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We examine theoretically the following types of magnetization measurements of type-II super-
conductors: (1) zero-field cooled (ZFC), (2) field cooled with data collected on cooling (FCC), (3)
field cooled with data collected on warming (FCW), and (4) remanent. In analyzing the irreversible
behavior of the low-field dc susceptibilities, the important parameters are the critical current den-
sity, sample dimensions, and lower critical field. We point out that the irreversibility temperature is
determined by the merging point of the FCC and ZFC, but not the FCW and ZFC, magnetization
curves.

I. INTRODUCTION

Following the discovery by Bednorz and Muller of the
onset of superconductivity in the Ba-I a-Cu-0 system
above 30 K, as seen in the resistive transition, there have
been numerous measurements of the magnetic suscepti-
bility in related superconducting materials. The purpose
of these investigations has been to confirm the existence
of superconductivity at elevated temperatures, a large
diamagnetic susceptibility being the characteristic signa-
ture. Two kinds of measurements have commonly been
used. The first of these, often called a zero-Beld-cooled
(ZFC) screening measurement, is performed by first cool-
ing the sample in "zero" (or very small) magnetic field,
applying a small (typically 0.1—100 Oe) field, and then
measuring the resulting magnetization as a function of
increasing temperature T using a sensitive magnetome-
ter. The second kind of measurement, often called a
field-cooled (FC) Meissner flux expulsion measurement,
is performed by first applying a small (0.1—100 Oe) mea-
suring Beld to a warm sample and then measuring the
resulting magnetization versus T either upon decreasing
the temperature or upon subsequently increasing it. In
an ideal (pinning-free) simply connected bulk sample, in
which the specimen always remains in thermodynamic
equilibrium, the magnetization is exactly the same in ei-
ther (ZFC or FC) experiment, simply the equilibrium
magnetization corresponding to the given applied field
and temperature. In nearly all real samples found in the
laboratory, however, the two experiments yield difI'erent
results, and it is the purpose of this paper to explain in
detail why.

We begin by discussing the magnetization of high-
temperature copper-oxide superconductors in increasing
field but at constant temperature. Most bulk sintered
samples of such materials are best described as granu-
lar superconductors, which consist of anisotropic super-
conducting grains that are Josephson coupled via inter-
granular weak links. 2 When a small magnetic field is ap-
plied, Josephson vortices are produced in the intergran-

ular regions of the sample. The motion of these vortices
is impeded by pinning forces arising from the inhomo-
geneity of the intergranular coupling energies, and the
irreversible electrodynamics in this field regime is thus
characterized by J J, the critical-current density needed
to depin a Josephson vortex. At higher magnetic fields,
the intergranular regions become penetrated by a nearly
uniform magnetic field associated with a densely packed
array of overlapping intergranular Josephson vortices. As
the field increases, vortices next penetrate into the super-
conducting grains. The motion of these vortices is also
impeded by pinning forces, usually described by J, the
intragranular critical-current density needed to depin a
vortex. If the applied field is now reduced, magnetiza-
tion hysteresis occurs, chiefly because of the irreversible
nature of intragranular vortex motion.

When the temperature of the sample is varied in the
presence of a constant applied magnetic Beld, similar ef-
fects occur, because both J,J and J, depend upon the
magnetic flux density B and temperature T. In the
following, we analyze in detail how the magnetization
changes as a function of temperature. For the present,
however, we ignore the complications arising from the
granular nature of the high-temperature superconductors
and consider only monolithic superconductors in which
flux pinning is characterized by a single critical-current-
density function 1 (B,T). We also focus our attention
upon the behavior of slab-shaped specimens in parallel
applied fields. The treatment of the demagnetization ef-
fects for other specimen shapes should be straightforward
using the physics described in this paper but will not be
discussed here.

We already introduced in Refs. 6 and 7 some of the
ideas on which this paper is based, and meanwhile
closely related approaches have been used by several
other authors to explain much of the basic physics of
the hysteretic dc magnetization. In the present paper we
go beyond these previous works and provide a more com-
plete theoretical framework for a detailed understanding
of why difI'erent magnetic and thermal histories produce

0163-1829/93/48(18)/13774(10)/$06. 00 48 13 774 1993 The American Physical Society



48 THEORY FOR THE HYSTERETIC PROPERTIES OF THE LOW-. . . 13 775

difI'erent magnetization-versus-temperature curves.
In Sec. II we discuss the key concepts and introduce

several model functions needed for computations. We
also compute the magnetization versus increasing tem-
perature for the zero-field-cooled (ZFC) screening case.
In Sec. III we discuss and compute the magnetization
for the case of field cooled with data collected on cooling
(FCC), in which Meissner flux expulsion occurs under
the influence of flux pinning. In Sec. IV we discuss and
compute the magnetization for the case of field cooled
with data collected on warming (FCW). In Sec. V we
discuss and compute the remanent magnetization (RM),
which is obtained by turning ofI' the applied field after
field cooling and then measuring as a function of increas-
ing temperature. In Sec. VI we summarize our results
and conclusions.

