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We introduce and analyze a lattice model of anyons in a periodic potential and an external
magnetic field, which exhibits a transition from a Mott insulator to a quantum Hall Quid. The
transition is characterized by the anyon statistics o., which can vary between fermions, n = 0, and
bosons, o. = 1. For bosons the transition is in the universality class of the classical three-dimensional
XY model. Near the fermion limit, the transition is described by a massless 2 + 1 Dirac theory
coupled to a Chem-Simons gauge Beld. Analytic calculations perturbative in n, and also a large-N
expansion, show that due to gauge Quctuations, the critical properties of the transition are dependent
on the anyon statistics. Comparison with previous calculations at and near the boson limit, strongly
suggest that our lattice model exhibits a fixed line of critical points, with universal critical properties
that vary continuosly and monotonically as one passes from fermions to bosons. Possible relevance
to experiments on the transitions between plateaus in the fractional quantum Hall effect and the
magnetic-field-tuned superconductor-insulator transition are brieQy discussed.

I. INTRODUCTION

A very powerful approach for treating strongly corre-
lated quantum models in two dimensions (2D) has been
to transform the statistics of the particles by attaching
statistical flux tubes. In this way, a fermion model can
formally be transformed into a boson model and vice
versa. Moreover, models describing particles with frac-
tional statistics (anyons) can be mapped either way, into
a fermion or a boson model. This mapping is usually
accompanied by a flux-smearing "mean field" treatment,
originally introduced by Fetter, Laughlin, and Hanna.
In this mean-field approach the statistical flux tubes are
"detached" from the particles and smeared uniformly in
space. Taken together with the above mapping, this
mean-field approach eKectively "trades in" statistics for
an external magnetic field. This approach serves as the
key ingredient in various recent theories of the quantum
Hall efFect: For example the so-called Ginzburg-Landau
approaches which focus on an underlying Bose con-
densation, the hierarchical construction due to Jain '

which relates integer and fractional Hall states, and most
recently to theories of the half-filled Landau level as a
pseudo Fermi liquid. It has also recently been applied in
an attempt to relate the continuous transitions between
plateaus in the fractional Hall eKect to the transition be-
tween plateaus in the integer eÃect.

It is generally believed that this flux-smearing mean-
field approximation should be legitimate when the mean-
field state is an incompressible fluid with a gap, such as

a quantum Hall fluid. Indeed. , various numerical exact
diagonalizations on small systems appear to confirm
this belief. However, when the reference state is gapless,
as for example at a transition between plateaus in the
quantum Hall efFect or in the Fermi-liquid. theories of the
half-filled Landau level, the approximation is much more
highly suspect. In particular various conclusions arrived
at in Ref. 9 which relate detailed critical properties at
transitions between diferent quantum Hall plateaus are
worth detailed scrutiny.

The purpose of the present paper is to introduce the
simplest possible anyon model which exhibits a continu-
ous phase transition, and analyze in detail the universal
critical properties near and at the transition. The model
is characterized by the statistics of the particles, which
can be tuned continuously from Bose to Fermi. The par-
ticles are subject to a periodic potential with a period
commensurate with the particle's density, corresponding
to one particle per unit cell. Moreover, the model in-

cludes an external magnetic field, taken as zero in the
boson limit, one flux quantum per particle in the fermion
limit, and proportional to the statistics in the anyon case.
In t'his way a "mean-field" treatment of the model, as de-
scribed above, would result in behavior fully independent
of the particle's statistics. Controlled calculations of the
actual critical properties then allow for a direct check on
the validity of the mean-field approach.

In the boson limit, the model exhibits a Mott-insulator
to superfluid transition which is in the universality class
of the classical 3D XY model. Critical properties
can be extracted via Monte Carlo simulations or 1/N
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expansions. As we show below, in the fermion limit the
model is soluble and exhibits a "gap-closing" transition
between a band insulator and an integer quantum Hall
state. We analyze the critical properties in this case,
which are described by a massless 2+1 Dirac equation,
and find that they are most certainly different from the
3D XY model, which reveals the inadequacies of the
"mean-field" approximation.

For anyon statistics the model exhibits a transition be-
tween a Mott insulator and a quantum Hall fluid. Can
the critical properties be extracted for this anyonic Mott
transition? As shown recently by Wen and Wu, it is
possible to perform a renormalization group (RG) calcu-
lation perturbative in deviations of the particle s statis-
tics from the bosonic point. Within a controlled 1/N
expansion they find that the critical properties vary con-
tinuously with the particle statistics. In RG terminol-
ogy they have found a "fixed line" parametrized by the
particle's statistics. In this paper we perform a similar
perturbative analysis expanding around the Fermi end,
described by the Dirac equation. We likewise find that
the critical exponents and other universal properties vary
continuously with statistics. Again, this statistics depen-
dence is shown to originate from gauge-field fluctuations
near the critical point. Moreover, the sign of our pertur-
bative results for the critical exponents near the fermion
point suggests that the exponents vary monotonically
upon moving along the fixed line between the fermion
and boson transitions. We suspect that this might be
a generic feature of quantum phase transitions involv-
ing fractional statistics particles. This would imply that
the leading perturbative corrections to the flux-smearing
mean-Geld treatment approach monotonically the exact
behavior.

The dependence of the detailed critical properties
on the statistics of the underlying particles in our
model system strongly suggests that, in contrast to re-
cent speculations, the phase transition between integer
plateaus in the quantum Hall efI'ect is not in the same
universality class as that between fractional plateaus. In-
deed, in view of our results, it would be much more natu-
ral to argue that the exponents will depend on the statis-
tics of the condensing quasiparticles, which of course de-
pend on which two fractions the transition is between.
However, since both disorder and long-ranged Coulomb
interactions are relevant perturbations at the Mott tran-
sition studied here, we cannot make any definitive state-
ments about the universality class appropriate to exper-
imental quantum Hall phase transitions.

