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We study the dynamical spin susceptibility of a two-dimensional antiferromagnet that is weakly
doped with mobile holes. The motion of the holes leads to a renormalization of the velocity v and of
the linewidth of spin wave excitations. In agreement with inelastic-neutron-scattering experiments
for high-T, superconductors v vanishes at a critical hole concentration b, of a few percent. This
behavior is mainly due to the low energy or so-called coherent part of the hole motion and not to its
incoherent part as was claimed recently. Therefore spin and hole excitations have the same energy
scale and adiabatic approximations are not allowed. Moreover, the system undergoes a magnetic
phase transition at a critical hole-concentration value b . At b, the transverse staggered susceptibility
diverges for all wave vectors for which the spin-wave excitations w~ are approximately linear in q.

I. INTRODUCTION

It is important to study the interplay between antifer-
romagnetism and doping for the understanding of high-
temperature superconductors, especially since antiferro-
magnetic fluctuations are known to persist in the su-
perconducting phase. Neutron-scat tering experiments
show that magnetic properties in oxide high-T super-
conductors strongly depend on the hole concentration b

within the Cu02 planes. The parent compounds, i.e. , the
systems at half filling, are antiferromagnetic semicon-
ductors. With increasing hole concentration the Neel
temperature as well as the staggered magnetization de-
crease rapidly and vanish at a critical hole concentration

of a few percent before 'the systems become metallic
and superconducting. With respect to dynamical prop-
erties one knows from inelastic-neutron-scattering exper-
iments that spin-wave excitations exist for the undoped
systems. They are well described by conventional two-
dimensional spin-wave theory. Upon doping, however,
the spin-wave velocity decreases and vanishes approxi-
mately at the same hole concentration b at which the
Neel temperature vanishes. At the same time the spin
waves become overdamped. The main aim of this paper
is to discuss the doping dependence of both the spin-
wave velocity and of the damping in the antiferromag-
netic phase and to ask at which doping concentration b

spin-wave excitations cease to exist.
The essential aspects of the electronic structure of the

Cu02 planes in high-T superconductors are believed by
now to be well described by the two-dimensional t-J
model '

II = t ) (c,. cs +—Hc.)+I) S, Ss.
(i,j),o. (' i)

Here S, are the electronic spin operators and (ij) in-
dicates a sum over all pairs of nearest neighbors. The
operators c, are defined by c,. = c, (1 —n, ), where
n, is the electron number per site with spin —0.. Thus
hopping onto already occupied sites is forbidden. At half

filling the t-J Hamiltonian reduces to the antiferromag-
netic Heisenberg model. Note that the standard form of
the t-J Hamiltonian used by most people contains on the
right-hand side an additional term —1Pl, .

l (n;ns)/4.
We have neglected this term for simplicity because the
qualitative behavior of the model will not be affected dra-
matically by leaving this term out.

II. PROJECTION TECHNIQUE

The inelastic neutron cross section is determined by
the imaginary part of the dynamical spin susceptibil-
ity y(q, w). To evaluate y(q, a) we use a projection
technique. This method is used to derive equations
of motion for a set of relevant variables (A ). One starts
by introducing a metric in operator space in order to de-
fine the projectors 'P and Q = 1 —'P on the operator
space formed by the set of relevant variables and on its
orthogonal subspace. Often, the so-called Mori metric
is used which follows naturally from linear response the-
ory. However, in the present case of a state with broken
symmetry, (N ) P 0, it is advantageous instead to intro-
duce a commutator metric (A ~A„) = ([A+, A„]). This
will be explained below in more detail. As our set of rele-
vant variables (A ) we now choose as usual the staggered
magnetization Ai ——% (q) and the total magnetization
Az ——S„(q) in the x and y directions, respectively. They
are de6ned by

A, = X (q) = S"(q) —S"(q),

A2 = Sy(q) = S„"(q)+ S„"(q).

Here S"(q) and S"(q) are the two sublattice magnetiza-
tions for the up and down sublattice Q~ and M~,

S (q) = ) e'~' *S;.