II. ZERO-FIELD-COOLED MAGNETIZATION

Consider a type-II superconducting slab of thickness D
( —D/2 & x & D/2) initially cooled to low temperature in
the absence of a magnetic field. Assume that, except very
close to the transition temperature T, D )) A(T), where
A(T) is the temperature-dependent weak-field penetra-
tion depth. A parallel magnetic field Hp is now applied,
which obeys Hp & H, i(0), where H~i(T) is the lower
critical Geld at temperature T. Let T i and T 2 denote
the temperatures at which Hp is equal to H i and H 2,
respectively, where H, 2 is the upper critical field. When
T & T ~, the specimen is in the Meissner state. Induced
currents, flowing within A of the surface, screen the bulk
of the specimen from the applied field, such that the mag-
netic flux density B vanishes there and the magnetization
M obeys 47rM/Hp ———1.

In the temperature range T i & T & T 2 the speci-
men is in the mixed state, where magnetic flux enters
the specimen in the form of quantized vortices. In the
absence of pinning and surface barriers, the flux den-
sity B, averaged over the intervortex spacing, is uniform
inside the specimen and equal to B = B,q(H, T);s
here B,~(H, T) is the reversible flux density in equilib-
rium with a magnetic field H. Alternatively, we may
say that B is given by the solution of H q(B, T) = Hp,
here H,q(B, T) = 47rBF(B, T)/BB, where F(B,T) is the
Helmholtz free energy density of the flux-line array.
The magnetization obeys M = M,q, where M ~ is simply
the reversible equilibrium magnetization. For T ) T 2,
bulk superconductivity is quenched, and, aside from weak
paramagnetism or diamagnetism in the normal state, the
magnetization is zero.

When pinning is present, however, the magnetization
in the temperature range T,i & T & T 2 cannot achieve
its equilibrium value. As T rises above T j, vortices are
nucleated at the surfaces but are unable to move freely to
produce uniform B in the specimen s interior. Instead,
pinning forces tend to hold the vortices near the surfaces,
building up a critical flux-density gradient there. Accord-
ing to the critical-state model we have, neglecting flux
creep,

idH/dpi = (4~/c) J,(B,T)

in the critical regions, which must be solved subject to
the surface boundary condition H = Hp. The magnetiza-
tion then is given by —4aM = Hp —B, where B is the vol-
ume average of B. As T increases, the profiles of B(x,T)
versus x change for two reasons: The difFerence between
B and H at the surface [where B = B q(Hp, T), assuming
no surface barriers] decreases, and the slope of B versus x
[which is proportional to J,(B,T)] decreases. The precise
shape of the magnetization-versus-temperature curve de-
pends upon the detailed dependences of B,~(H, T) and
J,(B,T) upon field and temperature.

To proceed further and do computations that illustrate
the main features of the temperature dependence of the
magnetization, we introduce several simple models. We
approximate the temperature dependence of H, i and H, 2

by assuming the simple parabolic form, H, i (T)/H, i(0) =
H 2(T)/H, 2(0) = 1 —t, where t = T/T, is the reduced
temperature. For the equilibrium B vs Hre-lat-ion [i.e. ,
B = B,q(H) or H = H ~(B)], although it is possible to
treat the full problem numerically including the highly
nonlinear behavior at low fields, we seek here a simpler
approximation which enables analytic computations. For
high-r superconductors, such as the high-temperature
superconductors (K is the Ginzburg-Landau parameter),
we choose the following approximation, which previously
has been used in Ref. 6:

0, H&Hi
H —fHi, H&Hi, (2)

~eq

FIG. 1. Sketch of the model equilibrium B vs H behavior
used for calculations in this paper.

where 0& f & 1 is a dimensionless factor, and H « H, 2.
This approximation, sketched in Fig. 1, idealizes the
sharp rise in B,q(H) at H just above H, i. A similar
model but with f = 1 has been used in Refs. 12 and 13.
We neglect normal-state magnetism and fluctuation dia-
magnetism, and assume that B = H in the normal state.
It is known that the critical-current density J,(B,T) usu-
ally is a monotonically decreasing function of B. Since
in this paper we restrict our attention to small applied
fields Hp & H i(0), the resulting B inside the specimen
obeys B (( H 2 except extremely close to T . We thus
neglect the B dependence of J, and take J = J,(T) =
J (0, T). For the temperature dependence of J„we as-
sume J,(T)/J, (0) = [H,2(T)/H, z(0)] = (1 t), where-
n & 1. Experimentally it is found that n is typically in
the range 1—3.s However, the above model for J,(T) ig-
nores the possibility of the existence of a reversible region
near T, where J, is immeasurably small and the mag-
netization is practically reversible. We therefore propose
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the assumption

where t;„=T;„/T, and T;„ is the irreversibility temper-
ature. For the body of this paper we treat the case n = 1
but discuss the behavior for n ) 1 in the Appendix.

