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A generalization of the BCS ground state is suggested and leads to expectation values for the energy
and the current density consistent with the Ginzburg-Landau expressions. %(R ) describes the
quantum-mechanical motion of the center of mass of the superconducting pairs, and %*(R)%(R) turns
out to give the number of superconducting pairs per unit volume at R. Extension to 6nite temperatures
appears to be a possibility.

I. INTRODUCTION

Inspired by the strong-coupling formulation of Eliash-
berg and Nambu, Gor'kov, ' Schrieffer, and others, for
example Eilenberger, have derived Ginzburg-Landau
(GL) equations for superconductivity. Simplified treat-
ments are worked out in the well-known textbook of de
Gennes. The expansion of Gor'kov has been extended
to low temperatures by, for example, Werthamer. In all
these treatments the GL order parameter 'P(R) is
identified with the spatially dependent gap function b, (R )

and found to be proportional to it. However, the form of
the "kinetic energy" in GL suggests that +(R) has some
direct relation to the motion of the center of mass of indi-
vidual pairs. Discussion of electron tunneling is often
done on the basis of the motion of the center of mass of
the tunneling electron pair. At the same time agreement
with tunneling experiments can be obtained on the basis
of the GL equations, with %(R ) the order parameter. In
this paper a generalization of the BCS wave function is
proposed, which leads by means of a natural expansion to
precisely the GL equations at zero temperature. More-
over, %(R) describes the quantum-mechanical motion of
the center of mass of the superconducting pairs, and
%*(R)4(R) turns out to give the number of supercon-
ducting pairs per unit volume at R. Although the work is
at zero temperature in order to convey the development
in a relatively simple way, generalization to finite temper-
atures appears possible.

Of the standard derivations of the GL equation it is the
simplified ad hoc parametrization of the BCS wave func-
tion described in de Gennes book, already cited, which
comes closest to the present approach. However, in that
treatment it is not possible to give any first-principles in-
terpretation to the coefficients a, P, 1/(2m) in the GL
equations. The treatment of Gor'kov' applies only in the
neighborhood of T=T„and extensions to all tempera-
tures give rise to equations more complicated than those
of GL. At the same time, it has been pointed out that
GL equations appear to have some validity at lower tem-
peratures.

The requirements of a spatially inhomogeneous gen-
eralization of the BCS ground state are quite demanding.
Analysis of tunneling experiments and other considera-
tions suggest, as pointed out, that the GL function %'(R)

is actually related to the motion of the center of mass of
the pairs. At the same time, ql(R) is to be of the nature
of an order parameter. The present treatment, as noted,
differs from the standard derivation in the choice of ex-
pansion parameter. The familiar BCS coefticients uk, vk
are taken as spatially independent, and identical with
their choice in BCS. Ultimately, any slow inhomogeneity
in a spatial coordinate R is carried in the trial function by
an auxiliary function C(R), which, in the absence of elec-
tromagnetic fields, becomes a constant, unity for the
homogeneous BCS state, zero for the filled Fermi sea, i.e.,
for the normal metallic state. It is C(R) which becomes
the expansion parameter. In the general situation with
fields, the constant of proportionality y(uk uk) by which
C(R ) is multiplied to obtain %'(R ) leads to the interpreta-
tion of %*(R)%(R) as the number of superconducting
pairs per unit volume, see Eqs. (28a) and (28b). At the
same time, %(R) itself is seen to be associated with the
motion of the center of mass of the electron pairs, and the
kinetic-energy term in the GL equation becomes their
true kinetic energy.

To obtain these physical results it is necessary to write
down a first-principles wave function of, say, 2N electron
coordinates, and separate them into center-of-mass and
relative coordinates of pairs. This, incidentally, opens
the possibility of including effects due to the internal
motion of the pairs, which would arise for a sufficiently
rapidly varying vector potential A or suffIciently short
GL coherence length.

