7'

2.53
2.35
2.86
2.61
2.48
2.42
2.30
2.35

u-quartz

2.57
2.39
2.91
2.63
2.51
2.43
2.33
2.38

'Reference 51.
Reference 18.

'Reference 72.
Data from Ref. 57 extrapolated to zero frequency.
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0.18

Ordinary Dielectric Function

0.78
ion

016 — 6=1.1 eV

A=O (L0A) 0.72
V

A)

0.14
1

I

~ 0.12

~ 066

0

0.10

0.08

Ref. 55

Ref. 53

0
0

0.60

0.54

Ref. 56

Ref. 57

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Photon Energy Squared [(eV)e]

0.0 6.0 12.0 18.0 24.0
Photon Energy Squared [(eV)e]

30.0

FIG. 1. The frequency-dependent ordinary electronic dielec-
tric function of trigonal selenium (lines) and experiment (dots)
(ordinary refers to polarization of the electric field in the basal
plane). A linear relationship between (E, —1) ' and the photon
energy squared co is predicted by the single-oscillator model
(Ref. 10). The plane-wave kinetic-energy cutoff is 10 hartree
and 144 k points are used to sample —' of the Brillouin zone.

them no further. The agreement between the experimen-
tal data and the LDA calculations with scissors correc-
tion are within 5% for photon energies well below the
gap for all the materials we have studied.

We have also calculated the second-harmonic suscepti-
bility d» in the static limit. As mentioned earlier, there
is another independent component d&4 in the second-
harmonic tensor. Due to the fact that the scalar-
potential perturbation theory can only calculate certain

FIG. 3. The frequency-dependent ordinary electronic dielec-
tric function of a-quartz (lines) and experiment (dots). The
plane-wave kinetic-energy cutoff is 23 hartree and 18 k points
are used to sample the Brillouin zone.

linear combinations of second-harmonic susceptibili-
ties, d, 4 cannot be determined within our formalism.
Our calculations of d&& for selenium and a-quartz are
summarized in Table II. As shown in the table, our LDA
calculation with the self-energy correction for selenium
agrees with two of the four experiments. The huge
discrepancy of Sherman and Coleman's data is possibly
due to the presence of a lattice resonance near 28 IMm as
they suggested. For a-quartz, our calculation with the
scissors operator agrees with all three experiments. Also
for both materials, our results are in fair agreement with
the estimates from Levine's bond charge model. '

Without the scissors operator, LDA overestimates the

0.10

0.09

0.08

I I I I I I

Se, Extraordinary Dielectric Function

1.1 eV

0 (LDA)

0.78

0.72

I

a—quartz
D' l ion

V

A)

I

~ 007 I

~ 066

0.06

0.05 0.60
0

0.04

Ref. 55

Ref. 53

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Photon Energy Squared [(eV)e]

FIG. 2. The frequency-dependent extraordinary electronic
dielectric function of trigonal selenium (lines) and experiment
(dots) (extraordinary refers to polarization of the electric field
along the optic axis). Same convergence parameters as in Fig. 1.

0.54
0.0

Ref. 56

Ref. 57
I

60 120 180 24 0
Photon Energy Squared [(eV)e]

30.0

FIG. 4. The frequency-dependent extraordinary electronic
dielectric function of a-quartz (line) and experiment (dots).
Same convergence parameters as in Fig. 3.
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TABLE II. The static second-harmonic susceptibilities d» = 2gll'1 of trigonal selenium and a-
quartz. The designation d 1 1 is for calculations neglecting local-field corrections. Experimental lattice
constants are used.

Bond charge model'
LDA
Scissors
Expt."
Expt. '
Expt. d

Expt. '
Expt. '
Expt. g

Expt."

(pm)

10.6
10.64
10.6
28

1.06
1.0582
1.064

d long»
(pm/V)

179
78

Se
d 1 1

(pm/V)

80
220

97
210+42
97+25
80+42

1840+880

d long
11

(pm/V)

0.507
0.349

a-quartz
d»

(pm/V)

0.33
0.479
0.330

0.335
0.34+0.016
0.32+0.04

'Reference 61.
Reference 73.

'Reference 64.
"Reference 74.

'Reference 60.
'Reference 75.
Reference 76.

"Reference 77.

second-harmonic susceptibilities by 127%%uo for selenium
and by 45% for a-quartz.