We also note that Hq/H i )) 1 in the high-
temperature superconductors. Since we here consider
only Ho & H, i(0), it is easily shown that T,2 T„such
that the difference between T 2 and T can be neglected.

We now compute the ZFC magnetization versus in-
creasing temperature. Using Eq. (1) and the above mod-
els, we obtain the sequence of B(x,T) profiles sketched
in Fig. 2. Only 0 & x & D/2 is shown because
B( x, T) —= B(z, T). For T & T,i we have B = 0 [Fig.
2(a)]. For T,i & T & T„ the B profiles penetrate to
the depth zz [Fig. 2(b)]. The shoulderlike B vs zp-rof-ile
near xz arises from the behavior near H i of the model
B,z(H) sketched in Fig. 1. For a more realistic model
of B,q(H), the penetrating B vs xpro-file -would still rise
sharply at xz, but the shoulder would be rounded. At
T = Tz the flux front reaches the middle of the sample
(x = 0) [Fig. 2(c)]. As T further increases, the slope
of the B(z,T) profile further decreases [Fig. 2(d)], even-
tually becoming perfectly flat at T;„. For T & T;„ the

I

B = Hp —fH i + (4ir/c) J (x —D/2) (4)

for z„& z & D/2 when T i & T & T„, or for 0 & z &
D/2 when T„& T & T, (J = 0 for T ) T;„). The
position x„ is determined by H(x„) = H, i or B(x„) =
H, i(1 —f). Since

x„=D/2 —(Ho —H, i)/(47r/c) J,
is the depth to which the advancing B profile penetrates,
the temperature T„at which x„=0 is

Here t,i ——T,i/T, & 1 and

(4~/c) J.(o) (D/2)
H, i (0)

(7)

is a dimensionless measure of the pinning strength.
The magnetization computed from the above B profiles

obeys

fiux density is uniform [Fig. 2(e)], and for T & T, (we
hereafter ignore the difFerence between T 2 and T ) we
have B = Ho [Fig. 2(f)]. The B(x,T) profiles are given
explicitly by

4~M/Hp ———1, T & T,i,
(2f —1)(1 —t')

1 —t2i 2fp t2„—t2

f 1 —t +—{p/2)(t;„—t ) /(1 —t ), T„&T & T;„,
= —f(1 —t )/(1 —t, ), T;„&T & T .

(9)

(10)

(»)

Here we have de6ned for convenience the quantity

w = w/ft;„ (12)

In the absence of pinning Eq. (9) does not apply, since
T„= T i and p = 0. Calculated curves of the ZFC
magnetization versus increasing temperature are shown
in Fig. 3 for several values of p and the assumption that
f = 0.7, t, i ——0.20, and t;„= 0.95. Note that the
magnetization changes slope discontinuously at T„.

III. FIELD-COOLED MAGNETIZATION DURING
COOLING

Consider next the case for which the sample is cooled
through its superconducting transition temperature in a
small parallel magnetic field Ho. As the temperature
is reduced below T, magnetic flux is expelled from the

0.0

-0, 2

2FC

Ho

D~ -0.4

~ -0.6

-0.8

a

x~ D/2 x

FIG. 2. ZFC profiles of B(x,T) vs z for p = 2 [Eq. (12)],
f = 0.7, and (a) 0 & T & T,i, (b) T,i & T & T„, (c) T = T„,
(d) T~ & T & T;„, (e) T;„& T & T„and (f) T ) T, for
temperature increasing after zero-field cooling [see Eqs. (4)—
(12)].

—1,0
0.0 0.2 0.4 0.6 0, 8 1.0

T/TG

FIG. 3. ZFC magnetization vs increasing temperature in
magnetic Beld Ho after zero-field cooling, calculated from Eqs.
(8)—(11) for f = 0.7, T i/T, = 0.20, T;„/T = 0.95, and p
[Eq. (12)] = (a) 0, (b) 0.5, (c) 1.0, (d) 2.0, and (e) 4.0. The
corresponding values of T„/T, are (a) 0.20, (b) 0.51, (c) 0.63,
(d) 0.74, and (e) 0.82.
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sample, an effect often called Meissner flux expulsion. In
the presence of pinning (for T & T;„) the resulting mag-
netization obeys —4vrM = Ho —B, but this quantity is
smaller than the corresponding reversible magnetization
[
—47rM = Hp —B &(Hp T)] because B ) B q(Hp T).