The separation of coordinates leads to a mixed system
of bosons and fermions. In a series of papers, Girardeau
has developed a formalism for such systems. His work
addresses a gas of atoms when both the coordinates of the
nuclei and the internal coordinates of the electrons are of
interest. In one of the papers he considers the applica-
tion of his work to superconductivity, showing how to
reduce his formalism to center-of-mass and relative coor-
dinates for electronic pairs. This leads to a reformulation
of the BCS ground state in terms of a description like
that of Blatt and Matsubara, as a Bose-Einstein condensa-
tion. ' It is interesting to note that in this sense the
present paper can be viewed as an outgrowth of the
Blatt-Matsubara picture; these authors pointed out that
the fully condensed state needs generalization when there
is a nonvanishing vector potential, with the inclusion of
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pairs k, ,k2, for which the total quasimomentum k, +k2
no longer necessarily vanishes. For simplicity, and to
make the paper self-contained, a direct development us-
ing from the outset relative and center-of-mass coordi-
nates of electron pairs and without Girardeau's reforrnu-
lation of the Hamiltonian is given here in Sec. III. Sec-
tion II serves as an introduction, developing the suggest-
ed trial function when no fields are applied. Section IV
completes the paper, treating the general case of a super-
conductor with a nonvanishing vector potential.

The present treatment can be seen to give mathemati-
cally inequivalent results when compared with the stan-
dard derivation. The expansions are carried out at every
value of k, rather than after final expressions containing
summations over k have been set up. This leads to ine-
quivalent expressions for a and P compared to those in
the literature.

The present treatment gives inequivalent results in
another way. The standard approach is built upon an
infinite family of functions of variation vk(R), one func-
tion for every value of k, whereas here, see Eqs. (15) and
(17), there is only one function of variation C(R). Thus,
the standard method may yield superior results, if fully
implemented. In any case, however, the procedure goes
beyond the single parameter variation envisaged in the
GL method, and, except right at T = T„ leads to equa-
tions more complicated than those of GL. Further there
are difficulties. For example, in the simplified treatment
of de Gennes the a priori expansion in the gap function
b(R) influences the values of the Uk(R). This element of
arbitrariness is likewise present in the standard Green s-
function analysis, where the expansion parameter b, (R ) is
predetermined by the equations of motion for local
Green's functions, and expansions follow. The Green's
function procedure introduces a conceptual difficulty, as
well, in that the supercurrent, and, hence, the wave func-
tion, is in response to the overall situation, i.e., one has a
true Euler variational problem rather than a local prob-
lern; any a priori local equation, short of the X-body
Schrodinger equation, is going to have a heuristic ele-
ment.

The present method is thought to be a more direct way
of getting to the goal, that of deriving the GL equations.
To circumvent the various difficulties the spatial depen-
dence with fields is here carried by the single-order pa-
rameter C(R) in a trial function. The functional depen-
dence of C on R is then determined by minimizing the ex-
pectation value of the overall energy, as it then turns out,
precisely by equations having the GL form.

A different requirement on a generalized BCS trial
function is that a first-principles expression for the
current density in terms of the center-of-mass coordinates
agree with the GL expression for the current obtained in
the usual way by minimizing the free energy with respect
to the vector potential. Lastly, the coefficients a,P may
not depend on the vector potential. All the requirements
mentioned in this section will be found fulfilled.

The interpretation of the order parameter as a gap
function has always seemed as physically somewhat un-
satisfying. The present paper aims to make a contribu-
tion by showing that a direct interpretation of the

Cxinsburg-Landau order parameter %(R ) as a true
center-of-mass wave function for pairs is straightforward.
With the discovery of high-T, superconductivity there is
a new interest in the fundamentals of the conductivity
mechanism. For this reason, in particular, a more direct
interpretation of the Ginsburg-Landau equations would
be desirable.