Table III shows the contributions to d» from long-
wavelength contribution and local-field corrections. The
column P is the long-wavelength limit; P' and P are
local-field correction terms of first and second order, re-
spectively, in the local-field strength. ' The notations
ccu, Uvc, and cU have been explained earlier in the text.
We find long-wavelength contribution from ccv terms
dominate in both materials, which is consistent with what
was found in other III-V materials. The local-field con-

CV

ccv
VVC

total

yo

0.46
77.33
2.51

80.30

0.02
11.04
5.93

16.99

Se
0

—0.77
0.88
0.11

1 ~(2)
2

0.48
87.60
9.33

97.41

0.000
0.017

—0.017
0.000

TABLE III ~ The terms contributing to the nonlinear suscep-
tibility for second-harmonic generation (in pm/V) in selenium
and a-quartz. The notation cv, ccv, and vvc follows Aspnes
(Ref. 44) convention and is defined in the text. As defined in
Refs. 21 and 22, P is the long-wavelength limit for the second-
harmonic susceptibilities; P' and P are local-field corrections of
first and second order, respectively, in the local-field strength.
For selenium the plane-wave kinetic-energy cutoff is 10 hartree,
the Brillouin-zone integration grid is 144 k points in 4 of the
Brillouin zone, and the scissors operator 5 is 1.1 eV. For a-
quartz the cutoff is 23 hartree, 18 k points in the Brillouin zone,
and the scissors 6 is 1.8 eV. The sum rule for the second-
harmonic generation, Eq. (13) of Ref. 22, is also listed.

TABLE IV. A study of convergence as a function of the
number of k points of the dielectric function and nonlinear sus-
ceptibility for second-harmonic generation for trigonal seleni-
um. The plane-wave kinetic-energy cutoff is 10 hartree. Only
the LDA results in the static limit co=0 are reported in the
table. Sum rules for the linear response and nonlinear suscepti-
bility for second-harmonic generation are represented by Xl;„„,
and X»G, which correspond to Eq. (3.37) and Eq. (13) of Ref.
22. Also c, and E, are the ordinary and extraordinary dielectric
functions; d» is the nonlinear susceptibility for second-
harmonic generation.

46 144

tribution is +17% for selenium and —5% for a-quartz.
Selenium is the only example of a material with a positive
local-field correction for the second-harmonic susceptibil-
ity among the six materials considered to date (i.e., seleni-
um, a-quartz, and four III-V compounds ' ). This may
be contrasted with the situation for the dielectric con-
stant, for which the local-field correction in random-
phase approximation must always be negative and in
LDA is negative under fairly general conditions.

We studied the k-point convergence of the linear and
nonlinear optical response functions and also their sum
rules for selenium. The results are summarized in Table
IV, which shows that with 46 k points, both linear and
second-harmonic susceptibilities are converged at the lev-
el of a few percent. From Tables I and II, one can see
that, although selenium and u-quartz belong to the same
symmetry point group, selenium has a much larger
dielectric constant and second-harmonic susceptibilities,
consistent with its smaller energy band gap.

CV

CCV

VVC

total

0.008
0.272
0.068
0.349

0.001
0.063

—0.078
—0.013

a-quartz
0
0.002

—0.008
—0.005

0.009
0.338

—0.017
0.330

0.000 13
0.000 68

—0.000 88
—0.000 06

~linear

~SHG
&0

&e

d» (pm/V)

1.1%%uo

0.2%%uo

10.5
14.9

222

1.0%%u~

0.0%
10.3
15.2

220
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B. Optical activity

We apply the formulas derived in Sec. III in the calcu-
lations of the optical-activity tensor for trigonal selenium
and a-quartz. With the optical-activity tensor we are
able to determine the optical rotatory power along the
optic axis and the other independent gyration tensor
component gII, as shown in Eqs. (2.3) and (2.12).