It was found even upon discovery of the Meissner effect
that some flux remained trapped upon cooling through
T . More recently, numerous studies related to practi-
cal applications of flux-trapping effects in various sam-
ple geometries have been carried out, starting with Refs.
16—19.

For weak pinning (sufficiently small values of J, and p),
profiles of B(x,T) vs x

i from which the volume average
I

B(x,T) = Hp —fH„(T), T;„&T & T„
= Hp —fH„(T) + (4~/c) J,(T) (D/2 —x),

Ti &T&T;„,
= B(x,T,i), 0 & T & T,i.

(14)

(»)

Note that the flux distribution freezes in at T q, where
B(D/2, T,i) = 0. The FCC magnetization versus tem-
perature for weak pinning obeys

B can be computed, are easily found &om critical-state
theory. Using the models of Sec. II, for example, we find

4~M/Hp = —f(1 —t')/(1 —t.', ), T;„&T & T.,

f [1——t' —(q/2)(t, '„—t') /(1 —t.', ), T., & T & T,„,
f 1——p(t;„—t, )/2(1 —t, ), 0 & T & T,i.

(16)
(17)

(18)

For strong pinning (sufliciently large values of J, and
p), it is clear that something goes wrong with this simple
calculation, because Eq. (14), for example, then yields
B(0,T) ) Hp and M ) 0. What is not included in
these equations, however, is a careful treatment of flux
trapping in the middle of the specimen (freezing-in of
the magnetic flux distribution). We now show that, as
the temperature decreases below T;„ to a temperature
T, the critical-state theory can be used to calculate a
characteristic fiux-trapping depth L(T). As T decreases
still further, the fiux profile B(x,T) changes within a
distance L(T) from the surface (so long as T ) T,i), but,
at distances greater than L(T) from the surface, the fiux
density remains frozen at the value it had upon freeze-in.

To calculate L(T), assume decreasing temperature and
consider two critical-state profiles [Eq. (14)], B(x,T +
AT) and B(x,T) vs x, at two successive temperatures,
T + AT and T. For small LT the change in the flux
density at x is

I

the maximum depth at which B can change as the sam-
ple cools below temperature T. At distances farther than
L(T) from the surface, B is frozen in, because the magni-
tude of the corresponding gradient of H is less than the
critical value for depinning [Eq. (1)). When the exponent
n for J, (Sec. II) is larger than 1, L(T) is a monotonically
increasing function of T, diverging at T;„. If, as the tem-
perature decreases, L(T) remains larger than D/2 until
final freeze-in occurs at T i, the flux-density profiles and
magnetization versus temperature remain as described
in Eqs. (13)—(18). Otherwise, fiux trapping changes the
flux-density distribution near the center of the specimen,
and the magnetization is modified accordingly.

To demonstrate the effects of flux trapping, we now
consider the case for which n = 1, where n is the J
exponent (Sec. II) (we consider the case of n & 1 in the
Appendix). Using the models introduced in Sec. II, we
find that for n = 1 the corresponding flux-trapping depth
L is temperature independent:

AB(x, T) = B(x,T) —B(x,T + AT),

= [f(dH„/dT)

ft,'„H., (O)

(47r/c) J,(0)
(22)

(47r/c) (dJ,/dT—) (D/2 —x) ]AT. (20)

f (dH, i/dT)
(4~/c) (dJ./dT)

(21)

This quantity, which we call the flux-trapping depth, is

At the surface x = D/2, AB(D/2, T) & 0, since
dH, i/dT & 0. However, since we also have dJ,/dT & 0,
we see that AB = 0 at x = D/2 —L(T), where

When p & 1, we see that L & D/2, such that the re-
sults of Eqs. (13)—(18) remain valid at all temperatures.
When p ) 1, on the other hand, L & D/2, and fiux
trapping begins as soon as the temperature drops be-
low T;„. Magnetic flux freezes in with constant den-
sity B = B,~(Hp, T;„) in the middle of the specimen
[0 & x & (D/2 —L)]. However, the expressions Eqs. (14)
and (15) remain valid for (D/2 —L) & x & D/2. In Fig.
4 we show the fiux-density profiles for the case L & D/2.
The magnetization now obeys

47rM/Hp ———f(1 —t )/(1 —t i), T;„&T & T„
f [1 —t,„+(1/2p) —(t;„—t )j /(1 —t, i), T,i & T & T;„,

f [1 —t,'„+ (1/—2V) (t,'„—t.', )] /(i —t.', ),

(23)