The paper is organized as follows. In Sec. II we intro-
duce the lattice anyon model, and discuss the continuum
limit, with special emphasis on the fermion limit. The
resulting critical theory is a massless 2+1 Dirac equation
coupled to a Chem-Simons term. Section III is devoted
to a detailed RG analysis of this fermionic Chem-Simons
theory, perturbative in deviations of the statistics away
from Fermi, as well as in a large-N limit. In addition to
the critical exponents v and g we calculate the universal
Hall and longitudinal conductivities. Finally, Sec. IV is
a discussion section with emphasis on possible relevance
to experimental systems.

II. THE MODEL

In this section we introduce our lattice anyon model,
and in the fermion case extract the appropriate contin-
uum limit.

The Hamiltonian we study is defined for convenience
in terms of spinless fermion operators:

H = —) (t,,c, c, +.H. .c.) + m) s, c c, , .

where the fermion operators satisfy the usual anticom-
mutation relations

Here i and j label sites of a square lattice, t,~ is a hopping
matrix element, and s~ = +1 for sites of one sublattice
and —1 on the other sublattice. The second term in the
Hamiltonian is thus a staggered potential with strength

' m. We restrict attention exclusively to half-filling, so
that the number of particles equals the number of sites
on either of the two sublattices.

An applied magnetic field B, and flux tubes attached
to the fermions both enter via a gauge field: t,~

~t;~~e* *&. For later convenience we take the hopping
strength ~t;~

~

to be equal to t for nearest neighbor sites,
t'/4 for next nearest neighbors, and zero otherwise. The
gauge field is chosen so that

V'x A=B+np,
where V' x A denotes a lattice curl, that is, an oriented
sum of A,.~ around plaquettes, and B is a uniform exter-
nal field in units of a flux quantum, h/e, per elementary
square of the lattice. Here p, which is an operator, de-
notes the particle density so that Eq. (3) must be thus
taken as a constraint. The statistics parameter n gives
the strength of the statistical flux tubes which are thereby
attached to each particle. With n = 1 the particles are
transmuted into bosons, whereas anyons correspond to n
between zero and 1. Finally, to fully specify the model
we choose the external field as B = (1 —n)/2, so that
at half-filling in a flux-smearing mean-field treatment the
Hamiltonian reduces to bosons in zero field, for all n.

Notice that the model has been constructed so that
in the boson limit (n = 1) it is formally equivalent to a
lattice model of hard core bosons in zero magnetic field.
Moreover, at half-filling the boson density is commen-
surate with the period of the staggered potential. This
boson model is expected to undergo a Mott-insulator to
superfluid transition as the ratio of the kinetic energy
(t, t') to the staggered potential (m) is varied. This zero
temperature quantum transition is expected to be in the
universality class of the classical three-dimensional XY
model. The appropriate coarse-grained continuum the-
ory to describe the behavior near the transition is then
simply a P4 complex scalar field theory.

For n near 1, the model corresponds to anyons with
statistics "close ' to bosonic, in a weak magnetic field. In
this case the model is expected to exhibit a transition
from a Mott insulator to a gapped quantum Hall fluid.
The transition can be studied by adding a Chem-Simons
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a,6=1
(4)

where c (p) denotes the Fourier transform of the electron
operators on the a sites (see Fig. 1) at momentum (z, vr)+
p. The 4x4 matrix H g can be written

H b(p) = (pro'v —m, o ) I31+ (p o' + t o ) tmay

where o~ and v„denote the usual Pauli matrices and (3
is a direct product. Upon performing a basis rotation

E
ew4

term to the scalar field theory, which attaches (1—n) flux
tubes to each boson. The corresponding critical behavior
has been studied in a recent large-N approach, and the
exponents found to vary continuously with o..

When o. = 0 the Hamiltonian is simply that of nonin-
teracting spinless fermions in a magnetic field, and can be
solved by straightforward diagonalization. We now spe-
cialize briefly to this case, n = 0. With 1/2 of a magnetic
flux quantum per square, for this case, and the staggered
potential the unit cell has four sites, as sketched in
Fig. 1. Extracting the band structure thus involves diag-
onalizing a 4x4 matrix. Doing so reveals that generally
there are two bands, symmetric about zero energy (half-
filling), with a band gap about the origin. Depending
on the relative sizes of t' and m the bands can be either
"Landau levels, " which contribute a Hall conductance,
or conventional insulating band with no Hall efI'ect. Of
interest to us is the transition between these two phases,
where the band gap closes. (Across the transition the
Hall conductance jumps from unity to zero, in units of
e /h with e the electric charge of the fermion. ) The band
structure reveals that the gap closes at a single point in
crystal momentum (k) space. By focusing on values of
k near this point, we now construct a continuum field
theory for the behavior near the transition.

To this end, we choose an explicit gauge for the A,.~,
which is shown in Fig. 1. Moreover, we put t=1 and take
t' and m much smaller than 1. In this limit the band
gap vanishes when t' = rn and occurs at (n, 7r) in the
Brouillon zone. Upon linearizing the momentum about
this point the Hamiltonian can be cast in the form

on v„by 90' about the x axis, the Hamiltonian can be
transformed into a 2x2 block diagonal form

H.b(p) = H+(1+ r.)/2+ H (1 —r.)/2,
with

H~ = +p o. + p„o.y + (kt' —m, )o

We emphasize that the above form of the Hamiltonian
only corresponds to the original lattice model, Eqs. (1)—
(3), for fermion statistics, n = 0.

Notice that the presence of 1/2 of a magnetic flux quan-
tum per square in the original lattice model (1), when
o. = 0, has allowed us to transform the low energy physics
into a relativistic form with no external magnetic field.
Indeed, H+ is simply a two-dimensional Dirac Hamil-
tonian with mass M = t' —m, which vanishes at the
transition. Under 0. ~ —0, H is also a Dirac Hamil-
tonian except with mass t' + m, . This mass remains non-
zero when m = t', and thus noncritical. As far as critical
properties near the transition are concerned we can safely
ignore the massive field and focus exclusively on the sin-
gle Dirac field which goes massless. Since this theory is
noninteracting we can easily extract all of the relevant
critical properties (see Sec. III). We emphasize that al-
though the original lattice anyon model describes nonrel-
ativistic particles, the critical properties of the transition
from the Mott insulator to quantum Hall fluid are de-
scribed by a relativistic theory, namely, the Dirac equa-
tion in the fermion limit, o. = 0.