At optical frequencies below the absorption edge, the
linear dielectric function E(co) can be described' by the
single-oscillator model,

0.4

0.3
EI

8

~ 0.2

4i

LDA (144 kpt)

A=1.1 eV (410 kpt)

A=1.1 eV (144 kpt)

Ref. 63

Ref. 64

~ Ref. 50

E(co)—1 =
COO CO

(4.1)

Similarly, the frequency-dependent optical rotatory
power of a large variety of optically active crystals can be
described by the coupled-oscillator model '

kco
p( )= (4.2)

(
2 ~2)2

Experimental data show that for a given crystal the pa-
rameter k is a constant over a wide frequency range.
Also for different crystals, the magnitude of p(ro) can
differ by three orders of magnitude while k varies over
only one order of magnitude for 20 different materials.
We use the coupled-oscillator model to analyze the exper-
imental and computational results.

We first consider results for the optical rotatory power
p for trigonal selenium. Using the space group P3z21,
our calculation constitutes a prediction of the sign of p,
which agrees with experiment (positive). Our result in
the low-frequency range is about a factor of 2 too low
compared with the data of Adams and Haas and one of
two points measured by Day as shown in Fig. 5. For
frequencies small compared to the band gap,
(co/cps, ~) &&1, Eq. (1.2) suggests pa-cu . Our calculated
results with the scissors correction are consistent with

p ~ co' . The data of Day, however, are fitted to
p ~ co —,which is inconsistent with the coupled-
oscillator model. There is a large discrepancy between
the Adams-Haas and the Henrion-Eckart data sets.
The Adams-Haas data show a kink near co=1.3 eV
which is not consistent with the coupled-oscillator model;
the data of Henrion and Eckart shows no such kink. It is
our opinion that the kink is unlikely to be a real feature;
however, our calculation does not probe the frequencies
of the kink because the accuracy of the Brillouin-zone in-
tegrations we can afford becomes progressively worse as
we approach the gap energy, as discussed below. The
other independent gyration component of selenium (gI I )

is shown in Fig. 6; there is apparently no experimental
data for comparison. We obtain a negative g» for seleni-
um as for o,-quartz, but the ratio g»/g33 is not close to
—0.5 as for a-quartz (see discussion below). We have
modified our results from those reported earlier due to
the discovery of errors and published an erratum to this
effect. '

Up to 1.05 eV, our selenium results (cf. Table V) for
the 144 and 410 k points are within 20% agreement.
However, at higher frequencies, this agreement breaks
down. Because the integrand becomes singular at the

0.0
0.0 0.8 1.6 2.4

Photon Energy Squared ue [(eV)e]
3.2

FIG. 5. Frequency dependence of the optical rotatory power
p(~) for selenium. We plot co/p' as a function of the photon
frequency squared co', which should be a straight line according
to the coupled-oscillator model (Refs. 8 and 9). The model
should begin to fail at frequencies close to the absorption edge.
We display the LDA result for 144 k points in —' of the Brillouin
zone (dotted line) and the self-energy-corrected result with
6=1.1 eV for 144 (dash-dotted line) and 410 (solid line) k
points.

I 4X10 4

Ct
O

8
~ SX10-&

O

40
a 2X10-~

0
~+

1X10 i
kpt)

144 kpt)

410 kpt)

0.0 0.2 0.4 0.6 0.8
Photon Energy ~ (eV)

1.0 1.2

FIG. 6. The gyration tensor component g» =q q»2 for seleni-
um. For the trigonal point group, q3» is the only independent
tensor component other than g23& (which was used to determine
the optical rotatory power in Fig. 5).

band gap, our uniform sampling method must fail at
some frequency. In Table V we show the convergence
study of the sum rule 5 for optical activity and the rota-
tory power p(co) of trigonal selenium as we vary the num-
ber of k points to sample the Brillouin zone.

In order to save computation time, we have set an
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(eV)
Number of k points

46 144 410

TABLE V. A study of convergence as a function of the num-
ber of k points of the optical activity sum rule and the optical
rotatory power of selenium. The k points indicated in the table
are in 4 of the Brillouin zone. (We did not invoke the nonsym-

morphic symmetry operators. ) The sum rule for the optical ac-
tivity is evaluated using S;,~ defined in Eq. (3.51). The subscript
indicates the Cartesian components. The table shows that for
frequencies higher than 1.05 eV, the uniform sampling of the k
point scheme fails to give a well-converged value for the optical
rotatory power.