The projector on the space formed by the operator set
(A. ) is given by
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'P = ) IA )g „'(A„.

Here g is the inverse matrix of g

(4) where z = w+ ill, (rt —+ 0). Due to the commutator in (6)
one can rewrite y22 in terms of the above commutator
metric,

x22(q, ~) = A2t (q), A2 (q)
g-,~ = ([A'. A~]) (5)

where gi i ——g2 2
—— 0 and gi 2 ——g2 i —— i(N, )

(i/v N)(N, (q = 0)). Since the off-diagonal matrix ele-
ments gi 2 and g2 q are proportional to the order parame-
ter (N ) g 0, the inverse matrix g „and thus the projec-
tor P exists within the whole antiferromagnetic regime.
We want to evaluate the dynamical susceptibility for the
spin component S„(q). It is given by

( 1=
I A2(q)I A2(q)

Iz —2 ) '

) [z~.,- —~.,-(q) —I'.,-(q ~)]~-,.(q ~) = g. . (8)

so that the projection technique can be applied. Within
this formalism coupled equations for the dynamical sus-
ceptibilities, y „(q,w), defined for the whole set of rele-
vant variables in analogy to (6), can be derived:

y22(q, w) = — ([A2(q), A2(q, —t)])e" dt, (6) Here the frequencies O„„(q) and self-energies I'„(q,w)
are defined by

~.,-(q) =) 4,.(q)g. ,
'. L,„(q) = (A„ISA„),

I'„(q, (u) = ) M„„(q,cu)g„', M„„(q,(u) =
I

A„IEQ QZA„
I

.( 1
(10)

From this one easily obtains the following exact representation for y22(q, w):

—[L22(q) + M22(q, (u)]

( iM»(q, ~) & f iM2i(q, ~) & (L»(q) + M»(q, ~) & ('L22(q) + M22(q ~)l
(N-) r ~ (N-) r & (N. ) r & (N. ) r

"or small wave vectors q the frequency terms Lii(q) and L22(q) are given by

Lii(q) = — ) (S,"S,"+S;;)+ —) (cJ c, + ct. c, ),
(,.) (',j),-

L22(q) = ——q ) [q (R, —R,.)] (S,". S". + S;S.) + q ) [q (R, —R~)] (c, c~ + c c, ).
(,.) (i,j),cr

M (q ~) =
I N*(q)IQ QN-(q)

I
(14)

M»(q ~) =g'I is (q)IQ &
Qis (q) I.z —QQQ ) (15)

The reduction to small wave vectors q will be done below.
The prefactor q in M22 again follows from the continuity
equation. Note that similar expressions also hold for the

Note L ii is wave vector independent for small q, whereas
L22 is proportional to q . This prefactor follows from the
continuity equation, i CS (q) = q.js~ (q) where js& (q) is
the spin current, and from additional inversion symme-
try. The continuity equation holds since the total spin
S"(q) is a conserved quantity at q = 0.

The expressions for the self-energies Mi i (q, cu),
M22(q, cu) read

oR'-diagonal self-energies M&2 and M2~. For small q they
are of higher order in q and do not contribute to the
final result. The quantity 2 in (14) and (15) denotes the
Liouville operator. It acts on operators A of the unitary
space according to CA = [H, A].

Usually one would like to apply the Kubo-Green re-
lation (compare, e.g. , Ref. 8) in order to simplify the
self-energies for small wave vectors q. In this case the
projectors Q in (14) and (15) could be replaced by 1
so that these expressions would reduce to true dynami-
cal susceptibilities for the quantities N = i l.N and jsy,
respectively. To apply the Kubo-Green relation, the limit
q ~ 0 has to be performed first while keeping ~ Rnite.
However, in the present case of a doped antiferromagnet,
it turns out that the frequency dependence of the self-
energies is crucial. As is shown below quasiparticle-hole
excitations from the so-called coherent part of the hole
motion are coupled strongly to spin waves via the self-
energies. Since these quasiparticle-hole excitations van-
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1
p. = lim lim —[L22(q) + M,2(q, cu)],