When the statistics parameter o, is nonzero, but small,
progress can be made by expanding around the fermion
point [i.e. , the Dirac equation in (7)]. The key simpli-
fication in our model is that as the statistics o. varies,
the external magnetic field also changes to compensate,
B = (1 —n)/2. Because of this, upon smearing out the
statistical flux tubes, the Dirac fermions should always
be afI'ected by a zero average magnetic field. As a result,
the appropriate continuum theory near the transition for
nonzero o, can be obtained from the Dirac equation by
minimal coupling to a gauge field whose associated flux is
thereby attached to the Dirac fermions. (Since the Dirac
fermion density is zero on average, smearing these flux
tubes would indeed give zero average magnetic Geld, as
required. ) This can be achieved in the usual way by the
addition of a Chem-Simons term to the 2+1 Dirac La-
grangian. In the next section we perform a renormaliza-
tion group analysis on this 2+1 Dirac plus Chem-Simons
theory to extract critical properties near the anyon Mott
transition. Two expansions are available for calculat-
ing them: the weak-"coupling" expansion, in which the
small parameter is o., the deviation from Fermi statistics,
and the 1/N expansion, if one consider the case with N
species of anyons.

FIG. 1. The four sites in the unit cell of the two-
dimensional square lattice tight binding model with one-half
of a Aux quanta per plaquette and a staggered periodic po-
tential. Near neighbors have hopping strength t except the
bold line which is —t. The next near neighbors have a hop-
ping strength it'/4, and the staggered on-site potential has
strength m.

III. CRITICAL PROPERTIES

The quantities of primary physical interest which char-
acterize the Mott transition are the transverse and longi-
tudinal conductivities at the critical point, and the usual
critical exponents g and v. It has recently been argued
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that in general at zero temperature quantum phase tran-
sitions in two spatial dimensions, the conductivity should
be universal, and we indeed verify this below for the
anyon Mott transition. As usual we define the expo-
nent v in terms of the correlation length which diverges
as M, upon approaching the transition by taking the
Dirac mass M = m —t' to zero. We define the expo-
nent g via the decay of the two-point anyonic correlation
function

W'(*)~(0)) -*-' "',
where g is the anyon field operator in either a fermion-
ized or bosonized representation. Implicit in this defini-
tion is the assumption that the anyons are converted into
fermions or bosons by attaching flux tubes in the Landau
gauge, where the vector potential is divergence free. No-
tice that in the above definition of g we have pulled out
a factor of 1, so that it coincides with the usual exponent
g at the boson Mott-insulator to superfluid transition,
where the 1 is twice the canonical dimension of the boson
field and g twice the anomalous dimension. However, as
we see below, at the fermion Mott transition the scaling
dimension of the Fermi field is 1, and there is no anoma-
lous dimension, so that in this case g = 1, rather than
twice the anomalous dimension.

To extract critical properties near the fermion
point we employ a renormalization group (RG) anal-
ysis in the framework of continuum Euclidean field
theory ' by applying standard diagrammatic pertur-
bative techniques.

A. Field theory approach

As shown in Sec. II, the long-length scale and low en-
ergy physics near the anyon Mott transition can be de-
scribed by two D=2+1 Dirac fermions, one of which be-
comes massless at the transition, which are coupled to
a Chem-Simons gauge field a„. Specifically, from the
Hamiltonian II in Eq. (6) and the constraint in Eq. (3),
the appropriate Euclidean Lagrangian is simply

I = ) @+tp„(0„—iga„) + iM~]g~ + i e~ pa~B„ap, —
pl/ p,

where @g are the two species of Dirac fields. Here the
Dirac matrices in three dimensions are p~ = i o „,with o„
(p, = 1, 2, 3) Pauli matrices, so that

= —8""1—e"""p", Tr(p") = 0 .

We have normalized the coefIicient of the Chem-Simons
term, and the "coupling constant" g is essentially the
anyon statistics o. measured from the fermion point:

g = 2710!

A source electromagnetic field which can be used to cal-
culate the conductivites within linear response is mini-
mally coupled to the Dirac fields in the usual way. It
is worth emphasizing that the sign of the Chem-Simons
term in the Lagrangian (9) must be chosen correctly in
order that the flux tubes attached to the particles are in

the opposite direction to the external physical magnetic
field.

The phase transition between the quantum Hall phase
and the Mott insulator occurs when one of the Dirac
masses, say, M = M+, passes through zero. Before dis-
cussing the associated critical properties it is instructive
to Grst recover the expected behavior of the two phases
from the above Lagrangian. Provided we put in an ul-
traviolet cutoff, which is appropriate for the original lat-
tice theory, when both masses are nonzero straightfor-
ward perturbation theory in powers of g is convergent.
Consider, for example, the fermion "polarization tensor, "
defined as the Fermion current-current correlation func-
tion, which we denote as II„(p). Current conservation
(or gauge invariance) implies that the polarization ten-
sor is always transverse: p„ii„(p) = 0. Such a tensor in
D = 3 can be decomposed into an even and odd part:

i+ 11-(p) .- p, (»))
where we have used the notation p = ~p~. From stan-
dard linear response theory, the two parts are related to
the fermion longitudinal and transverse conductances, in
units of e /6 with e the charge, by

1 1
oF = ——II,(0), crF „=——II (0) . (13)

The conductance of the anyons has an additional contri-
bution coming from the attached flux tubes. Formally
this is due to the difference between the coupling of the
anyons and that of ordinary fermions: For fermions the
current operator gtp„g couples to the electromagetic
field A~ only, but for anyons it couples to the Chern-
Simons field a„as well (see Fig. 2). As can be easily
shown (see, e.g. , Ref. 13), the anyon resistivty tensor p,~

is simply related to the fermionic resistivity tensor via

pij —py' i (14)

FIG. 2. The full current-current correlation for the ex-
ternal electromagnetic field. The black spots stand for the
currents. The striped disk represents the exact Chem-Simons
self-energy and the dashed line the Chem-Simons propagator.