(eV)
E,'„,' (hartree)

3 5

TABLE VII. The E,'p' convergence study for e-quartz. The
plane-wave kinetic-energy cutoff for the ground-state calcula-
tion is 23 hartree and 18 k points are used to sample the Bril-
louin zone. For E,'p'=3 and 5 hartree, the equivalent total
number of the (valence and conduction) bands in the spectral
sum are 200 and 400, respectively. Sum rules for the linear
response, second-harmonic generation, and both components of
the optical activity tensor are represented by Xl; ear XsHQ 223],
and 232„respectively. When labeled "Scissors, " a self-energy
correction of 1.8 eV is implied. Symbols for the optical
response functions are defined in the text.

SZ31

S321

p(co) (deg/mm) 0.1

0.3
0.675
1.05
1.425

0.031
0.069

0.35
3.17

16.42
41.71
84.65

0.029
0.069

0.22
1.92
9.20

19.18
21.73

0.016
0.011

0.21
1.85
8.57

15.88
5.79

~linear

~SHG

LDA c,
LDA c,
LDA d11 (pm/V)
Scissors F231 10 (A)
Scissors g321 10 (A)

13%
9%%uo

39%
33%
2.47
2.51
0.467
0.941
0.404

5.2%%uo

3.5%%uo

0.5%
5.3%
2.48
2.51
0.479
1.015
0.473

upper limit for the eigenenergies involved in the spectral
sum. The contributions to the sum rule, Eq. (3.38), or the
optical activity tensor, Eq. (3.43), from the conduction-
band Green function when 6 k))E„kare minima1. We
set E,'„,' to be the highest energy eigenvalues included in
the spectral sum such that

F (sp)'"' ~mk)(mk~ (4.3)
mac ~nk 6mk

in the computation. Table VI shows the E,'~' conver-
gence study of the optical rotatory power p(co). As
shown in the table, with about 150 bands included in the
spectral sum for selenium, one can expect a converged
value for the optical activity tensor within an accuracy of
2%. The convergence study for a-quartz is presented in
Table VII for various optical response functions, which
illustrates a lower accuracy is achieved with 200 bands

TABLE VI. A convergence study of the optical rotatory
power of selenium as a function of E,'p'. To save computation
time, a parameter E,'„,' is set to be the highest eigenvalue includ-
ed in the spectral sum so that terms with small contributions are
not included in the computation. For E,'p' =2, 3, and 5 hartree
listed in the table, the corresponding total number of (valence
and conduction) bands are 76, 140, and 300, respectively. Re-
sults shown in the table are computed with plane-wave kinetic-
energy cutoff E,„,=10 hartree, 144 k points, and 6=1.1 eV. At
different frequencies and E,'„,' values, the optical rotatory power
p(co) are listed in the table.

TABLE VIII. The terms contributing to both of the optical
0

activity tensor components F231 and g321 (in units of 10 ' A) in
selenium and a-quartz. The symbols cU, ccU, and UUC are defined
in the text. Numerical results are obtained with 10 hartree
cutoff energy, 144 k points, and the self-energy correction
6= 1.1 eV for selenium; 23 hartree, 18 k points, and 6= 1.8 eV
for a-quartz. The sum rules are examined at co=0 and 6=0 for
both cases.

Se
co=0.3 eV

f231 9321 9231

a-quartz
co=1 eV

9321

CU

CCU

UUC

total

—0.074
75.023

—45.963
28.986

—0.037
50.720

—11.076
39.606

—0.137
0.709
0.443
1.015

—0.069
0.340
0.201
0.473

included.
To analyze the contributions to the optical-activity ten-

sor and the sum rule, we have separately listed the cv, ccv,
and uuc terms computed from Eqs. (3.52) —(3.54) and Eqs.
(3.47)—(3.49) in Table VIII. Comparing with the second-
harmonic susceptibilities listed in Table III, we found the
contributions from the vuc terms are large and can exceed
50% of the ccu terms in the optical-activity tensor. For
the sum rule, in selenium the cancellation is between the
ccu and uvc terms; in o,-quartz, the cancellation is between
the ccv +uvc terms and the cu term.