u) —+0 q —+0 g
(17)

where M2z is given by (15) with Q replaced by 1. This is
exactly the result which is given in the literature (see for
instance Refs. 10—12). From (15) one may show that the
second term in (17) is always less than or equal to zero.
Therefore, the quantity lim~~o(l/q )L22(q) is an upper
bound for p„ i.e. ,

ish linearly with q just as the spin-wave excitations, the
self-energies are strongly ~ dependent for small u and q.
Therefore the Kubo-Green relation cannot be applied.
Both types of excitations, i.e., spin-wave and coherent
particle-hole excitations, possess the same energy scale
so that adiabatic approximations are not allowed.

Before we continue let us first discuss in some detail
the result for the half-filled case where the Kubo-Green
relation holds. Moving holes are absent for half filling
and therefore low-energy particle-hole excitations do not
exist. First note that usual spin-wave theory for the
Heisenberg antiferromagnet is easily recovered. More-
over, a well-known expression for the adiabatic spin sti6'-
ness constant p, is found from (11). This quantity is
usually defined by the increase of the free energy due
to an imposed q-dependent twist in spin space on the
system. io i2 To deduce p, from (11) note that the static
transverse spin susceptibility is given by

(K )'
y22 ——lim lim

~-+o g—ro Li, (q) + Mii(q, ~)

The order of the two limits follows from the assumption
that the Kubo-Green relation holds. By comparison with
v = p, /y22, i.e. , the hydrodynamic relation between
the adiabatic spin stiKness constant p, and the spin-wave
velocity v, one easily finds from (11)

various quantities in (11) in the presence of a finite hole
concentration tII, let us make an ansatz for the ground
state ~4g) and assume that it is formed by a Fermi state
of independent "quasiparticles":

l~, ) =
cr,kg FS

y(k, ~) ~eA, ).

Ao(i) = c;g,

Ai(i) = (
—1) ) c,~S, R,;,

A2(2. ) = ) crgS,+S, R,,
* Rjj

lj
(21)

Here n denotes the number of steps away from the site i
by which the hopping hole has created the string, B~, = 1
for the zo ——4 nearest neighbors j of i and zero elsewhere,
whereas R.

&

——1 for the zo —1 = 3 nearest neighbors()
l of j with I diferent from i and zero elsewhere. The
quasiparticles P(k, o) are linear combinations over the

(1)~S 16,17

y(k ) ) xk R, y&y( )
1

QN/2 .

Here ~@AF) is the ground state of the system at half fill-

ing, i.e. , the ground state of the Heisenberg antiferro-
magnet which we henceforth approximate by the Neel
state. The quasiparticles P(k, rr) are determined by the
motion of independent single holes in the system at half
filling. As is well known, by moving through the antifer-
romagnetic spin background holes leave behind strings of
spin defects, i.e. , strings of overturned spins. ' These
strings can be described by local operators A„(i). When
the hole is created on site i on sublattice Ug, they are
defined by

1
p, & hm —L22(q).q-+0 q2 gP(i) = ) a„A„(i),

(22)

This result is usually derived by use of the Bogoliubov
inequality (compare for the pures and for the doped
antiferromagnet) .

Also the dynamical susceptibility yii (q, ur) of the stag-
gered magnetization K (q) can be derived within the
projection formalism. It is given by (ll) with the nu-
merator replaced by —[Lii + Mii(cu)]. For w ~ 0 this
reduces to the expression

xi'i(q) = I 22(q) + M22(q, u) -+ 0)
' (»)

which diverges for q ~ 0 as 1/q . The reason for this
divergence is that the quantity 1V (q) tries to restore the
broken symmetry of the antiferromagnetic phase. Equa-
tion (19) also demonstrates the advantage of the com-
mutator metric used here as compared to the usual Mori
metric where only a lower bound ~ 1/q for yii(q) is
found.