Previously there has been an intense effort in analyzing
the Chem-Simons gauge theory coupled to a Dirac field
in perturbation theory employing standard diagrammatic
techniques. ' Specifically, for a massive Dirac field
it has been shown that the one-loop diagram in Fig. 3(a)
contributes a finite contribution to the odd part of the
Fermion polarization, II (p = 0) = +(a/2)sgn(M~).
Notice the dependence on the sign of the Dirac mass.
Moreover, it has been proved ' ' that in the massive
theory there are no additional nonzero corrections to the
fermion polarization, II, (0), to all orders in n. Thus
away from the Mott transition the fermion conductivity
tensor which follows from Eq. (13) is given by
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FIG. 3. (a) Chem-Simons and (b) fermion self-energies at
D(e ). The solid line stands for the fermion propagator.

Indeed, the exact value of this correction was obtained
subsequently by Chen. ' In the following we will give
a unified description of the two-loop perturbative results
for the critical properties of the model (9) in the con-
text of the anyon Mott transition, together with some
new calculations when the quantities of interest are not
available in the literature.

B. Weak-coupling expansion

In the Mott insulating phase, where the two masses have
diferent signs, the conductivity tensor vanishes as ex-
pected, whereas in the quantum Hall eKect phase one has
simply 0~;~ ———e;~. The total anyon resistivity tensor in
the quantum Hall phase is then p;~ = e;~(1 —a). Notice
that when o. = 1, which corresponds to the bosons super-
fluid phase (in zero magnetic field), the Hall resistivity
vanishes as expected.

We now turn to the critical properties near the tran-
sition where the mass of one Dirac field, M = M+, van-
ishes. In the following we focus exclusively on the mass-
less Dirac field, since the contributions from the mas-
sive field are known to all orders, as described above.
Consider a renormalization group (RG) transformation
for this massless field, which involves integrating over a
shell of (three-)momenta p in a shell between A and A/b,
with 6 ) 1. To complete the RG we rescale the mo-
menta by b and the fields g and a by bi+~+ and bi+i',
respectively. The anomalous dimensions will be chosen
to keep the coefficients of the quadratic terms in the La-
grangian Eq. (9) fiwed. Power counting at the Gaussian
(g = 0) fiwed point reveals that the coupling constant
g is indeed dimensionless. A straightforward perturba-
tive renormalization group can then be carried out using
standard methods. As defined above in Eq. (8) the crit-
ical exponents g and v are related to the anomalous di-
mension of the massless fermion field, @, and that of the
composite operator @Q, which we denote by p&@..zo 2i

the fermion propagator Sp(p) =
'L

(18)

~PVApA
the gauge propagator Go" (p) =—

the interaction vertex I'o (p) = igp~ . (20)

The advantage of the Landau gauge is that no in-
frared divergences would appear perturbatively in this

23,27—29

Since we require a two-loop calculation, rather than
regularizing in the ultraviolet with a finite momentum
cutoff, A —1/a, it is more convenient to regularize by di-
mensional reduction and also employ a minimal subtrac-
tion method. In this approach, which was first suggested
and extensively used in Refs. 28 and 29 for the D = 3
Chem-Simons gauge theory, all momentum integrals in
the loop expansion are continued to general dimension
D:

In this subsection we carry out a two-loop perturba-
tion expansion in powers of the coupling constant g to
extract critical exponents and the universal conductiv-
ity. We take the Landau gauge, by adding a gauge fixing
term (1/2A)(B„a„) to the Lagrangian (9), and then take
the limit A —+ 0 in the resulting propagator for the gauge
field. With the normalization chosen as shown in Eq.
(9) the appropriate Feynman rules for the massless Dirac
field in the Landau gauge are

77 = 1+2' q
v = 1 —

py@
—1 (16) (2vr)s (2z.)~ ' (21)

It can be easily shown at one-loop order that the beta
function P(g) = —dg/din(b) = O(g ) vanishes. Indeed,
it has been suggested and shown explicitly to second
order that the P function vanishes identically:

p(g) = 0.
This implies that there is a line of fixed points or critical
points, parametrized by the anyon statistics o;. Unfortu-
nately all of the anomalous dimensions vanish at one-loop
order, and so it is necessary to go to second order to eval-
uate the leading nontrivial corrections to the exponents.
In addition to the critical exponents, the universal anyon
conductivity at the critical point is of interest. As first
emphasized by SemenoK, Sodano, and Wu, in contrast
to the massive theory, in the massless theory there is a
nonvanishing two-loop contribution to the conductivity.

where, in order to balance the dimension, one must in-
troduce a parameter p which has dimension of mass. All
vector, tensor, and spinor quantities and in particular
the symbol e" that appears in the original Feynman
integrands, though, are always treated as if they were
formally three dimensional. This implies that we will use
the identities

/PE —g
@VA pm' gvwgAg gvvygA7-

(22)
(23)

before performing any momentum integrals. Finally, we
adopt a minimal subtraction method for renormalization,
by removing the simple poles in e = 3 —D (Ref. 3S) and
setting all higher-order poles to be zero. The parameter
p we introduced in Eq. (21) represents, as usual, the
"renormalization point" in the minimal subtraction ap-
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proach. In all cases that have been checked, includ-
ing pure Chem-Simons (Abelian or non-Abelian) gauge
theory, coupled or not to massless or massive boson or
fermion matter fields, this approach to regularization and
renormalization has been shown to respect both gauge
invariance and Ward identities, at least up to two loops.