(eV

0.1

0.3
0.675
1.05

E (sP)
cut

artree)

0.208
1.850
8.843

18.265

p (deg/mm)

0.213
1.893
9.069

18.842

0.215
1.919
9.203

19.181

CU

CCU

UUC

total

0.015
0.407

—0.398
0.024

0.008
0.170

—0.205
—0.027

&231

—0.019
0.010
0.008

—10-4

—0.009
0.004
0.004

—0.001
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1.2

tz

E
0.8

Ref. 56

~ e

0.2
0.0 6.0 12.0 18.0 240

Photon Energy Squared (eV)2
30.0

FIG. 7. Frequency dependence of the optical rotatory power
p(co) for a-quartz, plotted as in Fig. 5. Computational results
both with and without the scissors correction obey the coupled-
oscillator model. Except for one data point at very low frequen-
cy, experimental data also suggest a linear relation between
co/p' and co . The slopes of both theoretical lines agree with
the experiment's within 10%. However, our computation re-
sults for p(co) are about factor of 5 too low compared with the
experiment.

Figure 7 shows the computed optical rotatory power of
a-quartz. As suggested by the coupled-oscillator model
Eq. (1.2), co/p' depends linearly on the square of the
photon energy co . Our theoretical results, with or
without the self-energy corrections, and the experimental
data (except for the lowest-frequency data point) agree
well with the model. Our theoretical predictions for the
parameter k in Eq. (1.2), the slopes of the lines in Fig. 7,
are —0.052 and —0.047 with and without the scissors
operator, respectively; the corresponding experimental
data suggest —0.049. This calculation also identifies the
space group P3221 with right-handed quartz (positive ro-
tatory power) in agreement with experiment. 3'2 2 How-
ever, our theoretical calculation of the magnitude of the
optical rotatory power is about a factor of 5 too small
compared with the experimental value.

We also calculated g I I for a-quartz, which is plotted in
Fig. 8. Our theoretical results show that g» is negative,
consistent with experiment. ' Like our value for p, our
value for g» is much smaller than that seen experimen-
tally. Experiments measured the ratio of the two in-
dependent gyration tensor components g»/g33 to be
—0.45 (Ref. 32) or —0.53 (Ref. 65), independent of pho-
ton frequency. In the nonabsorptive regime this should
be —0.5 according to a symmetry argument. This argu-
ment states that quartz is made up of Si04 tetrahedron
"building units. " These tetrahedra locally possess a mir-
ror plane symmetry which causes the pseudoscalar part
of the gyration tensor to vanish, giving g33+2g» =0 [Eq.
(30) of Ref. 4]. The argument does not apply equally well
to trigonal selenium because the building units here

10X10 5

I 8X10 5

a —quartz

0
6X10-5

EI

c! 4X10-5

0
~ P4

2X10 5

U

h,—0

b,=1.8 eV

Ref. 32

0.0 1.0 2.0 3.0 4.0
Photon Energy a& (eV)

5.0

FIG. 8. The gyration tensor component g» of a-quartz. We
obtain the experimentally observed sign for g» (negative). The
magnitude of our theoretical results are about five times smaller
than the available experimental data of Refs. 28 and 32. We use
18 special k points to sample a quarter of the Brillouin zone and
23 hartree for the plane-wave kinetic-energy cutoff' for calcula-
tions both with and without the scissors correction.

would have to be chains of selenium atoms which possess
no higher symmetry than the space group, i.e., no local
mirror symmetry. Our computational result for gil /g33
for quartz is —0.46, consistent with the symmetry argu-
ment, in spite of the fact that each value is smaller than
that seen in experiment. Our computational result for
gI I /g33 for selenium is close to —1.0 at low frequencies.

To summarize, we obtain good agreement for the
dielectric functions and the second-harmonic susceptibili-
ties for both selenium and a-quartz. For optical rotatory
power, our theoretical results for selenium are about fac-
tor of 2 too small compared with some of the experimen-
tal data in the low-frequency range; for n-quartz, it is fac-
tor of 5 too low. Our calculated results are apparently
converged, given that the sum rule for the optical activity
tensor for a-quartz is within S% of the theoretical ideal
value.

The formulas presented in Sec. III are obtained in the
long-wavelength limit, i.e., local-field corrections are not
included. We found the local-field contributions for the
dielectric functions and second-harmonic susceptibilities
are —

S%%uo and +17%%uo for a-quartz and selenium, respec-
tively. It is possible that the local-field corrections are
much larger for optical activity. One paper suggests that
local-field effects should be greatly enhanced in optical
activity over linear susceptibility.

