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Anisotropy of the upper critical field in a heavy-fermion superconductor
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We study the upper critical field for various possible order parameters of a heavy-fermion supercon-
ductor. We pay particular attention to the question of how the anisotropy of the upper critical field

changes by effects of paramagnetism, impurity scattering, and Fermi-surface anisotropy in the presence
of strong spin-orbit coupling. The paramagnetic limit can have a dramatic effect on the anisotropy in
odd-parity superconductors, and provide important information on the symmetry of underlying order
parameters. We also discuss the effect of impurity scattering.

I. INTRODUCTION

The upper critical field H, 2 of heavy-fermion supercon-
ductors shows many interesting features. ' Single-crystal
UPt3 has an unusual temperature dependence at low tem-
perature, as well as a kink structure near the transition
temperature. For U& Th Be&3 the upper critical
field rises steeply in the Ginzburg-Landau region and de-
viates quite early from its linear slope. Choi and Sauls
(referred to as CS) have previously presented a theoretical
explanation for the unusual temperature-dependence of
H, 2 for UPt3 and discussed how the paramagnetic effect
can provide crucial information on the spin-structure of
underlying order parameters in heavy-fermion supercon-
ductors. In this paper we present detailed calculations
of the upper critica1 field for heavy-fermion superconduc-
tors whose crystal symmetry belongs to the hexagonal
point group D6h, which includes UPt3, UNi2A13 and
UPd2A13. ' We compute the upper critical field for all
temperature, while taking into account key elements to
determine the anisotropy of H, 2 in heavy-fermion super-
conductors; anisotropy of order parameters, Fermi-
surface anisotropy, paramagnetic effect, impurity scatter-
ing as well as the strong spin-orbit coupling.

The anisotropy of H, 2 of pure superconductor is deter-
mined by the anisotropy of the Fermi surface near the
transition temperature, where the paramagnetic coupling
is unimportant. At lower temperatures, however, the
paramagnetic limit can have a dramatic effect on the an-

I

isotropy of H, 2 in odd-parity superconductors. For
even-parity states, the upper critical field is bounded by
the paramagnetic effect for all directions of field. But for
odd-parity states, there is no suppression of superconduc-
tivity if the external field is along the direction of
Cooper-pair spin, whereas the magnetic field of other
orientations will be a pair-breaking source. We also
study the effect of impurity scattering on H, 2. Nonmag-
netic impurities can be pair breaking even in the absence
of applied field for the unconventional superconductors
whose order parameters belong to the nonidentity repre-
sentations. ' This leads to a change in the slope of H, 2

near the transition temperature and the anisotropy of
H, 2.

In Sec. II we derive general equations for the upper
critical field, while incorporating an arbitrary Fermi sur-
face, paramagnetic effect, Fermi-liquid corrections, im-
purity scattering, and the unconventional order parame-
ters. In Sec. III we discuss the effect of paramagnetism
on the anisotropy of H, 2 in clean limit. The effect of im-

purity scattering is considered in Sec. IV.

II. FORMALISM

We use the quasiclassical theory of superconductivity
and follow closely the notation of CS and Alexander
et al. " The key quantity to compute is the quasiclassical
propagator g( &k, R, )e, which is a 4X4 matrix in the
Nambu representation:

g(kf, R, e)+g(kf, R, e) o [f( kfR, )e+f( k, IRe) o. ]io.

iver [f*(—kf, R, e) f*(—kf, R, e—) o ] g*( kf, R, e—) og ( —k&, R, e—) oo''
where o. =(o„tr,tr, ), are the Pauli matrices in spin
space. Here e is the Matsubara frequency, R is the real-
space position, and kf is a two-dimensional coordinate
defining the position on the Fermi surface. The quasi-
classical propagator satisfies a transportlike equation:

[l e1 3 o Se]f(kf y R, e )
—U,„,(kf, R ),g (kf, R, e ) ]