We consider erst the universal conductances at the
critical point (M = 0), focusing exclusively on the contri-
bution from the massless Dirac field. [The contribution
from the massive field is given in Eq. (15).] The one-loop

polarization tensor II„)(p), due to the (massless) fermion
bubble [Fig. 3(a)], is purely symmetric in the indices p
and v and given by

FIG. 4. Chem-Simons self-energy at O(e ).

transition within a large-% limit.
The leading (linear) corrections in o come from the

three two-loop diagrams, shown in Fig. 4, which con-
tribute to the polarization tensor. It turns out that all
three contributions are antisymmetric in the indices p,

and v, namely,
2

rI(')(p) = —', rl(')(p) = o. (24) 11(2.) (p) = .„.,p„rl(') (p) . (25)

Thus upon using Eqs. (11) and (13), to leading (zeroth)
order in o. , the total fermion (and anyon) conductivity
at the Mott transition is given by crJ; „=1/2, coming
solely from the massive Dirac field, and a.~ = vr/8. It is
interesting that this value is precisely equal to the value
of 0 obtained at the boson Mott-insulator to superfluid

This implies that there is no correction at this order to
the longitudinal fermion conductivty, o.~ . The contri-
bution to the Hall conductivty can be obtained by con-
tracting each diagram in Fig. 4 with 2, ~" p and per-
forming a trace over the Dirac spinor components, which
gives

4

-(-+&) =
p

d~ k d~q p (k+ p)q (q+ k)
(2ir) ri (2~)D k2 (k + p) 2 (k + q) 2q2

(26)

II(2) g 6 ~ ~ d k d q F(q, k, p)
()p2(2~)D(2~)Dk2(k+p)2(k+q)2(k+q+p)2q2II =2 p

F(q, k, p) = q'[3k p —2(k p) + (k. p)p —(k p)(q p) + (k q)p2]
-k'(q .p)' + (k q)[2(k p)(q p) —2(k q)p' —(q p)p'] .

4
II(2) ~ (3—17)

-(-+~) =
4 2~p

P
(2~)~ qlq+ pl

p (q+p)
q'lq + pl

(29)

II() ——(2) g' (, )
d q q plpl p(q+p)

4p' (2~) q'(q+ p)' q'lq+ pl
p D 2 2 2

(30)

The second terms in Eqs. (29, 30) are each logarithmi-
cally divergent in D = 3 but cancel one another exactly.
The remaining Rnite contribution in D = 3 is 6.nally

rI(')(p) = rl(')(o) = 11(('„)+ rl", ',

g' (1+
16ir2

( 4 )
(31)

This result was obtained previously in Ref. 31 and, up
to an overall sign, independently in Ref. 32 (where the

Since the integrals over k in Eqs. (26, 27) are convergent
directly in D' = 3 dimensions, we perform them there to
obtain

convention is that there is no imaginary unit in front of
the Chem-Simons term).

Upon inserting Eqs. (24) and (31) into (13) we obtain
the final result for the fermion conductivty at the anyonic
Mott transition, valid up to first order in o.:

7r
&F' ax =

8
1 ( ir'l

op y
————+ —l1+

2 4 ( 4

The contribution of —1/2 at n = 0 comes from the second
Dirac field which remains massive at the transition. The
anyon conductivity follows by inverting to get the fermion
resistivity, and then using Eq. (14). Note again that
at this order there is no correction to the longitudinal
fermion conductivity. An advantage of the 1/N method,
which we describe in the next section, is that nontrivial
corrections to cr~ do appear at leading order in 1/N.

To obtain the critical exponent g, let us consider the
fermion self-energy Z(p), defined as usual via the full
fermion propagator:

~(p) ' = ~a(p) ' —~(p).
At one-loop order it is given by the diagram in Fig. 3(b):
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FIG. 5. Fermion self-energy at D(e ). FIG. 6. Vertices with composite operator insertions at
G(e ). The cross stands for the composite operator @@.

E~ I(p) =

inst

+In/
/

+finite) .
g' 2 /'p'l

24vr2 3 —D (p2 )
(36)

Notice that at this order the renormalized mass remains
zero, AM = Z(p = 0) = 0, implying that conformal in-
variance survives quantum fluctuations at the transition
point M = 0. The fermion wave function renormalization
constant is extracted to be

—1
ZQ

BS '(p)
~(& &) „=o

g4 1
12~2 3 —D

One can thereby obtain the anomalous dimension py of
the massless anyon 6.eld up to second order:

1 BZy g
2 oj(1/e) 24vr2

Finally let us consider the renormalization of the com-
posite operator gg, from which we can extract the crit-
ical exponent v. We insert this composite operator into
one- and two-loop fermion self-energy diagrams, as shown
in Figs. 4 and 5, with the insertion represented by a cross.
To simplify the calculation, the external momentum as-
sociated with the gg insertion is taken to be zero. We
start with the one-loop diagrams, i.e. , Figs. 6(a)—6(c).

2
g(il (p) 8

The two-loop fermion self-energy diagrams are given in
Fig. 5. In Ref. 29 these diagrams have been evaluated to
obtain

Within our regularization scheme these diagrams are 6-
nite in D = 3:

[6(a)] = [6(b)] = -&

[6(c)]=—g P
8 p

(40)

so that the anomalous dimension of the operator gg in-
deed vanishes at one-loop order.

However, the two-loop diagrams in Fig. 7 have loga-
rithmic divergences. After lengthy but straightforward
calculations we have (up to finite contributions which do
not contribute to the anomalous dimension)

g 3 D d A: 1
8 (2~)D k(k+ p)' '

[7(a2)]+ [7(as)] = P —
D I, k

(41)

g 3 ~ d k 1

(2 )~k(k+p) '

[7(b2)] + [7(bs)] =—
The calculation of Figs. 7(c)i-7(c)s is a bit more com-
plicated, because of the Dirac matrices. However, since
we are only interested in the contribution proportional
to the 2 x 2 unit matrix 1, it is suKcient to perform a
trace over the product of Dirac matrices to obtain (again
up to finite parts)

[7(c )] + [7(c )] + [7(c )] = 6g y,

3 4 3—D
8

d~q k2q2 (k. q)2
(2~)~' (27r)~ k2q2(k+ p)2(q+ p)2(k+ q+ p)

g 1

(2m)~ q'~q+ p~
' (42)

where we have used q k =
2 [(q+ k+ p) +p —(q+ p)

(k+ p)'].
Finally, upon using the formula

1 l 2 (p21
+in/ —,

f(27r)~ k(k+ p)' 4~' 3 —D kp'p

5g4 2 ('p2), + ~ +,„~ ~,
1&2 3 —D qp2)

Upon using the renormalization relation

(44)

ing divergent contribution to the fermion self-energy with
mass insertion:

(43)

and putting everything together, we obtain the follow-
(2 o) (2 o)(r ) = z~z~„r (45)
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b1 C1

~o(p) =,

the previous section. Below we obtain the leading 1/N
corrections to the conductivities at the transition and the
critical exponents.