Our calculations use the frozen-ion approximation, in
which motions of the ionic lattice are ignored. There are
theories which argue that the phonon excitations and
electron-phonon interactions play an important role in
optical activity. ' Within the electronic optical-
activity theory itself, we have ignored excitonic effects
and spin-orbit interactions, and self-energy effects are
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considered only at the scissors operator level with con-
stant energy shift.

Looking back over experimental work, for many years
quartz was the only material for which the theory of opti-
cal activity of Ewald and Born from the 1910s and 1920s
had been verified. The experiments of Voigt of 1905
were confirmed by Wever in 1920, but contested by
Szivessy and Schweers in 1929. This controversy, and
the desire to verify the theory of optical activity in crys-
tals, lead to new measurements by Szivessy and
Munster in 1934 and Bruhat and Grivet in 1935. '

These experiments were quite different, that of Szivessy
and Miinster using visible light, with the direction of
propagation within 25 of the optic axis, whereas Bruhat
and Grivet used ultraviolet light and measured parallel
and perpendicular to the optic axis using some six
different methods. Plate thicknesses were varied sys-
tematically over an order of magnitude and both left- and
right-handed crystals were studied. Both of these works
confirmed the work of Voigt and Wever and discussed
the artifacts and errors of the Szivessy and Schweers
study.

More recently, Konstantinova, Ivanov, and Grechush-
nikov were motivated to return to the optics of quartz
to verify the details of a theory proposed by Federov.
They confirmed the earlier work as did Kobayashi
et a/. , who were motivated to return to the optics of
quartz to verify a new method for measuring the optical
gyration tensor as part of an effort to understand optical
activity in ferroelectric crystals. We use the word
"confirmed" in the sense of agreement to within about
20%%uo. This is reasonable agreement for a difficult mea-
surement from six laboratories in four countries and
spread across eight decades. A more refined study of the
experiments would be required to choose a preferred
value within this range.

V. SUMMARY

We have derived a band-theoretic formula to calculate
the optical-activity tensor from vector-potential perturba-
tion theory. It is necessary to compute the induced-
current density in response to a vector-potential pertur-
bation, instead of studying the induced charge density in
response to a scalar-potential perturbation which some of
us have used previously for other properties. Using the
formula obtained from the microscopic theory, we prove
that the optical activity tensor has the desired macro-
scopic symmetry. With the sum rules, which we verify
numerically, we obtain formulas for the dielectric con-
stants and optical activity tensor which have well-defined
values in the static limit. To eliminate possible numerical
difficulties, the contributions to the optical-activity tensor
are divided into valence and conduction parts.

We have calculated the optical rotatory power along
the optic axis and the other independent gyration tensor
component g» for both trigonal selenium and a-quartz
as well as linear dielectric response and the second-
harmonic susceptibility. Our calculations are performed
directly from nearly first-principles band-structure calcu-
lations. The experimental input is limited to the dimen-
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APPENDIX A: PERTURBATION IN PRESENCE
OF A NONLOCAI. POTENTIAL

In general, the potentials considered in a Hamiltonian
may be nonlocal. Norm-conserving nonlocal pseudopo-
tential are used in our calculation; the approximation to
the electron self-energy is also nonlocal.

In the presence of a nonlocal potential V"'(r, r'), the
Schrodinger equation is not gauge invariant. Equally
unpleasant, the Schrodinger equation with a nonlocal po-
tential, even in the absence of an electromagnetic field,
does not lead to the form of the charge current as
J(r, t) = (i/2) [P(r,—t)V,Q*(r, t) P*(r, t)V,Q—(r, t) ] satis-
fying the continuity relation

V J( )+ ' =0 (A 1)

Yet the continuity relation must be satisfied so that the
Maxwell equations, which are consistent with the con-
tinuity relation, are preserved.

To solve the problems discussed above, one needs to
modify the expression for the current density to take into
account the effects of a nonlocal potential. With the un-
perturbed nonlocal Hamiltonian, H= —,'p + IV'+ V"', the
velocity operator is v' —= (

—i)[r,P]=p+( —i)[r, V" ],
where we have used the fundamental definition for the ve-
locity and r and f'" do not commute.