II. THE FIELD FREE DESCRIPTION

X ~k (k [C~k +Dkvk+k t+ —k $ ] l0 &

~k [ +k +Uk k t —k L ] o & (lb)

where the ak&, a*
k~ are electron creation operators, l0)

the vacuum state, and the uj„vt, assume their usual BCS
values, taken as real. In Eq. (la) the electron operators
have been separated according to whether their wave vec-
tor k places them above or below the Fermi energy, EF.
For simplicity explicit vector notation will be omitted
where the reader is sure to understand that vector quanti-
ties are involved. Additional parameters C and DI, have
been introduced. C, associated with the "minority car-
rier, " electrons above EF, holes below, is taken to
represent the GL order parameter; it indicates the degree
of superconductivity. When C vanishes No becomes the
metallic state, when C approaches unity 4o becomes the
standard BCS ground state. The alternate form for @o,
Eq. (lb), defines when compared to Eq. (la) the short
hand coefficients ul„vt, . The purpose of the coefficients
Dl„ taken as real, is to provide normalization:

D u +lCl U =1 k)ky,
v +lcl Q =1 Jc &g

(2a)

(2b)

In addition, for normalization, one must, in fact have,

(2c)

With Eqs. (la), (2a), and (2b) one can calculate the ex-
pectation of the energy as

where the Harniltonian H, given below, will have the BCS
form. Of course the parameter C overspecifies No. If one
regards the parameters uk, vk as known, and varies Uo( C)
with respect to C (after elimination of the Dk ) Uo(C) will
have its minimum at C = l. (This is obvious, since with
u&, v& fixed at BCS, any values of the scaling factor C oth-
er than 1 imply the existence of a different minimum. )

Nevertheless, this variational calculation will represent
the 3 ~0 limit of the proposed calculation for finite A,
where C will be a function of space; it illustrates features
of the suggested approach for bridging from the micro-

It will be helpful first to outline the approach with no
applied field, with the vector potential A=O, and with
the Ginzburg-Landau "wave-function" a constant.
the generalization of the BCS zero-temperature function
is then suggested to be

@0 &k &k [DkQk+CUkaktQ kg ]
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scopic to the macroscopic.
The BCS Hamiltonian is

to EF, and ( V/2) the constant potential coupling pairs.
The energy per unit volume Uo(C, Dk ) in Eq. (3) becomes

H = g gkak ~ak ~+ IVl, ,
k, o.

(4a)
Uo(C, Dk ) =2 g (kvk+ V/2 g ukvk ui*vi* .

k k, l
(5a)

W~
= V/2g akta" kia i(alt,

k, l

(4b)

where cr is the spin, and gk a one particle energy relative

I

Substituting expressions for uk, Uk obtained from compar-
ing Eqs. (la) and (lb), into Eq. (5a) one obtains:

Uo(C, Dk)=2 g gklcl'uk2+2 g gkDk2vk2+V/2& ICI'DkDlvkvlukul (5b)
k &kF k &kF k, l

To obtain a variational expression dependent only on C one has recourse to the normalization conditions, Eqs. (2a)
and (2b). An expansion in the parameter C in the spirit of the CiL theory is forthcoming if for k & kF one makes the ex-
pansion:

Dkuk =+I—c vk —-1 —vkIcI /2 vkI—cI /8, k &kF,
and a similar expansion for the "majority" term Dkuk when k & kF. Since, for k & k~ the largest value of vk is (1/2)
one gets rapid convergence for

I
C l. (With only three terms, even at C = 1, vk = 1/2, the accuracy is 98.3%.)

Substituting Eq. (6) and the corresponding equation for, say, Dlvl when l & k~ into Eq. (5b) for Uo(C, Dk ), one ob-
tains

Uo(c) =2 g gk +a'I cl + (p'/2)
I

cl'
k &kF

with

(7a)

a'=2 g gkuk+2 g ( gk )u—k+a",
k &kF k &kF

a"=V/2 g vkvl+2 g vkul+ X ukul
k &kF k &kF k &kF
I &kF I &kF I &kF

(7b)

(7c)

P' = —V/2 (Ul +Uk )UIUk+2 g (Uk +ul )Ukul+ 2 (ul + uk )uluk
k &kF k &kF k &kF
I & kF E &kF 1&kF

(7d)

where V &0, a'&0, and p'&0, as usual. The first term
on the right-hand side of (7a) is the kinetic energy of the
normal state relative to 2NEF, and will be dropped. C
appropriately normalized will, it is being suggested, be-
come 4, the GL order parameter when A=O, and Eqs.
(7) will become the corresponding result for the energy of
the superconductor at zero temperature.