At the critical point M = 0, the Feynman rules in the
Landau gauge now read

( )

b2 C2

FIG. 7. Fermion vertex with the insertion of the compos-
ite operator gvP at D(e ).

and Eqs. (37), (44), we can obtain the renormalization
constant and the anomalous dimension of the composite
operator:

17g4 1

24
(46)

1 2 -1 17 2'g= 1 ——0! ) v = 1+—0!
3 6

(48)

C. 1/N expansion

In this subsection we consider a large-N expansion
which has the advantage of giving a nonvanishing lead-
ing correction to the fermion longitudinal conductivity,
in contrast to that found above. To this end, we consider
generalizing the Lagrangian in Eq. (9) for the massless
Dirac field coupled to Chem-Simons gauge field to in-
clude N massless Dirac fields. Once again we ignore for
now the trivial contributions from the massive field. The
appropriate Lagrangian is

N

I. = ) q! p„ ~
a„ —t g a„

~
+ M y,

. 1
+Z —F~vA CL~v QA

2
(49)

where as usual the coupling constant has been scaled by
1/N. The 1/N expansion is a formal summation of dia-
grams in powers of 1/N, rather than powers of g as in

BZ~~ 17g4

B(1/e) 247r2
'

Finally, upon inserting Eqs. (38) and (47) into (16),
which defines the critical exponents g and v, we find up
to second order in o.

gpv 2 p, v p, vA A

"'+ (is)' '+ (ls)'
A feature of the 1/N expansion in the present model

is that nontrivial corrections to the critical exponents
arise already at leading order (in 1/N), in contrast to
the weak-coupling expansion, where it was necessary to
go to two-loop order to see corrections. In addition, as
verified by explicit calculations below, the 1/N expansion'
maintains conformal invariance at the transition point
M = 0, at least at the leading order in 1/¹

To leading order O(1/N), the fermion self-energy is
given by the diagram in Fig. 9. We have verifi. ed that
it does not shift (or renorrnalize) the fermion mass from
M = 0. To extract the term that is proportional to p, we
perform —,pTr P on the diagram in Fig. 9. Keeping2p2

only the divergent part, we thereby find

g'A 2 r'p')
~(p) ==t X',N D+l I, ~, (55)

&& )
which gives directly the anomalous dimension

g2A 1
6~2 N

Upon insertion of the operator @Q into the one-

(56)

t t t t t+ 0++ 4 — +

FIG. 8. Summation of infinite series of one-loop fermion
bubble chains gives the dressed Chem-Simons propagator,
which is of order Q(N ). The cross line is the dressed Chern-
Simons propagator, the solid lines are the Fermion propaga-
tors, and the dashed lines are the bare Chem-Simons propa-
gators.

p, vA A

Go" (&) =-
1'."(p) =

N
(52)

However, in the 1/N expansion, rather than using the
"bare" gauge-field propogator, Eq. (51), it is more con-
venient to first sum up the chain of fermion bubble di-
agrams shown in Fig. 6, since they each contribute at
the same order, namely, Q(1/N ). (Each fermion loop
now carries an extra factor N because of the summa-
tion over Havors, and the two interaction vertices carry
g /N. ) Upon using Eqs. (12) and (24) to help sum up
the bubbles in Fig. 8, we obtain an efFective (or dressed)
gauge-field propagator, denoted by a cross line in the fig-
ures, as follows:
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FIG. 9. Fermion self-energy at D(1/N).

Performing the loop integrals then gives

g
2

4Vr2N

X
2 &p'l+ln/—

(2 p) (A —B )g

(58)

8 (A2 —B2)g2
Z~~ ——1 — —A—

3 2
g 1

2vr2% 3 —D '

and the anomalous dimension

8 (A2 —B )g—A— g
2vr2N

(60)

Finally, upon inserting Eqs. (56) and (60) into (16)
we obtain the leading 1/N expressions for the critical
exponents:

loop fermion self-energy, we have the three diagrams in
Fig. 10, which up to finite parts give a contribution

g2 dDk
[10(a)]= 2A —p

4

[10(b)] + [1o( )] = —
N

(A' —B')&'

dDk

(2~)I' (k + p) 'k

FIG. 11. Chem-Simon self-energy at D(1/N).

3A g4

16(2.) N (64)

It should be emphasized that all divergent contributions
to the polarization tensor II~„(p) cancel, so that in the
1/N expansion the P function P(g) vanishes, and con-
formal invariance survives quantum Huctuations at the
transition point.

Finally we can obtain the fermion conductivities at
the critical point from the above polarization tensors.
Equation (13) can be used to obtain the conductivity
per Qavor of massless Dirac field. To obtain the total
fermion conductivity per Havor we must add to o.~ „ the
contribution of —1/2 from the massive Dirac field. The
final result to leading order in 1/N is

"-(-+'+.&(") = 16. ' "4 )~ N

Calcualting the even contribution II, (p), however, is
much more complicated. In addition to the cumbersome
Dirac trace, the evaluation of the Feynman integrals are
highly nontrivial. We leave the details to an appendix
and here only quote the final result

8 o, 1

3 64+ (~n) 2 N '

128 [128 —(nn) ]n 1

3 [64+ (~n) 2]2

(61)

(62)

~.„=——+16
~

1+—
~2 g 4 ) 64~ (em)'N '

vr 6 12n 1 l
8 64+ (~n)2 N

(65)

(66)

Next we calculate the order 1/N corrections to the
conductivities at the critical point. The relevant Feyn-
man diagrams which contribute to the fermion polariza-
tion tensor are listed in Figs. 11 and 12. The diagram
in Fig. 12 is zero by Furry's theorem, because it con-
tains a closed fermion loop attached to an odd number
of gauge-field lines. (Essentially this is a consequence
of charge-conjugation invariance, since the Chem-Simons
gauge boson has odd charge parity. ) Figures ll(a) —ll(c)
are linear in G+& and therefore linear in e" and in
(h" —p"p /p ). Thus the odd contribution II (p) can
be read off directly from (31):

t ttttt tt t

IV. DISCUSSION

As we hqve seen, the critical properties of the Mott
anyon transition vary continuously with the anyon statis-
tics. Thus the model describes a line of fixed points
which are characterized by the statistics parameter o. ,

which varies from fermions, o. = 0, to bosons, o. = 1. In
Sec. III we calculated the critical exponents and univer-
sal conductivities at the anyon Mott transition as an ex-
pansion around. the fermion point. Specifically, in terms
of the deviation from Fermi statistics o. , we obtained
critical exponents up to second order and conductivi-
ties to first order. The critical properties at the Mott
transj. tion can also be obtained at o. = 1 directly in