(24)

(25)
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Figure 7 shows the dependence of fM upon Hp/H i(0)
for several values of pp

——p(0). The curves were calcu-
lated using the procedure described in the Appendix.

of motion for x„ for this case is found as follows. When
T~j & T & T„, the Aux-density profile obeys

B = Hp —fH i + (47r/c) J,(x —D/2),

IV. FIELD-COOLED MAGNETIZATION DURING
WARMING z„& z & D/2, (27)

Consider now the case for which the magnetization is
measured during warming after the sample first has been
cooled in a parallel applied field Ho. Since magnetic fIux
has been expelled in the initial field-cooling step, even-
tually a corresponding amount of fIux must reenter the
specimen. However, since magnetic fiux moves down (but
not up) a critical-state-density gradient, hysteresis oc-
curs, and the warming magnetization does not retrace
the cooling curve. The critical-state model again can be
used to compute the resulting magnetization, but the de-
tails are more complex than might be expected.

We examine first the case of weak pinning (correspond-
ing to p & 1 for n = 1). For 0 & T & T i the flux distri-
bution remains stationary, retaining the gradient estab-
lished during field cooling [Eq. (15)j. For T i & T & T„,
however, B(z,T) has a V-shaped minimum at x = z„.
For x & z„, dB(x, T)/dz = —(47r/c) J (T), while for
x ) x„, dB(x, T)/dx = +(47r/c) J,(T) As the t.empera-
ture increases, x decreases monotonically from its initial
value (x„=D/2) at T i to its final value (x„=0) at T„.
During this process, vortices on both sides of the min-
imum move down their respective critical-state-density
gradients, which are now less steep than they were at
temperatures T & T q. To the right of x„, vortices move
to the left, while to the left of x, vortices move to the
right. At x the vortex velocity and the vortex-motion-
induced electric field are zero, and this condition yields an
equation of motion for x, which can be solved to deter-
mine x„and the corresponding profiles of B(x,T) as func-
tions of T over the temperature interval T i & T & T„.

When the J exponent obeys n = 1, the weak-pinning
case corresponds to p & 1 (or L ) D/2). The equation

= Hp —fH„—(4vr/c) J,(D/2+ x —2x„),

0&x&x . (28)

We first obtain an expression for the electric field in the
region 0 & x & x by taking the time derivative of Eq.
(28) and applying Faraday's law. The requirement that
the electric field be zero at x leads to the equation

2(4vr/c) J x'„= fH', —(4vr/c) J,'(3x„/2 —D/2), (29)

T,i & T & T„, (30)

where x„= 2x„/D. The V-shaped minimum in the B
profiles reaches the center of the specimen at the temper-
ature

1/2

T„=T;„1—(1 —t, /t,'„)
( 1+p

(~ & 1) (»)
For T & T & T;„ the B profiles are given by Eq. (27).

For p & 1 the magnetization computed from Eqs.
(27)—(31) obeys

where the prime denotes differentiation with respect to
temperature T. With the help of the models introduced
in Sec. II with n = 1, we obtain

ft,'„—t.', ) . ~

x„= 1+q —(1 —q/2) ~3p qt,„—t2).

47rM/Hp —— f [1 —p(t;„——t )/2(1 —t,i)], 0 & T & T,i,
f 1 —t ——p(t;„—t )(x„—1/2)] /(1 —t i), T,i & T & T„,

f [1 —t +—(p/2)(t, „—t )] /(1 —t i), T„&T & T;„,
= —f(1 —t )/(1 —t, ), T;„&T&T.

(32)

(33)

(34)

(35)

B= Hp —fHi(T; ), 0&x &D/2 —L,
(1 —f )Hp + (4ir/c) J (T i) (D/2 —x),

(D/2 —L) & x & D/2.

(36)

(37)

For T q & T & Ty the fIux-disturbance region, as
shown in Fig. 8(b), penetrates only to xy, while flux
remains trapped at density B(T;„) = Hp —fH i(T)'
in the region 0 & x & xy. A V-shaped minimum oc-
curs at x . In the region xy & x & z vortices move

For the strong-pinning case (p ) 1) the time evolution
of the fIux-density profiles is a little more complicated,
because the initial profile for 0 & T & T,i, Fig. 8(a), is
not that of Eq. (27) but that of Fig. 4(e),

(38)B = Hp —fH, i(T;„), 0 & x & xy,
= Hp —fH, i —(4a/c) J (x —2x„+D/2),

xy&x&x (39)
= Hp —fH, i + (4' jc)J,(x —D/2), x„&x & D/2.