III. CHANGE TO CENTER OF MASS
AND RELATIVE COORDINATES

For current carrying states, the general idea is to re-
place, for example, Cvkakta* kt when k & k~ in Eq. (la)
by g&c!2ak+&&2ta' k+&&2t, iriQ being the momentum of
the center of mass of the pair, and c& being new
coefficients. However, in a BCS-like wave function un-
desirable annihilations could occur when an operator,
ak+&&2&, say, belonging to the pair k, —k would operate
on a wave function component containing orbitals
k'+Q'/2, belonging to a pair k', —k', where k'&k. It
would only be necessary for k +Q/2 to equal k'+ Q'/2.

To avoid this difficulty it was found convenient to make
changes of variable to relative and center-of-mass coordi-
nates for pairs, and to decompose determinantal wave
functions into components corresponding to different
possible pairings of electron coordinates.

The BCS ground state is comprised of determinental
components ID). In ID) one finds that for any orbital
ltlkt, a mate ltd kl is also provided. Any one of the 2N
products comprising ID ) constitutes a particular pairing
of the electron coordinates r„.. . , r2&, according to
which coordinates occupy the mated orbitals. It will be
convenient to refer to a particular pairing of the 2X coor-
dinates (each of which, as spin is included, has four com-
ponents) as an arrangement, reserving "pairing" for the
usual mating of orbitals.

The totality of (2n)! permutations comprising any
determinental component ID ) can, clearly, be split into
arrangements:
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A given arrangement differs from the next by a single in-
terchange of partners, for example, from having r, paired
with r2, and r3 with r4, to having r, paired with r3, and
r2 with r4', this occasions a change of sign, as indicated by
the factor ( —1)' in Eq. (8a). The total number of ar-
rangements with 2N electrons, n„ in Eq. (8a) is given by

n& =(2N —1)(2N —3) . . (3)(1)

—:(2N—1)!!.

(8b)

(8c)

r; —r; r

R, =(r, +rj)/2 . .

For this arrangement ~D, & becomes

(9b)

Given orthogonal orbitals, the various components ~D, &

will be orthogonal, and if the ~D, & are normalized, ~D &

in Eq. (8a) will also be normalized.
With any given arrangement there comes a particular

set of N relative coordinates ri and N center of mass
coordinates R;.:

cupations different from those in ~D &. H is comprised of
one electron diagonal terms, and the pair interaction 8'
in Eq. (4b). A regards the former terms, all elements in-
volving disparate arrangements vanish, there are no ex-
change elements for one electron operators.

The two electron pair interaction is, in electron coordi-
nates, the sum over all possible pair interactions g(r, )

[see Eq. (20a)]. The BCS model Hamiltonian considers
only elements in which entire pairs are scattered:

&D, ~g(r,, )~Db & or in &D. !g(r,, )~Db'&

~ Db & or
~ Db & must differ from D, & in the interchange of

one particular pair state, (k~l). The pair state under
consideration, k or l in the expansions of the functions
D, &, ~Db &, Db & must each depend on r,z Thu. s, in both
~D, & and in Db & or ~Db &, r, and r~ must. be. paired.
Since the other orthogonal orbitals in the respective wave
functions overlap only for components where the orbitals
are occupied in the same way, ~D, & and ~Db &, or D, &

and ~Db & must actually correspond to the same arrange-
ment:

Pk(! J) +,1

N!
(10a) & D. g (;, ) Db &

=
& D. Ig (;, ) D '

&
=0, ~ &b . (»)

/kt(r; )y k! (rJ ) =e "a(r; )p(rJ ) (10c)

with a,P the spin-up and spin-down functions. Equation
(10b), thus, is giving the orbital of a given pair. pk(ij) in

Eq. (10b) is the antisymmetrized combination, leading to
the overall antisymmetry of ~D & in Eq. (8a). On the oth-
er hand, exchange of relative coordinates rj in ~D, &

should not lead to a sign change, since two electrons are
being exchanged simultaneously. The lower right-hand
plus sign in Eq. (10a) denotes that although D & is, as in
determinental functions, the sum over all permutations, it
is the symmetric sum, the terms are to be added without
minus signs upon exchange.