FIG. 10. Ferxnion vertex: with an insertion of the com-
posite operator g,g; at D(1/N). The cross stands for the
composite operator @,Q, . FIG. 12. Null diagram at order O(1/N).
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terms of a bosonic scalar [U(1)] field theory, or equiv-
alently the 3D XY model. The exponents are of course
known quite accurately for the 3D XY model, and re-
cently an estimate for the conductivity has been obtained
from Monte Carlo simulations and a large-N expansion.
Also, within a large-N calculation Wen and Wu have
recently performed an expansion for n near 1 by coupling
a Chem-Simons gauge-field to the U(1) boson field. It
is instructive to compare these various results for the
critical properties of the Mott transition in order to see
the trends in exponents and conductivities as one varies
the particle statistics from Fermi to Bose. As we dis-
cuss below, the observed trend can give one some insight
into possible connections between transitions in the inte-
ger quantum Hall effect, and the magnetic-Geld-tuned
superconductor-insulator transition in thin Glms.

Consider Grst the exponents g and v. In Sec. III we
found that to second order in n,

q(a)=1 ——a +O(a ), v (n)=1+ n +O(a ).
3 6

8 n 1

364+ (era)2 N '

128 [128 —(hara) 2]a 1

3 [64+(~a)']2 N

If we put a. = 1, these become

(69)

(70)

iI(n = 1) = 1 —(0.036...)(1/N) + O(l/N ), (71)
v (a = 1) = 1+ (0.924...)(1/N) + O(1/N ), (72)

which, when extrapolated to N = 1, should become equal
to the 3D XY model exponents. Once again, although
the leading term in the expansion has the "correct" sign,
the extrapolations to N = 1 using only the Grst term are
clearly not very reliable.

Next we consider the universal conductivities at the
Mott transition. For fermions, n = 0, we obtained in
Sec. III that o. = vr/8 and o „=—1/2. Por the boson
Mott transition (in zero field) cr „= 0 and the recent
numerical estimatesi2 give o (n = 1) = 0.285 + 0.02,

For the 3D XY model, which corresponds to a = 1, the
exponents are given by, roughly,

i1(a = 1) - 1/50, v '(a = 1) - 3/2 .

Notice that both g and v are smaller for bosons than
for fermions. Moreover, the expansion from the fermion
end indicates that the initial deviations for small n are
to reduce the exponents, suggesting that g(a) and v(a)
might be monotonically decreasing functions of n. Un-
fortunately, as is clear from this expansion, the leading
order term does not give a reliable estimate at n = 1.
This should be contrasted with the e = 4 —D expan-
sion for the XY model which gives reasonable expo-
nent values for the 3D model when the low-order results
are extrapolated to e = 1.

It is also instructive to compare the 3D XY exponents
with the exponents obtained from the large-% fermion
expansion in Sec. III:

a value slightly smaller than in the fermion case. It is
instructive to see if the expansion about the fermion point
for small n gives the correct trends. For this purpose it
is both more natural and easier to compare resitivities,
since as (14) shows the longitudinal anyon resistivity is
simply equal to the fermion longitudinal resistivity. Upon
inverting the perturbative results in Eq. (32) and (33)
for the fermion conductivity, we obtain, using (14), an
expansion for the anyon longitudinal resistivity:

p..(a) = (0.9715...) + (2.084...)a + O(a') .

Similarly, the transverse anyon resistivity is given by

p y(a) = (1.237...) —(0.492...)a + O(a ) .

The universal resistivities at u = 1 follow from the boson
Monte Carlo simulations and are

p (a=1) =35+02, p „(a=1)=0.
Notice that the sign of the leading small n correction to
both p and p „are such that the values tend towards
the boson values in (75). This result suggests that, just
as with the critical exponents, the components of the uni-
versal resistivity tensor vary monotonically upon moving
along the Gxed line of critical points from fermion to bo-
son statistics.

One might be tempted to compare directly our large-
% results to those obtained in Ref. 13 for N-flavors of
bosons coupled to the Chem-Simons Geld. However, the
two large-% theories are probably not continuously con-
nected to one another (upon varying n) since the exten-
sion to % fields brings into the Lagrangian of the theory
a new SU(N) symmetry, which is spontaneously broken
upon crossing the bosonic transition, while unaffected
across the fermionic phase transition.

We now turn to the relevance of the results obtained
in this paper to two-dimensional experimental systems
which exhibit zero temperature quantum phase tran-
sitions. Unfortunately we cannot make direct contact
with experiment, since our simplified lattice model ig-
nores both disorder and long-ranged Coulomb interac-
tions. Nevertheless, the notion of a fixed line of critical
points parametrized by the statistics of the underlying
particles, along which the exponents vary continuously,
and monotonically, is presumably rather more general.

To be specific, consider a more realistic model of
anyons, with a long-ranged Coulomb interaction moving
in a quenched random potential and external magnetic
field. In the boson limit, n = 1, as parameters are varied
this model presumably undergoes a transition from a su-
perconducting phase to a localized Bose glass insulator.
This transition is believed to be in the appropriate uni-
versality class for real disordered superconducting Glms,
which are tuned with an external magnetic field from the
superconducting into insulating phases. This magnetic-
Geld-tuned superconductor-insulator transition has been
recently studied experimentally in considerable detail.
In the ferrnion limit, n = 0, with strong disorder the
model is presumed to exhibit transitions between integer
quantum Hall plateaus, for which there is also consider-
able experimental data. The critical properties of these
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two experimentally accessible phase transitions are thus
presumably end points of a fixed line of critical points
which interpolates between them. Moreover, transitions
between fractional plateaus in the quantum Hall effect
are probably described correctly by this same model with
fractional statistics n. For example, the transition be-
tween the so-called Hall insulator and the v = 1/3 quan-
tum Hall plateau can be described as a condensation of
fractional statistics particles with n = 2/3.