(40)

By again applying Faraday's law, requiring the electric

I

down the critical-state-density gradient to the right, and
in the region x„& x & D/2 vortices similarly move to
the left. The critical-state-density gradient becomes less
steep as the temperature rises. The B(x,T) profiles are
given explicitly by
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Hp

The temperature Tf at which xf reaches the center of
the specimen (xt = 0) is

Tf = Tirr
16(1 —t' /t' )

(1+~)' (43)

FIG. 8. FCW profiles of B(x,T) vs x for strong pinning,

p = 2, f = 0.7, and (a) 0 ( T & T,i, (b) T,i & T & Tf, (c)
Ty & T ( T„, (d) T„&T & T;„, (e) T;„&T ( T„and (f)
T & T, for temperature increasing after initial field cooling
[Eqs. (36)—(45)].

For Tf & T & T„, Eq. (41) no longer applies, but the
situation [Fig. 8(c)] becomes similar to that for p & 1.
Equation (29) again applies but must be solved subject
to the initial condition, xvi ——(1 + 1/p)/2, where x„i is
the value of x at Tf. The solution is

2

3q (1+p)' ( t,'„—t' . y
(44)

The temperature T at which x reaches the center of
the specimen (x„=0) is

field to be zero at x„,and solving the resulting differential
equation for x„, we obtain

(41)

TU —Tjrr 1
2/ (1 —t /t' )

(1+&)' (~ & 1)

xf = 2x„—1 —1/p,

where xf = 2xf/D.

(42) For T„& T & T;„[Fig. 8(d)] the B profiles are again
given by Eq. (27).

The magnetization for p & 1 is therefore

47rM/Ho —— f 1 —t—;„+(1/2p)(t;„—t,i)] /(1 —t,i), 0 & T & T,i, (46)

f [1—t +—(p/2)(t;„—t )(1+x' —2x„) /(1 —t,i), T,i & T & Tf,

f [1 —t —+ (p/2)(t;„—t )(1 —2x„)] /(1 —t,i), Tf & T & T„,

f 1 —t —+ (p/2)(t, „—t ) /(1 —t, i), T„&T & T;„,

= -f (1 —t')/(1 —t.', ),

(47)

(48)

(49)

(50)

Figure 9 exhibits the calculated curves of the field-
cooled magnetization during warming (FCW) for several
values of p and the assumption that f = 0.7, t,i ——0.20,
and t;„=0.95.

0.0

-0.2
C)

Z -0.4

& -0.6

-0.8

—1,0
0.0 0.2 0, 4 0.6 0.8

T/TG
1,0

FIG. 9. FCW magnetization vs increasing temperature af-
ter initial field cooling in field Ho, calculated from Eqs. (32)—
(35) and (46)—(50) for f = 0.7, T,i/T = 0.20, T;„/T = 0.95,
and p = (a) 0, (b) 0.5, (c) 1.0, (d) 2.0, and (e) 4.0.

V. REMANANT MAGNETIZATION

Finally, we consider the case for which the applied field
Ho is turned off after the specimen is Geld cooled to below
T,i and the remanent magnetization (RM) is measured
as a function of increasing temperature.

We examine first the case of weak pinning (correspond. —

ing to p & 1 for n = 1). For 0 & T & T,i, the
Aux distribution remains unchanged as established dur-
ing field cooling. Here we consider a long slab specimen,
so that demagnetization effects can be neglected, and we
also neglect flux-creep effects. As T is increased above
T,i, the B(x,T) profiles change because B(D/2, T)
(1 —f)H, i(T) at the surface decreases, and the slope of
B vs x [which is proportional to J (T)] decreases. The
Aux-density profile obeys

B = (1 —f)H, i —(4vr —/c) J,(x —D/2).

Using the models of Sec. II with n = 1, the magnetization
4vrM = B for p ( 1 computed from the above equation
obeys
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4~M/H, =1 —f + fq(t,'„—t.', )/2(1 —t.', ), 0 & T & T.„
(1 —f)(1 —t ) + (fp/2)(t;„—t ) /(1 —t,i), T,i & T ( T

=0, T;„&T.

(52)
(53)
(54)

B = Hp —fH, i(T;„), 0 & x ( zt,
= (1 —f )H, i —(47r/c) J,(x —D/2),

(55)

zt & x & D/2, (56)

The flux-density distribution B(x,T) and the magneti-
zation collapse suddenly at T = T;„, the temperature
abo~e which pinning is inefFective.