Since there are N! permutations among the N relative
coordinates in ~D, &, ~D, & will be comprised of 2¹!
products of simple orbitals, and can be easily normalized.
It follows that the total number of products comprising
~D & is given by

2 N!nz =(2N)!

in view of Eq. (8c), as is to be expected.
Consider now matrix elements of the BCS Hamiltoni-

an, H, in Eq. (5). These are between components
~D, &, ~Db & in Eq. (8a) of the same determinental func-
tion ~D & but corresponding to different arrangements, or
between components ~D, &, !Db &, where ~Db & is in an ar-
rangement belonging to a BCS component ~!D' & with oc-

Pk(i,j ) = I/v'2[e "a(r, )P(r )
—e ."a(r )P(r, ). ] .

(lob)

The upright brackets in Eq. (10a) denote that !D, & is the
sum of all permutations of the N relative coordinates
among the N orbitals pk(i, j) occupied in the particular
BCS component ~D &. One notes that for plane-wave or-
bitals (to which the treatment is restricted)

Matrix elements of the BCS model Hamiltonian connect-
ing wave function components from different arrange-
ments vanish.

In consequence of Eq. (12), one can evaluate the expec-
tation of the energy while restricted to one arrangement.
Further, one can conveniently build up any one wave
component ~D, & using creation and annihilation opera-
tors bk, bk for the antisymmetric orbitals pk(i,j ) of Eq.
(10b). Here bk, bk do not correspond to either boson or
fermion operators. bk introduces the orbital Pk(i,j ) into
the wave function, and only one orbital of a given k may
appear to be sure, but the operators do not anticommute
as fermions do. Their introduction is for purposes of no-
tation, no actual calculations are carried out drawing on
any properties they may have.

=0&k (Bk +Vk kb) lo &

To proceed with a generalization, one defines orbitals

(13)

ikr, . —i kr, iQR,
pk&(i, j)= —[e "a(i)p(j)—e "a(j)p(i)]ev'2

(14)

where R," is the center of mass coordinate, Eq. (9b). Cor-
respondingly, one has "creation" and "annihilation"
operators bk &, bk & Here, A'Q is the .total momentum of
the pair, which no longer needs to vanish. b&&, bk& add
or remove orbitals p«(i,j ) from symmetric many-body
functions 1/"!/N ~pk&(i j ) ~+ defined as in Eq. (10a).

The generalization of Eq. (la) for the BCS ground state
being suggested is, in terms of the b&&.

IV. THE GENERAL CASK, A.&0

Evidently, the BCS ground state for one particular ar-
rangement can be written in terms of the new operators
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@(R)=~k&k Di, (R)uk+vk gc&bk& mJ, «C(R)uk+vk gdk&bk&
Q Q

where R is a location in the crystal. The uk and vk are again the standard BCS coefficients, taken to be real.
Coefficients, cQ and dkQ have been introduced. For k & kF dkp is a function of R, all other coefficients are independent
of R. In terms of these coefficients the functions C (R ),Dk (R ) are given by

C(R):—g c&e', Dk(R) —= g dk&e', k )k~
Q

=dko(R)+ g'dk&e', k &k~,

where in Eq. (15d) the primed sum excludes Q =0. Lastly,

dkg=cg(uk/vk), k &kF, QWO,

(15b)

(15c)

(15d)

and dkp(R), as well as the dI,& for k )k~ will be defined shortly.
The functions C(R),Dk(R) are the generalizations of the constant coefficients C, Dk in Eq. (la). Eq. (15a) has been

chosen to preserve the symmetry about the Fermi energy found in the field free case, with special attention to the sym-
metry of the current carrying terms.