III. EVALUATION OF EXPECTATION VALUES
Let us proceed to the case of finite doping where the

Kubo-Green relation no longer applies. To evaluate the

where the sum over i runs over all %/2 sites of the sub-
lattice U only. The coefficients o. can be evaluated.
They decrease to zero in space within a few lattice con-
stants somewhat depending on the ratio t/J. Therefore
the quasiparticles in local space can be considered as
holes dressed with "clouds of spin defects" which have
an extension of a few lattice sites and increase somewhat
with increasing t/1 Note that with. out the transverse
part of the exchange interaction of (1) and the influence
of the so-called spiral paths, the wave function (22) would
be localized; i.e. , the one-hole excitations would be inde-
pendent of k. This is due to the fact that the hole is
moving in this case in an Esing potential which roughly
increases with the number of steps the hole jumps away
from the original site i. The dispersion of the quasiparti-
cles is mainly due to the inhuence of the transverse part
of the Heisenberg interaction and owly to a smaller part
influenced by the spiral paths. This leads to a band eo(k)
for the one-hole excitations with a width of order J.
For small doping, when the clouds do not strongly over-
lap, the quasiparticles anticommute to a good approxi-
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mation. This becomes plausible from the fact that the
anticommutation relations of two string operators, A„(i)
and A„(j), with i g j, are entirely determined by their
annihilation operators which describe the hopping holes,
provided the two strings do not cross. For this reason one
may start for small doping from the approximate ground
state (20). The quasiparticles fill up four "hole pockets"
around the four degenerate minima of the band which are
located at (kvr/2, +sr/2). Deviations of the true ground
state from the approximate ground state due to quasi-
particle interactions will be neglected in the following.

As an example let us discuss somewhat in detail the
I

evaluation of the self-energy M22(q, u). We first replace
in (15) the projector Q = 1 —'P by 1. The effect of Q
is to exclude processes which lead back to the original
variables X (q) and S„(q). Such processes will drop out
in the following by the approximations used to evaluate
M22. Next note that the spin current operator splits,

js (q) = js (q) + js (q) (»)
corresponding to the two parts of the t-J Hamiltonian.
The first part js„(q) is the same as in the pure Heisenberg
antiferromagnet whereas the second one is only present
for the doped system. It is given by

js„(q) = —(t/2q) ) o (e'~' * —e'~' ') (c, c, , + c, c, )
(~i) ~

and describes the hopping of a hole to a neighboring site accompanied by a spin Hip. We expect only the contributions
to the self-energies of order t from the hopping parts to be responsible for the renormalization of the spin-wave velocity
and of the damping. Contributions from the Heisenberg spin current proportional to J will be more or less the same
as in the case of half-filling and will not be discussed any further. To apply j»(q) on the ground state liIlg) we first
replace the resolvent 1/(z —8) by 1/[z —(H —Eg)], where the definition of 2 was used and Eg is the ground state
energy. Next js„(q) will be applied successively on all quasiparticles P(k, 0) present in the Fermi state, i.e. ,

is„(q) l@g) = is„(&)
ok&FS

&(k ~)l@&F) = ). &(ki t) ''' [js„(q) &(k p)] ''' &(kiv &)l@&F).
okcFS

(25)

As approximation for P(k, a) we keep from the sum (22) over n only the dominant string A (i) of length n = 0 with
coe%cient o.o. Contributions from higher strings are expected to change the 6.nal result only quantitatively. Since
A p(i) = c, we immediately obtain for the commutator in (25)

[js„(q) P(k 0)] = — (t/2) g(k, q) ci,+ (26)

Here

g(k, q) = (1/q) ) [cos (k+ q) (R, —Rz) —cosk (R, —R~)],
j(gi)

(27)

where j is a nearest neighbor of i on the second sublattice. The effect of js (q) is thus to create a hole with momentum

k+q and spin —0 on the second sublattice. By use of (25) and (26) and by neglecting all interactions to the remaining
quasiparticles in the ground state we arrive at the following result for M22(q, w):

2

M2 2(q, ~) = q ~p ) 'g(k, q) (C [k+ q, w+ ep(k)] + C [k —q, —ur + p(ek)]).
o,k&FS