For the case of strong pinning (p ) 1) the profiles
of B(z, T) vs x follow the sequence shown in Fig. 10.
For 0 & T & T i [Fig. 10(a)] the B(x,T) profile is
given by Eqs. (36) and (37) . For T,i & T & T/
the flux-disturbance region, as shown in Fig. 10(b), is
z f & z & D/2, while flux remains trapped at density
Hp —fH, i(T;„) in the region 0 & x & zt. The B(x,T)
profile is given explicitly by

where

*~ = 2z~/D =1-1/~- ('- t.'.)/f~(t,'„-t')
(57)

Ty = Tirr
f(~ —1) + t.'i/t;„

f(W —1)+1 (58)

For Ty & T & T;„, the B(x,T) profile is given by Eq.
(56) [Fig. 10(d)].

The magnetization for p ) 1 is therefore

The temperature Ty at which xy reaches the center of
the specimen (zt = 0) [Fig. 10(c)] is

47rM/Hp ——1 —f 1 —t;„+(1/2p)(t, „—t,i) /(1 —t,i), 0 & T & T,i,
(1—f) (1 t ) + (f—p/2) (t;„—t ) (1—et ) /(1 —t,i), T,i & T & Ty,
(1 —f)(1 —t ) + (fp/2)(t;„—t ) /(1 —t i), Ty & T & T;„,

=0, T;„&T&T,.

(59)

(60)

(61)
(62)

Again the flux-density distribution B(x,T) and the
magnetization collapse suddenly at T = T;„.

Figure 11 exhibits the calculated remanent magnetiza-
tion (RM) for several values of p and the assumption that
f = 0.7, t, i ——0.20, and t;„= 0.95. The discontinuity
in M(T) at T = T;„arises from the discontinuity in our
model for B,~(H, T) [Fig. 1 and Eq. (2)].

Shown in Fig. 12 are the expected ZFC, FCC, FCW,
and RM magnetization-versus-temperature curves. Be-
cause the flux-density profiles are frozen in at tempera-
tures below T i, the magnetization versus temperature is
flat in this temperature range. In the temperature range
T q & T & T;„, where J ) 0, the critical-state model
requires that the FCC magnetization curve (which de-
scribes a flux density that has negative slope near the sur-

face, as in Fig. 4) must lie above the FCW magnetization
curve (which describes a flux density that has positive
slope near the surface, as in Fig. 8). This hysteretic na-
ture of the magnetization versus temperature, as shown
by the FCC and FCW curves in Fig. 12, has been con-
firmed by the recent experiments of Beak et al. and
Hyun. Only when J is eH'ectively zero, i.e. , only when
T )T;„,is the flux-density profile flat. For such temper-
atures, the flux-density profiles for ZFC, FCC, and FCW
all agree, and one is then measuring simply the reversible

1.0

0.8
C)

0.6
E

0.4

0, 2

0.0
00 02 04 06 08

T/Tc
1.0

e

Xp D/2 x

FIG. 10. RM profiles of B(x,T) vs x for p = 2, f = 0.7,
and(a)0(T&T, i, (b)T, i &T&Ty, (c)T=Ty, (d)
Ty & T & T;„,and (e) T & T;„[Eqs. (55)—(58)].

FIG. 11. RM magnetization vs increasing temperature af-
ter initial 6eld cooling in field Ho and then turning ofF Ho,
calculated from Eqs. (52)—(54) and (59)—(62) for f = 0.7,
T,i/T = 0.20, T;„/T, = 0.95, and p = (a) 0.5, (b) 1.0, (c)
2.0, and (d) 4.0.
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FIG. 12. Calculated ZFC, FCC, FCW, and RM magneti-
zation vs temperature for p = 1, f = 0.7, T,i /T, = 0.20, and
T;„//T, = 0.95.

(equilibrium) magnetization curve. The RM magnetiza-
tion is zero in the reversible region, since, in contrast to
the ZFC, FCC, and FCW cases, the applied field is zero.

It is easy to see that MRM = MFcc —MzFc for
T ( T i. This property has been pointed out previ-
ously in Ref. 6 and has been conGrmed experimentally.
However, it is important to notice that the relation
MRM = MFcc Mz Fc holds only for T ( T,i . F«
T ) T q, although the remanent magnetization MRM
resembles the diff'erence between MFcc and MzFc, a de-
tailed comparison shows that there is not, in principle,
an exact equality between MRM and MFcC —MzFC.

Note that the flux-density profiles for ZFC and FCW
are identical for T ) T„[Figs. 2(c), 2(d), 2(e), and 2(f),
and Figs. 8(d), 8(e), and 8(f)]. Thus the magnetization
curves for the two processes must be identical for T )
T„. It is clear, however, that T„ in principle has nothing
to do with the irreversibility temperature T;„, since the
joining of the two magnetization curves at T„(which is
below T;„) follows from the critical-state model, which is
describing the irreversibility of the sample.