The functions Dk(R) are needed for normalization. They will be chosen real. Both Dk(R) and C(R) are presumed to
vary slowly with R (the location in the crystal) on an atomic scale, i.e., on a scale of volume per electron. The idea that
when one is dealing with a potential that varies slowly one can do one*s quantum mechanics locally, which is here at
fixed R, was first introduced by Thomas and Fermi in their statistical model of many electron atoms. The idea finds
common application in semiconductor physics, when the effect of electromagnetic fields is replaced by a slowly varying
Fermi energy; the model there is, therefore, one of small self™contained systems at fixed Fermi energies in series with
one another. Normalization of wave functions, counting of states, etc. , is in these models precisely a local affair, carried
out for one subsystem at a time. This approach, it is being suggested, needs to be adopted to arrive at the macroscopic
CsL equations.

Local normalization conditions link the coefficients Ck and dkQ. Suppose one has some normalized symmetric wave
function ~$&, ) or (2N —2) relative and center of mass coordinates. Then, one has

(
N

X cgbk'gSkk, X cgbkgSkk, )
=—X f c'(R,, )c(R,, )d'R, , k )kk,

Q Q i j =1

(
N

x dkgbkgSkk, x dkgbkgSN 1) S x f (Rk(R;Rc)l'd'Rc
Q Q i j =1

i QR,"
DI, (R,RJ)=dko(R)+ g'dk&e ", k &kF,

Q

(16a)

(16b)

(16c)

where evidently Dk(R, R;J =R) is just again Dk(R),
k & kz. The probability of finding any one center of mass
per unit volume of the local location R is given by
C*(R)C(R). At the same time the probability of finding
the state k, for k & kF empty at R is given by uk ~

C(R )
~

.
[ukC(R) is a coefficient independent of any coordinate. ]
Normalization of Eq. (15a) at R in unit volume becomes

—iqr,
gle Fourier component e

(e(R)~e " ~e(R))—= J d'R, , V, (R,,R), (18)

where Vq(R;J. , R) is obtained by integration over all coor-
dinates, relative and center of mass other than R,". The
use of Eqs. (14), (15a), (15b), and (15c) for 4 yields:

ukDk(R)+vq C(R)i =1, k )k~,

vkDk(R)+uq~C(R)~ =1, k &k~ .

(17a)

(17b)

N[V (R)+V (R)]= QDk(R)Dk (R)C'(R)
k

XC(R)vkukvk jul
Remembering that Dk(R) is real, one sees that Eq. (17b)
fixes the remaining coefficient dj, p(R ) in Eq. (15d), k & kF,
as well as the constant coefficients dl, & in Eq. (15c), i.e.,
when k )k~. As in the field free case for k))k~,
Vk ~0, Dk(R)~1, and for k &&k~, uk~0, Dk(R)
~dkp(R )~ 1. dkp(R ) associated with the k pair that car-
ries no current, effectively becomes the normalization
constant at R for k &kz.

To find the expectation value of the pair interactions
one begins by calculating the expectation value of the sin-

V (R)—:V (R,~ =R,R) .

(19a)

(19b)

Wp ——V/2 g' g ( r; ) (20a)

The second quantization form for the pair interaction
W~ in Eq. (4b) will have the same matrix elements (bar-
ring any self-energy corrections associated with the coor-
dinate form given here) as
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= V/2g g'e (20b) (T, )= J@*(R)T,N(R)n; [d rjd R, ]" (26a)

2(kvk~c(R)~ + g 2(kvkD2(R) (26b)

where the sum g,' includes (2N)(2N —1) terms (every
electron interacting with all the others with a potential
V). It is to be noticed that the center of mass coordinates
do not enter.