+tvf(kf ) Vzg(k fR, )@=0

g
~2 2
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The Fermi velocity v&(k&) depends on k& and r3 is a Pau-
li matrix in particle-hole space. The coupling to a mag-
netic field is given by

ue„, (k&, R)= v&(—k&) A(R)r3+ p(k&)S B(R) . (4)
c

The first term is the orbital coupling to the field, while
the second term is the paramagnetic coupling to the spin.
Here e and p(kI) are electric charge and effective mag-
netic moment of a quasiparticle and c is speed of light.
The vector potential A( R ) generates the total field
B=V X A and S is the spin operator:

a. 0S= 0 ohio'oy

The self-energy o „]& includes the pairing self-energy
b, (k&, R) as well as the self-energies for impurity scatter-
ing and Fermi-liquid corrections. One simplifying
feature is that we need the propagator g only to the first
order in 6 in order to compute the upper critical field so
that the diagonal component of g can be replaced by the

I

normal-state propagator. The Fermi-liquid corrections
can then be absorbed in the definition of effective magnet-
ic moment p(k&). The equation for impurity self-energy
can be written

p(kf R «) ( w(kf kf )g(k/ R 6) )
f

(6)

where the bracket ( }z denotes a Fermi surface in-f
tegration over the variable k& and w(kI, k&) is a scatter-
ing probability of nonmagnetic impurities. Note that Eq.
(6) is valid beyond the Born approximation in our calcula-
tion. '

By solving the off-diagonal component of g from Eqs.
(2) and (3) together with the self-consistent equation for
impurity self-energy and the weak-coupling gap equation,
we obtain the following coupled equations. For odd-
parity states,

h(k/, R)= T g( V'" (k/, kj )f(k/, R, e))q,
E f

where

f(k&, R, e)=2irj dr exp( rL )([1+—[cos(2rpH) —1]Q"][6(k&,R)+ (w(k&, k&)f(kI, R, e) }„,]
0 f

i sgn(—e) sin(2rpH )f( w(k&, k/)f (kI, R, e) }k, ),f
f (k&, R, e) =2ir I dr exp( rL ) [cos(2rpH—)( w(kI, k&)f(k&, R, e) }„, i sgn(—e) sin(2rpH )f"

0 f
X [h(k/, R)+ (w(k/, k/)f(kj, R, e))k, )] .

f
The operator I. is defined by

(9)

L =2~E~ +2m wo+s gn(e)v& 8, (10)

where 8=V+ +i(2e lc) A and wo is an s-wave part of w(k&, kj ). The pairing interaction is denoted by V' (k&,kI ), the
direction of magnetic field by the unit vector h, and its transpose by f"=(h„,h~, h, ). Note that singlet and triplet com-
ponents of the propagator, f and f, decouple without the paramagnetic terms. The equations for even-parity states can
be obtained from Eqs. (7)—(9) with the following substitutions:

ftr Vodd Veven

The upper critical field is then computed as the largest value of H for which Eq. (7) has a nontrivial solution.
In a pure superconductor the equations are greatly simplified. For odd-parity,

h(k&, R)=2vrT g I dr( V ((kI, k&)exp[ —2r~e~ —sgn(e)rv&(kI) B][1+[cos(2&pH) —1]Q"]h(kj,R) }z,
0 f

(12)

For even-parity, the scalar order parameter satisfies the
similar equation to Eq. (12) with a substitution, Q "~1.
Note that the paramagnetic term is unimportant near the
transition temperature for both odd- and even-parity
states; however, it can have a large effect on H, 2 at low
temperatures, except for the case of odd-parity states
with hlH.

For numerical calculations we use the same material
parameters as in CS with an extension to take into ac-
count impurity scattering: (i) two Fermi velocities, u)
and v&, to parametrize our uniaxial model for the Fermi
surface, (ii) an isotropic effective magnetic moment p
(Ref. 13), (iii) an isotropic part of impurity scattering wo,

'2
pH0 woP=, wo=
~TO

' To '

+c T Hh=
Tc0 +cO HO

(13)

and (iv) superconducting transition temperatures, T, and
T,o, with and without impurities (in zero field), respec-
tively. We also introduce the coherence lengths,
gi =

uy /2wT o g~)
=u) /271 T o and a magnetic scale,

Ho=(hc/2e)/mg~i, as well as the dimensionless parame-
ters.
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The upper critical field is calculated with H along z, the
axis of sixfold symmetry, and also for H in the basal
plane.