The quantities C (k, w) are one-hole correlation func-
tions,

C (k, ~) = c„ci,= -t
z —2

which enter since we have neglected all quasiparticle in-
teractions so that quasiparticles in (20) with momenta
and spins di6'erent from k and o have dropped out. The
two terms in (28) follow from the commutator metric.
The prime above the sum over k indicates the inhuence
of the Pauli principle. Only excited particles with k+ q
(or k —q in the second term) contribute which have ener-

gies above the Fermi level. Finally, the Liouville operator
2 was reintroduced in (28) again. In the one-hole corre-
lation functions 2 acts on ci,+z (and on ci, ~, respec-
tively) and no longer acts on the two-particle operator
js& as in (15). This leads to the one-hole frequency shift
ep(k) in (28). Equation (28) states that the spin-wave
self-energy in a doped antiferromagnet is expressed by a
sum over one-hole correlation functions. This coupling
to the hole motion turns out to be responsible for the
renormalization of the velocity and the damping of the
spin waves. In the last step we have to evaluate C (k, u).
This is done in erst order Born approximation in close
analogy to Ref. 18. As is well known, the one-hole spec-
tral function Im C (k, ~) obtained in this way exhibits a
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quasiparticle or coherent peak at low frequencies and an
incoherent background structure at higher frequencies.

It is crucial how to determine the correct small q and
cu behavior. In (28) the limit q ~ 0 can be performed in

I

g(k, q) . However, this is not allowed inside the bracket

[ . ], as one would do in case the Kubo-Green relation
could be applied. To make this transparent let us con-
sider for a moment only the coherent part of M22(q, cu),

( )(
2 4 t ) ( -)2 ]/

H[e&( + q) &] [ o( q)
4K ' (z —[eo(k+ q) —eo(k)] —z —[eo(k —q) —eo(k)] p

(30)

This expression is obtained from the decomposition of
cg+z and ck z into one-hole eigenmodes where
only the coherent excitations are taken into account. Ex-
cept for the prefactor g(k, q)2 and a minus sign the sum
over k in (30) is identical to the Lindhard function for
the coherent excitations. Thus (30) describes the cou-
pling to coherent quasiparticle-hole excitations. In order
to see why the small w and q dependence of (30) is cru-
cial remember that a linear dispersion law wz q for the
spin-wave excitations is expected. The dispersion law is
determined by an explicit equation for ~z which follows
from setting the denominator of (11) equal to zero. One
can easily verify that apart from the prefactor q Eq. (30)
and also the full self-energy M22 of Eq. (28) are functions
of w/q for small q. This is why a linear q dependence for
the spin-wave excitations is obtained. Figure 1 shows our
results for Re M22(q, cu), and Im M22(q, w)/a at small
wave vector q, as obtained from (28) and from the Born
approximation for C (k, cu). The dip in Re M22 and the
peak structure in Im M22/cu for small frequencies is due
to the coherent part of the one-hole motion. For larger
frequencies both quantities are at first almost u indepen-
dent and show some cu structure due to the incoherent
part of the hole motion for still higher frequencies. The
negative values of Re M22 for small frequencies give rise
to the expected decrease of the spin-wave velocity. Fi-
nally note again that the quantity M22 is only nonzero
for the doped case, 8 g 0.

The self-energy Mii(q, w) is obtained in analogy to
M22(q, w). Since N (q) is not a constant of motion at
q = 0 the prefactor q is absent. It turns out that the
hopping part of Mzz is very small. This is mainly due to
the fact that the coefficient g(k, q), which corresponds

( I
Lii(q) = 21 1 — pi —) f(k) + p28+ —

pate
a,k&FS

(
I'22(q) = (rrq)' —1 —

l pi ) f (k q)

t
+P2&+ —~s& ~,J (31)

1
(~-) = 2(1 —~4~)

where a is the lattice constant and

1 1
non2+

4 ) nnn~+2,
12

p2 = 2no + ) (2n + 3)n„,
n)0

Oo'] + +3 o.' o' +
n)0

p4
——) (2n+ l)n„,

n(0

(32)