In Appendix A it is shown that when working in one
particular arrangement only, as is done here,

W„= Vg ge
q ij

(21)

(i' W i4) = Jd R W„'(R)

with

(22a)

where the sum g,i. in Eq. (21) is over the N relative coor-
dinates of one particular arrangement. In the notation of
Eqs. (18) and (19b), the expectation value in the entire
crystal of the pairing interaction W given in Eq. (21) be-
comes

k &k —I' k &kF

=2 X 4+2 X kkvk
k &kF k &kF

+ g (
—

gk )uk C(R) (26c)
k &kF

where the result in Eq. (26b) is obtained with the help of
Eq. (15a) for iIi(R). gi, is again measured with respect to
the Fermi energy. Equation (26c) was obtained with the
help of the normalizing condition, Eq. (17b). The effect
of adding in ( Ti ) is, therefore, to change a" in Eq. (24)
for the pairing energy to a' in any expression for the total
energy, in the same way as in the field free case. On the
other hand, again using Eq. (15a) for iIi(R) the local ex-
pectation value of T2 at R per unit volume will be given
by

W (R)=NV g V (R) (22b) (T2~ (T2~ +~T2~ (27a)

q &0

where in (22b) it is recognized that all N pairs ij will yield
the same integral over R; ( —=R ). Combining Eqs. (19),
(21), and (22b) one finally has

W' (R)= V/2g g Dk(R)Dk (R)C*(R)
q k, k —

q

Xc(R)vkukvi, uk, (23)

where the factor (1/2) allows extension to summing over
all q.

Equations (17a) and (17b) are the generalizations of
Eqs. (2a) and (2b). Equivalent expansions to those given
in Eq. (6) are, therefore, forthcoming, D and C now being
functions of R. It follows that

where again any coordinate R; was taken to have its lo-
cal value R after the differentiation, and C&(R) is the wave
function per unit volume at R.

Equation (27c) can be written in terms of coefficients
c&, using Eq. (15e) to eliminate the coefficient dk&.
Equations (27a) —(27c) then yield the kinetic energy in the
GL form if %(R ) is defined as

0'(R) —=yc(R), (28a)

(T2)'= g vk g c«fi Q /(4m)c&e '~ ~'", (27b)
k &kF QQ'

(T )"= g v g d„A' Q /(4m)d„e
k &kF QQ'

(27c)

W, (R)=—a"~C(R) ~'+P'/2~C(R) ' (24)
1 /2

vk+ g uk
k &kF k &kF

(28b)

with a",P' already defined in Eqs. (7c) and (7d), if one
identifies the states k —

q for any q with one of the states
l.

Of interest next is the kinetic energy T. With relative
and center of mass coordinates as given by Eqs. (9), again
for a given arrangement, the kinetic energy separates:

T=T)+T2, (25a)

T, =
'J &j

(25b)

a'
T2=

4 ~aR' ' (25c)

when the sums in Eqs. (25b) and (25c) are over the N
pairs ij in the chosen arrangement. For T one gets:

Equations (28a) and (28b) are essentially consistent with
the suggestion in GL that 4 (R)V(R) represents the
number of superconducting electrons per unit volume at
R. [C&(R) has been normalized to unit volume. C(R) is
the "degree of superconductivity, " C =1 yielding BCS,
see Sec. II. Thus, %'*4' represents the number of super-
conducting pairs per unit volume, the supercurrent origi-
nating with the minority carriers. ]

The vector potential associated with electron r,. is
A(r, =R, +r, . /2), see Eqs. (9.a) and (9b). The necessary
approximation is to assume that A is a constant over the
excursion r,. of the relative coordinate of the pair (coher-
ence length). In this case A will be grouped with R;
rather than r, in the final kinetic energy.