III. PARAMAGNETIC EFFECT

b (kf, R) =z [g+(R)g*(kf )+g (R)((i/(kf )], (15)

where A, is a coupling constant and g(kf) —k +ik .
Note that 5 is along z, so that the Cooper pair spin lies in
the basal plane. By putting Eqs. (14) and (15) into the
gap equation (12), we obtain equations for the amplitudes
g+(R):

7l+ K „K,~
K*~ K „

where

We compute the upper critical field in the clean limit.
First we consider the odd-parity state; the two-
dimensional (2D) representations, E,„and Ez„, and also
the 8&„representation, which for our purpose is
representative of all the 1D odd-parity states. For the
E,„state the pairing potential and order parameter are:

V' (kf, kf ) =A&"[g*(kf)Q(kf )+1(/(kf )Q*(kf )], (14)

cxo= 1

(1—a„)(1—a„+2)=13„, for n ~ 0,
where

(20)

„=A4m'T $ f dr( g~ exp( —2rp —rvf. g)
@~0

X [1+[cos(2r/L/II )

—1 }cos (0/, ) ] ) . (17)

The angle between magnetic field f and the z axis of the
crystal is denoted by 0&. The matrix element K,~ has the
same expression as K,„except that ~g~ is replaced by g .
We solve Eq. (16) for all temperature by a standard
method of introducing raising and lowering operators,
a+, and a set of eigenfunctions, [P„(R)},of the harmonic
oscillator problem. '"

When the magnetic field is along z, we define
a+ = —

—,'(8„+id&) and a =
—,'(8„i(3 —), and then ex-

pand g+(R) in terms of IP„(R)}:
g+(R)= g P„P„(R)—. (18)

n=0

Putting Eq. (18) into Eq. (16) yields a matrix equation for
P„—.This can be diagonalized in a block form and its ei-
genvalues are obtained from the equations

e„="e4eT X f de ~g exp —2ee —pe coe(2epH(le(p—e(),
~&o 2

1 2
p2L2(p2)

P„=A,4r/T g f dr ~P~ exp 2re ——p c—os(2rpH)
)0 0 2 '(/(n +1)(n +2) (22)

where p =eH(rvf ) /c, and L„"is a generalized Laguerre polynomial. Here we have used the formula

p . +/ (
—1) (/n!(n —. m + i)!

exp( —rvf B)(//(„(R)= g g exp — +i8(m —l) .p
+'

. . . '()//„+/(R),
m =0 1 =0 m!l! n —m! (23)

for

b(kf, R)-z[(//(2(R)(k„ik )+cogo(—R)(k, +ik )] . (24)

The limiting values of H, 2 at T =0 and close to T,o are
listed in the Table I of CS.

When the magnetic field lies in the basal plane, the
upper critical field is independent of paramagnetism be-
cause the Cooper pairs have no amplitude with zero spin
projection for directions in the plane. As a consequence
of uniaxial symmetry of the Fermi surface H, 2 is isotropic
in the basal plane at all temperatures, and we can choose
a direction of magnetic field along the x axis. It is then
convenient to work in a basis of (q&, g2) in which equa-
tions for g, and g2 decouple. Here g, =(q++g )/&2
and gz= i (Y!+—q )/—&2. The equation for q, becomes

where 0 is an angle variable of the Fermi velocity, vf, in
basal plane.

The maximum value of H, 2 occurs
(g+, g ) —(Pz, co/0) with co=Pa/(1 —ao), that is,"

a =+—,'(8, +iaB~ ), (26)

and their corresponding eigenfunctions [(//(„(R, a) }.
The maximum H, 2 occurs when g, =go(R, a) with

a = 1/&g, which corresponds to a rescaling of the Fermi
surface and diagonalizes Eq. (25) exactly. As a remark
we note that the eigenvalue equation for g2 cannot be
solved exactly by a simple rescaling of the Fermi surface
because the exact eigenfunction is a linear combination of
all Pz„'s with n ~0. However, it turns out that a simple

I

k4mT$ f dr'(g& exp( 2rE n—«Q—) )
e~o

X g, (R)=g, (R), (25)

where g, -k„. A similar equation holds for g2 with
gz-k . We solve Eq. (25) by a variational method, i.e.,
by introducing a parameter cz in the operators of harmon-
ic oscillator,
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trial function, g2=((io(R, a) with an optimum value of a,
provides a good estimate for H, 2. Addition of other
terms such as (t2 and P4 in the trial function does not in-
crease the value of H, 2 by more than 1%.