I

to the coefficient g(k, q) in (28), is very small for k val-
ues inside the hole pockets. This leads to a concentration
dependence of M&& b so that this quantity is almost
negligible. Finally, also the frequency terms L~~ and L22
and the staggered magnetization (% ) have to be eval-
uated by use of the ground state ~@g), Eq. (20). One
Ands

Re Mggiq, ~)

-0.2

-0.3

and

f(k) = )
(" )(~~)

cos k (R; —R;I)

f(k, q) = ) (q. (R, —R~)) cosk. (R, —R; )
( ')(w )

10 0 2

I f

4 6 8 10

FIG. 1. Re M22 (q, w) (in units of q J/4) and Im
M22(q, m)/m (in units of q /4) as function of w (in units of J)
for q = (vr/16, 7r/16), J/t = 0.3, and 8 = 4'Po.

Here the summations run over all nearest neighbors i,
i'(g i) of a fixed site j. The frequency terms contain
contributions from Cq and l.g linear in b which lead to a
decrease with increasing b. The staggered magnetization
also decreases with b and would formally become zero at
a concentration of about 27%%uo for J/t = 0.3 and at 17%%uo

for J/t = 0.1. Here we have taken string states A (i)
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from the expansion (22) to very high order into account
so that these values are rather accurate within our ground
state wave function (20). As will be discussed below this
result for (N, ) is expected to break down for hole con-
centrations b close to the critical value b at which the
spin-wave excitations become soft. However, it should be
rather reliable for small hole concentrations.

0.2

0.14&&

0+
01 +

0.05

JIs = 0.3 0
J/S = O. l +

IV. RESULTS AND DISCUSSION 0
0 10

(34)

where vp is the spin-wave velocity at b = 0 and b is the
critical hole concentration at which the spin-wave exci-
tations cease to exist. This b behavior is essentially a
combined effect from the b-dependent parts of L~q and
L22 and from M22. The critical concentration b varies
strongly with the ratio J/t For J/t = . 0.3 we find

y22(q, ~)

3 |))

2

0
-0.6 -0.4 -0.2 0.2 0.4

FIG. 2. Spectral function Im y22(q, u)/w (in units of
1/ J ) as function of w for q = (7r/16, vr/16), J/t = 0.3, and
three diIFerent values of 6: (a) h = O%%uo, (b) 8 = 4'%%uo, (c) b = 5'%%uo.

After having determined all quantities from (11)
we can now evaluate the dynamical spin susceptibil-
ity y22(q, w). In Figs. 2(a)—2(c) our final result for
Im y22(q, w) jw as a function of cu is shown for q
(7r/16, 7r/16) and J/t = 0.3 and for three difFerent values
of b. In order to reproduce the experimental spin-wave
linewidth for zero doping we have inserted a small 6.nite
value for Im Mii and for Im M22. These self-energy con-
tributions are also present for b = 0. As is clearly seen in
Fig. 2 the spin-wave peaks shift towards smaller frequen-
cies with increasing hole concentration b. Moreover, the
width of the peaks increases with doping. These features
are in very good agreement with experiment. From the
peak positions we have plotted in Fig. 3 the square of
the spin-wave velocity v as a function of b for two dif-
ferent values of J/t. To good approximation the points
are located on straight lines, especially for J/t = 0.1.
For J/t = 0.3 the b dependence is at first slower and
later steeper than linear. Therefore, a square root law
approximately holds for the spin-wave velocity

I'IG. 3. Squared spin-wave velocity v (in units of J a
where a is the lattice constant) as a function of hole concen-
tration h for two different values of J/t

h, —6%, whereas for J/t = 0.1 the critical concentra-
tion 8, is = 2.5%, i.e. , closer to the experimental value of
about 2% for Y-Ba-Cu-0 (YBCO). For very small hole
concentrations the peak positions shift away at first very
slowly from their value at b = 0 to smaller frequencies.
This is the range where the decrease of the spin-wave ve-
locity is mainly governed by the b-dependent parts of Lqq
and L22 and where the spin-wave velocity is still larger
than the Fermi velocity v~ of the quasiparticles. The
decrease of v becomes faster when the spin-wave excita-
tion moves inside the range of the coherent quasiparticle
contributions, i.e. , inside the dip region of Re M22(q, ur)
in Fig. 1. At the same time the spin-wave excitations
become heavily damped. Therefore, for the doping con-
centrations 8 = 4% and 5% in Fig. 2, the line shift and
the width of the spin waves are mainly governed by the
w dependence of the coherent part of M22(q, w). In this
case the spin-wave velocity v is smaller than the Fermi
velocity of the quasiparticles.