The final result, drawing particularly on Eqs. (27b),
(28a), and (28b) is that
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(T2&= fV*(R) —. —2eA(R) %(R)d R .
4m i BR

(29)

the free energy with respect to A, and setting V A equal
to minus the current. Given a microscopic description it
becomes possible to check for consistency by direct eval-
uation. The current j(R) at a point R is given by the ex-
pectation value,

Combining now Eq. (24) for W with Eq. (29), and includ-

ing the effect of the kinetic energy ( T, &, Eqs. (27) and
(26c), one gets for the total-energy expectation per unit
volume at R the GL form:

2

U[%(r)]= 4"(R) —. —2eA (R) 0'(R)1

4m i BR

j(R)=(e~j(R) e &

with

j(R)= g [p;5(r, —R)+5(r, —R.)p, ]
l

(3 la)

+air(R) i'+ —[q(R)i',
2

where, from Eqs. (24) and (28a)

(30a)

and

(31b)

0.=a'/y

P=P'IX' .

(30b)

(30c)

The current is obtained in GL theory by minimizing

p; =(A/i )V„ (31c)

Consider now for the pair r&, rz, the operator J&(r&, r2 ~R),
where

2m, I(eA)J&(r&, r2~R)—:5(r, —R)B/Br&+5(r2 —R)BIBr2

a 1 a=5(R )p+r)2/2 R) +-
Br, 2 BR,

+5(R,2
—r,2/2 —R )

a

12

+—
2 BR(2

(32a)

=5(R(q —R)B/BR)q . (32b)

The differentiation in Eq. (32a) is with respect to one of the cartesian components, and the change to the relative coordi-
nate r, 2 and the center-of-mass coordinate R,2 of Eqs. (9) is being carried out. Again, the assumption of limited elec-
tron pair size leads to the approximation shown in Eq. (32b).

Going back to Eq. (15a) for @,one finds

I

(4 J&(r&r2~R~N&= —y g c&.c& f e " 5(R&2 —R) e "d3R&2 .
g gt 2ml BR I2

(33)

Proceeding in this way, recollecting also Eq. (15b), and Eqs. (28a) and (28b) one does find:

j(R)=eh'/(2mi)[%*(R)VV(R) %(R)V%*(R)—] (e /m)—V*(R)%(R)A(R) . (34)

There are, of course, ways of modifying the trial func-
tion Eq. (15a). The symmetry about E~ embodied in Eqs.
(15) defining the trial function N(R) is designed to max-
imize the absolute va1ue of the pairing interaction, again
as in the field free situation. The dk&, QAO, were chosen,
according to Eq. (15e), to equalize the contribution of
electrons and "holes" to the supercurrent. Given a fixed
value for the current, this choice will minimize the ensu-
ing kinetic energy. These considerations preempt the
choice as regards constants. A remarkable feature of the
GL free energy is that the coefficients a,P do not depend
in any way on the vector potential; they stay put all the
way down to zero applied field. It is difficult to see how
any modification of the symmetry in Eq. (15a) could leave
this result intact. Extension to finite temperatures
represents a hitherto unmet challenge.
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APPENDIX

Here we wish to show that

(D. l(~, )„,„ID.& =(Dl(~, )„,„„ID&, (A 1)

V)q
= (D. I

V/2e ' "
I D, &, (A2)

where (W )„,„„is given in Eq. (20b), and (W' )„, is

given in Eq. (21). The expectation value V," for one par-
ticular interaction in the arrangement a is given by
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whereas, going back to Eq. (8a) for ~D, ), one has

V; =(D~ V/2e "~D ) =n~ '(2N —3)!!V~. (A3)

Eqs. (21) and (A2)

(D. 1(lV, )„,„ID.) = g 2NV... ,
q

(A5)

because for the (2N —1)!!possible arrangements, in only
(2N —3)!! arrangements are r; and r paired. Further,
from Eq. (20b)

whereas from Eqs. (8c), (20b), and (A3),

(Dl( lV, )„,„.,~D ) = g (2N)(2N —1)Vjq

( W~ )„,„,) = (2N —1 ) V g e (A4)

where gI') is over the N relative coordinates in a, i.e.,
there are only (2N)(2N —1)/2 terms in Eq. (A4). From

q

(A6)
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