In the coordinate representation, the velocity operator
can be written as

v' '(r, r') = —iV,5(r —r') i (r —r') V"'(r, r—') . (A2)

With Eq. (A2), the current at position R in the coordi-
nate representation J' '(R, r, r') can be written as

sions of the unit cell and self-energy corrections to the
band gap. We are able to obtain the correct signs for the
optical rotatory power and g» for both materials. Our
calculations for the optical rotatory power for selenium
are nearly a factor of 2 too small compared with some of
the experimental data. For u-quartz, we obtain good
agreement with the experiments for the dispersion con-
stant k in the coupled-oscillator model and the ratio of
g&&/g33 consistent with arguments from symmetry, yet
the magnitudes of both g» and g33 are about factor of 5
too small. The possible reasons for the discrepancy are
the local-field corrections, electron and phonon excita-
tions and their interactions, and other effects. The fact
that we can account for both the linear and second-
harmonic optical properties as well as satisfying several
sum rules limits the scope for the origin of the discrepan-
cy.
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J' '(R, r, r') = —[V,5(r —r')5(r —R)

+5(r —R)V,5(r —r') ]

8"'(r, r', t)= —a fdR J' '(R, r, r') A(R, t) .

Substituting Eq. (A3) in the above expression leads to

(A5)

+—(r —r') V"'(r, r')
2

X [5(r' —R)+5(r —R)] . (A3)

H'"(r, r', t)= ——a[V, A(r, t)5(r —r')

+ A(r, t) V,5(r —r')]
The symmetric combinations are used to form the nonlo-

~(0)cal current, which is necessary to make J' '(R, r, r') a
Hermitian operator. We use this current operator to ob-
tain an expression for the perturbed Hamiltonian in the
presence of a nonlocal potential.

A general expression for the first-order perturbation
1S

+—a(r' —r) A(r, t) V"'(r, r')

+—aV"'(r, r')(r' —r) A(r, t) .

Further, with a monochromatic assumption

(A6)

8"'(t)= —afdR J' '(R) A(R, t), (A4) A(r, t)= A e' ' (Aj)

where the superscript indicates the order of A. In the
coordinate representation, the first-order perturbation is

and the Taylor expansion, e'q" '= 1+iq (r' —r) to first
order in q, the last term in Eq. (A6) can be written as

—aV"'(r, r')(r' —r) Aqe
"i' ""=—aV"'(r, r')(r' —r) A(r, t)e'q"

= —aV"'(r, r')(r' —r) A(r, t) —V"'(r,—r')[(r' —r). A(r, t)][(r'—r) q]+O(q ) . (A8)

Combining Eqs. (A6) and (A8), we obtain

8"'(r, r', t)= ——a[V,.A(r, t)5(r —r')+ A(r, t) V,5(r —r'))

+ia(r' —r) A(r, t)V"'(r, r') ——[(r' —r) A(r, t)][(r' —r) q]V"'(r, r')+O(q ) . (A9)

The same expression for the perturbed Hamiltonian in
the presence of a nonlocal potential may be obtained with
Korolev's approach. The unperturbed Schrodinger
equation of an electron in a nonlocal potential takes the
form

—
—,'V g(r)+ V(r)1'(r)+ fdr'V"'(r, r')p(r')=e (i(r))).

(A10)
(r' —r) Vr .

Recall that e ' is a displacement operator such that
(r' —r) Vriti(r')=e 'i'(r) for any function g(r) which has a

convergent Taylor series. We can rewrite

fdr'V"'(r, r')1t(r')= fdr'V"'(r, r')e" "Pf(r)

driVnl(r r )
i(r —r).rry(r)

= f dr'V '(r, nr')ei(r r) ~e i—(r' —r) P~(r )

= fdr'V"'(r, r')f'(r' —r)g(r'), (A12)

f'(x) =e 'e (A13)

and

where we have defined I (r' —r) =e" ' e " ' P. To
simplify the notation, we set x=r' —r=xx, m„=& ~, and
p =x p. Therefore we obtain

= V"'(r, p)f(r), (A 1 1)

where p = —i V, is the momentum operator and V" (r, p)
is implicitly defined. In other words, a nonlocal potential
can be rewritten as a function of the momentum opera-
tor.

In the presence of an electromagnetic field, the momen-
tum operator p should be replaced by &=p+a A(r, t) in
the Hamiltonian. (This is often referred to as "minimal
coupling" and ensures the gauge invariance of the
Schrodinger equation. ) The nonlocal potential V(r, r') in
Eq. (Al 1) becomes

d f (x) . ixrr„~ ~ —ixp„
dx

1X7T

leap

iae "A„(r,t)e
AX+ —U(:P rXP, , —EXPice e e A (,r, tje

iaf'e "A (r, t)e

Using the definition of the displacement operator,

e A„(r,t)e = A (r+xx, t) .