Let us Anally compare our results with those given
in the literature. Recently spin-wave excitations for
the doped antiferromagnet have been investigated in the
framework of the two-dimensional t-J model by a dif-
ferent theoretical method. There, the starting point
is a decomposition of the constrained electron operator
c, into a Schwinger boson while keeping track of the
spins, and into a slave fermion which generates a hole at
site i. The requirement that a site should not be dou-
bly occupied implies that the total number of fermions
and bosons at each site should be 2S = 1. However, this
requirement is relaxed within this formalism by using a
1/S expansion. is This implies a number of approxima-
tions in the equations which govern the spin-wave exci-
tations as compared to our exact relation (11). First,
the b-dependent contributions to Lqj and L22, which re-
sult from the hopping term, have been neglected. Second,
the staggered magnetization (%,) in Eq. (11) has been re-
placed by its value for b = 0. Furthermore, in Ref. 19 and
also in Ref. 20, which is with respect to the spin excita-
tion spectrum similar to Ref. 19, only hole concentrations
b are explicitly treated for which the spin-wave velocity
is larger than the Fermi velocity of the holes. In that case
the frequency cu in the self-energies can approximately be
replaced by the bare spin-wave energy. The result was
then extrapolated to the critical concentration b . In
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contrast, the calculations in the present investigation are
also explicitly performed in the b regime, where the spin-
wave velocity v has dropped below the Fermi velocity v~
and where the spin excitations lie within the electron-hole
continuum. In that regime damping becomes important.
Our theory provides for the doping dependence of the
spin-wave damping —an important physical quantity for
which measurements exist. In Ref. (21) also the case of
v ( v~ has been considered, but the calculations were
limited to the contributions from the coherent part. The
additional condition (t/J) ~b (( 1 which appears in that
work is probably related to the fact that the coupling
of the two relevant variables (N and S„) is neglected
there. This gives rise to a single mode at u~ instead of
two modes at uz and —uz.

Finally, note that the softening of the spin waves
is accompanied by a magnetic phase transition when

approaches b, . This is easily seen by looking at
the zero frequency limit (19) of yii(q, io), i.e. ,

(N, ) /[Izz(q) + Mz2(q, io ~ 0)j. The denominator in
this expression is the same factor as the one which en-
ters the denominator of (11) and which is responsible for
the disappearance of the spin-wave velocity at b . There-
fore, yz'~ diverges at b and the system undergoes at b, a
phase transition from an antiferromagnetic ground state
to a new ground state which is probably nonmagnetic.
We expect that the phase transition is also accompanied
by a softening of the order parameter (N, ) which should

vanish at b, as well. However, the staggered magnetiza-
tion (N, ), as evaluated from the ground state wave func-
tion (20), depends only weakly on the hole concentration
b. As mentioned above, for J/t = 0.1, (N, ) formally
vanishes at b = 17% whereas the spin-wave velocity al-
ready goes to zero at —2.5%. This means the staggered
magnetization (N, ), evaluated from (20), is still finite
when b reaches b, . The reason is that critical Huctu-
ations, which become important close to b, have been
neglected in the nondegenerate ground state (20). The
low-energetic spin-wave excitations, which are almost de-
generate with (20) when 8 approaches S„should enter
the evaluation of (N, ). We expect (N, ) to go to zero
at b if one takes quasiparticle interactions into account
by which low-energetic spin-wave excitations should be
mixed to the ground state (20). Therefore, the present
calculation, based on (20), is limited to 8 values smaller
than b, though the overall qualitative picture should re-
main correct also when b reaches b .
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