Although at present we cannot calculate analytically
(or numerically) the critical properties along the fixed
line of these disordered anyon models, it is instructive to
compare the critical properties measured experimentally
with the trends obtained in our simplified clean lattice
model. For example, experiments on the transition be-
tween integer plateaus in the Hall effect find that the
correlation length exponent v times the dynamical expo-
nent z to be given by roughly 7/3. Since one expects z=l
in the presence of 1/r Coulomb interactions, this gives
an estimate for v 7/3. At the magnetic field tuned
superconductor insulator transition, on the other hand,
with z=1 assumed, the experiments give a much smaller
value, v 5/4. Thus upon moving along the presumed
line of fixed points from the fermion to boson end, the ex-
ponent v apparently decreases. It is noteworthy that this
same trend, a decreasing of v moving from fermion to bo-
son, was what we found along the fixed line of Mott anyon
transitions. Perhaps it is generic that fermion transitions
are closer to their lower critical dimension, with a larger
v, than their boson counterparts.

It is also amusing to compare the experimental val-
ues for the universal resistivites at the two transitions.
At the field-tuned superconductor-insulator transition
the longitudinal resistivity is found to cluster in the
range between 0.8 and 1.0, in units of h/(2e), where
the Cooper pair has charge 2e. At the transition be-
tween integer plateaus in the quantum Hall effect, exper-
iments find values of o of roughly 0.2. Combining this
with o „=1/2 gives p of roughly 0.7, a value slightly
smaller than at the superconductor-insulator transition.
It is interesting that at the anyon Mott transition we also
find the longitudinal resistivity increases moving from the
fermion to boson end. It is of course unclear whether or
not this trend is a generic property of anyon phase tran-
sitions.

Finally, it is worth reempasizing that the existence of
a fixe& line of critical points characterized by the anyon
statistics in our simple lattice anyon model underscores
the importance of the fluctuating gauge field. At a criti-
cal point, or more generally in a gapless phase, the Huctu-
ating Chem-Simons gauge field cannot be simply thrown

away, as in the "fl.ux-smearing" mean-field approaches.
More specifically, we expect that the presence of this fI.uc-
tuating gauge field will most likely make the transition
between plateaus in the fractional quantum Hall effect in
a different universality class from that between integer
plateaus.
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APPENDIX: CALCULATION OF II (p)
AT ORDER O(1 /1V)

In this appendix we present the details for the two-
loop calculation of the even part of the gauge-boson self-
energy II, (p) in the 1/K expansion.

Some useful formula for the 2 x 2 p matrices are

Tr(p" p p"p ) = 2(6" 8" + 8" b
" —b" 8 ), (A1)

Tr(p"p p ) = 2e"" (A2)

(A3)

(A5)

gg= —k1, (A6)

(A7)

The relevant diagrams are those in Fig. 11. Note that
II =

2
b" II~ . We have II + and II, are therefore

given by

a 4
6—D' —D d q ~~"(I+I)~"N~"(k+ d)~ R(~ "q' —q q")

(2~)
'

(2~) k4(k+ p)2(k+ q)2qs

—4 ——p
6—D' —D

p N
dD k d~q q. (q+ k)(2k. pk q+ k2k - q —k2p q)

(2vr)~' (2~)~ k~(k jp)2(k+ q) q
A8
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and

4

P
6—D' —D

p 2%
d'k d q ~~"(~+~)~ (~+ ~+~)~ (~+ ~)~. ~(~"q' q-. q )

(2vr)D' (2vr)~ k (k + p) (k + q) (k + q+ p)2qs

respectively, where

6—D' —D

p K
d~'k doq G(k, q, p)

(2~)D (2~)17 k2(k + p)2(k + q)2(k + q + p)2qs
A9

G(k q p)=k [q —q p q —2q k. q —2q k p —(q p) +q p —k q]
+(k q) [ —2q'k q + 2(q p) (k p) —2q'k .p —2q'q p —p'k q]

+q'(k p) [q' —q p —2k p] .

Performing the convergent k integrations in Eqs. (A8) and (A9) at D' = 3, we have

(A10)

A g4
II (+b) = P

p

2q. p+ p'
(27r)~ qslq+ pl

q p
q'lq+» lp

(A11)

g g 3 D d q 2q p+p 4p 2q4 + 5p'q' + 2p4
+ +

p 8N (2~) q'lq+ pl q'lq+ pl qlq+ pl (q p)q'lq+ pl»
(A12)

Due to the factor q . p in the denominator of the last term in (A12) it is hard to obtain an analytic expression
with the dimensional regularization. So we will set D = 3 and introduce a momentum cutoff A in both (All) and
(A12). We will see the logarithmically divergent terms indeed cancel. Also we will discard linearly divergent terms,
whose appearance is an artifact of this regularization by momentum cutoff. (Such divergences do not appear in a
regularization that preserves Lorentz invariance. ) This results iri a finite contribution to II, at the order O(1/N):

A g4
(+b+)

p

d q q. p 4p+ 2 + +1 2q4 + 5p2q2 + 2p4

(2~)' q'lq+ pip q'lq+ pl qlq+ pl (q p)q'lq+» I»
(A13)

4
Except for a factor —z~ ~2 ~, , the first three terms are, respectively,

2 1 A A2
—ln, 8+ 4ln

9 3 p p2 '

The fourth term is a bit messy:

—2. (A14)

1 2+ 5y+ 2y2 gl + y —~y 1
dg ln +

o yV1+y V1+ y+ vy
2+ 5y+ 2y2 gl + y —1

d'g ln
ygl+y gl+y+1

where

64

1 2+ 5y+ 2y2 /1+ y —~y 22 A
g

o yv'1+ y V'1+ y+ ~y 6»'
2

+ ln = 2.137820914 .
13 2 2+1

3 (A16)

The integral in (A15) is numerically evaluated to be —6.405956452. . . . The logarithmic divergences cancel out and
the final finite result is

II, (p) = —1.509642238
y'

(A17)
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