J,(T) = J,(0)(1 —t )". (A1)

The dimensionless parameter measuring the pinning
strength is

n(4~/c) J-(T) (D/2)
fH„(T)

= ~(0) (1 —t')"-',
(A2)

(A3)

and the fiux-trapping depth [Eq. (21)] is

L(T)=,= D/2p(T).
L(0)

(A4)

Here both p(T) and L(T) are T dependent for n ) 1.
When temperature is lowered, p(T) increases and L(T)
decreases. Final freeze-in of the flux-density distribution
occurs at T,i ——T [1 —Hp/H, i(0)] / .

If p i ——p(T i) & 1 [Eq. (A3)], then L,i —L(T,i) )
D/2 [Eq. (A4)], and the Aux-density profiles are given at
all temperatures between T,q and T by

In this appendix we consider the magnetic flux-density
profiles B(x,T) vs x during field cooling for the general
case that the flux trapping depth I is T dependent. We
also consider the Meissner fraction for such a case.

Since here we are interested in the temperature region
below the irreversibility temperature T;„, for simplicity
we set T;„=T, in Eq. (3); i.e.,

VI. SUMMARY
B = Hp —fH i —(47r/c) J,(x —D/2). (A5)

Using the critical-state model, we have considered the-
oretically the following types of low-field dc magneti-
zation of type-II superconductors: (1) zero-field-cooled
magnetization (ZFC), (2) field-cooled magnetization with
data collected on cooling (FCC), (3) field-cooled magne-
tization with data collected on warming (FCW), and (4)
remanent magnetization (RM).

In agreement with the approaches of Refs. 8—13, we
fin that in analyzing these magnetization measure-
ments, the most important factors are the critical-current
density, the sample dimension, and the equilibrium prop-
erties of the sample as described by the relation B
B,~(H). We have performed model calculations to
demonstrate the influence of these factors on the tem-
perature dependences of the above four types of mag-
netization measurements and the Meissner fraction f~

An important feature revealed by the theory is that
the irreversibility temperature T;„ is determined by the
merging point of the ZFC and FCC (or FCC and FCW),
but not by the ZFC and FCW magnetization curves.

L(T ) = D/2 —x
= L(0)/(1 —t'.)"-',

(A6)

(A7)

(As)

The flux-density profile at the point x is no longer a func-
tion of T for T & T but is given by

B(x) = Hp —fH i(T ) —(47r/c) J (T )(x —D/2)
f (n —1)

n[q. ,(1 —x)]'&("—') ) '

(A9)

(A10)

On the other hand, if p, i ——p(T, i) ) 1 so that L,i ——

L(T,i) & D/2, there is a temperature Tp ) T i at which
L = D/2. As T is lowered below Tp, L(T) becomes less
than D/2, so that fiux is trapped in the region 0 & x &
D/2 —L(T). The expression for the fiux-density profile
in the flux-trapping region for n ) 1 can be found as
follows. Suppose the flux-density profile at point x ceases
changing at temperature T (T i & T & Tp). Then
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FCC ing zero-field-cooled magnetization, can be expressed as

Ho fM = 4—vrM(T, i)/Ho, (All)

L(T)

where M(T, i) is the field-cooled magnetization at T i,
fM can be calculated from the freeze-in flux-density pro-
file, B(x,T i) [Eqs. (A5) and (A10)j. We find for p i & 1
that

D/2 && fNI = f (1 —p, i/2n), (A12)
FIG. 13. FCC profiles of B(x,T) vs x for n = 2, p, i ——2,

f =0.7, and(a) T) T., (b)TO &T &T., (c)T =TO,
(d) T,i & T & To, and (e) 0 & T & T~i, for field cooling
in constant applied field with decreasing temperature [Eqs.
(A5) and (A10)j.

where we have used Eq. (A8). Equation (A10) holds for
0 & x & D/2 —L(T). The flux-density profile in the
region D/2 —L(T) & x & D/2 is linear and given by
Eq. (A5). Figure 13 shows, for example, a sequence of
fIux-density profiles during field cooling, calculated from
Eqs. (A5) and (A10), for n = 2, f = 0.7, and p, i ——2.

The Meissner fraction fM, which is the ratio of the
field-cooled magnetization at T & T,q to the correspond-

and for pci & 1

fM = f/2'Y i (n = 1)
= f (3/2 + lnp, i) /2pci (n = 2),

f 2(n —1) (n 2) I(n1 — 712(2 —n)p i n

(A13)
(A14)

(n & 1,n g 2). (A15)

Figure 6 shows fM vs p, i, calculated from Eqs. (A12)—
(A15), for several values of n and f = 0.7. Figure 7 shows

fM vs Hp/H i(0), calculated from Eqs. (A12) and (A14),
for n = 2, f = 0.7, and several values of po ——p(0).
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