(A14)

(A15)
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(A16)

To first order in A, the solution of Eq. (A14) is

f'(x)=1+ia J dx'A (r+x'x, t) .
0

Recall x =r' —r =xx. The integral indicated in Eq.

(A16), is simply a path integral along a straight line from
r to r' of vector potential A(r, t).

Using the monochromatic form of Eq. (3.3), the in-
tegral in Eq. (A16) can be simplified:

I (x)= 1+ia J dx' A (r+x'I, t)
0

q 0

l q'X

=1+iax A e'q' " x+ —x q x+O(q )

=1+ia(r' —r) A(r, t) ——[(r' —r) A(r, t)][(r' —r) q]+O(q ), (A17)

where in the long-wavelength limit, we have used the Taylor expansion of e' ' .
With Eqs. (A12) and (A17), we obtain the first-order perturbed Hamiltonian H' ",

H'"(r, r', t)= — [V, A(r, t)5(r —r')+ A(r, t) V,6(r —r'))

+ia(r' —r). A(r, t) V"'(r, r') ——[(r' —r) A(r, t)][(r' —r) q] V"'(r, r')+O(q ) . (A18)

2
V"'(r, r') [(r' —r ) A(r, t) ]

X[(r' —r) A(r, t)] . (A19)

APPENDIX B: OPTICAL ACTIVITY TENSOR
WITH SCISSORS OPERATOR

The formula for the optical activity tensor has been
given in Eqs. (3.51)—(3.54), in which

Equation (A18) is the perturbed Hamiltonian we obtained
in Eq. (A9).

Following similar procedures, the terms second order
in A(r, t) in the Hamiltonian are

2

H '(r, r', t)= 6(r —r') A (r, t)

and P,z is a projection operator onto conduction bands.
The implementation of the scissors operator with proper
velocity renormalization in optical response functions are
detailed in Refs. 20 and 22 and will not be repeated.
[Equation (A6) of Ref. 22 can be directly applied to ob-
tain terms such as i V|,Hi, . Terms such as i Vi,(j VI,Hi, )

can be obtained from Eq. (A22) of Ref. 22 by first choos-
ingg =i+j and then subtracting the terms obtained with

q =i and Q
=j.] We only present the final expression for

the optical activity tensor g; I here.
Let G' be the LDA conduction-band Green function,

A. A. A.

H, =i V„nl,and H,, =i V„(j.V„H„).Also defi~

g...=a(nklH, Imk&

X(mk H;(G'k ) G' (lco) G' (icy)G„'i,H—tink& .

Hk —Hk +AP,k, (B1)
(B2)

where Hk is the LDA Hamiltonian, 6 is the energy shift, The vvc term can be written as

ri,'".k(co)=4mQof dk g .ImI2(nk H lmk&( mklHG' |G' l(co) G'
1( co)—

BZ
7

X [co —(e 1,
—8k ) —(e„l,—8q )

—
( e 1,

—Pl, )(e„k—81, ) ]

X GnVGnk(~)Grani ( —~)Hi Ink &
—

k,i;
—k;ij+k) i+ki;, ] .

Defining

g'.I'= (nkIH, G„'),H; 6„'kG„'i,(co)G„'i,( co)Hi Ink &—
and

0,', '=b, ( nklH, G„'kH, (G„'k )'G„'z(co)G„'q(—co)Hi Ink &,

(B3)

(B4)

(B5)
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the ccv term is

ni17 (~)=4~flo f X I k—jtI +CJ~I' 0—j7i' P—Pi'+adjt;+Pi&", I .
BZ

(B6)

In Eys. (B3) and (B6), the additional g and g' l terms are due to the velocity normalization of i V&(j VkHk) and

j Vk(l VzPz). The cv term is

ri'Jt(co) =4m&0'f dk g ™I—
& nk Hi(G„'i, ) (e„k—8z)G„'k(co)G„'I,( co—)HJ nil)

BZ

+ & nk~H;(G„'1, ) (e„k—A'l, )G„'z(co)G„I,( co)H—Jt ~nk) I . (B7)
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