In Fig. 1 we summarize the results for E,„representa-
tion for several choices of the effective mass ratio g and
scaled effective moment p. Both h, z and h, 2 are scaled in
units of Ho, in which h, 2 is independent of g, while h, 2

scales as 1/&g. As noted earlier the paramagnetic effect
can significantly reduce the value of h, 2 at low tempera-
tures, whereas it has no effect on h, 2. Thus, by adjusting
the values of g and p, we can easily make the upper criti-
cal fields h, 2 and h, z cross over each other at finite tem-
perature and fit the experimental data quite well.

For the Ez„representation the order parameter

critical field is independent of the paramagnetic term and
has a maximum eigenvalue for (g+, g )-($0,0). For
fields in the basal plane, H, 2 is sensitive to p and we use a
trial function of the form (rl„rI2) —($0,0) for a variation-
al calculation. We summarize the results in Fig. 2. We
can obtain a weak crossover of the upper critical fields
even without the paramagnetic term for a limited range
of g, 2 & g & 3; however, an important point is that H, 2

becomes more isotropic as p increases.
There are four odd-parity, 10 representations in the

limit of strong spin-orbit coupling, all of which have a
similar spin structure to that of the E&„representation,
and therefore exhibit similar anisotropic paramagnetic
effects. For the B,„representation b.(kf, R)
=zg(R)ij'j(kf ) with f-k —3k„k . Close to T,o we ob-
tain

4(kf, R) = — g+(R)g(kf ) — g (R)g'(kf ),
2 2

(27)

9
cos 0 +—sin 0

14((3) 4

—1/2

with itj(kf ) —k, +ik, differs significantly in its spin
structure from that of E,„.Close to T,o we have

—1/2

hc2=
3

cos Oh + sin 02 W. 2

7 3 2
(2g)

Hc2 /Ho

1.0

for an arbitrary direction of the field. Here g(3) is the
Riemann zeta function. When H~~z, following the similar
steps as in the E&„representation, we find that the upper

Away from T,o we use a trial function Po to calculate H, 2

for both principal directions of the field; H, 2 depends on
P, only for H~~z. A numerical calculation shows that we
can make the anisotropy ratio of upper critical fields,
h,"~/h, ~, alm~~t identical to that of Ei„by a suitab
choice of parameters, g and p.

The most important distinction of even-parity states is
that the paramagnetic term is important for any direction
of the magnetic field. For the E2g representation,

h(kf, R) =g+(R)$(kf )+g (R)$*(kf), (30)

where g(kf) —(k +ik ) . When H~~z the upper critical
field can be computed exactly with (rI+, rj )

—((tq, copo)
with a constant co. For H~~x we perform a variational

0. 8

0. 6

Hc2 ~Ho
0.5-

0.4 a

H
~~

a (p=o)
H )( a (p=0.3)

0.4 0.3-

0.2 0.2 .

0.2 0.4 0. 6 0.8

T j'Tco

1.0 0.1 .
FICy. 1. Plot of H,"z(H~(c) and H, 2(H~~&) vs T for the E,„

representation in the clean limit. The top two curves are for
H, 2 and H,~~2 for an isotropic Fermi surface (q=1) and without
the paramagnetic coupling (p =0), while the bottom two are for
g=3.37 and p=0. 68. Note that H,~~& is suppressed by the
paramagnetic coupling at low temperature, while K,2 is in-

dependent of p. We can easily make H,~~2 and H, 2 cross over
with a suitable choice of parameters, as shown in the bottom
two curves.

0.2 0.4 0.6 0.8

T jTco
1.0

FIG. 2. Similar plot as in Fig. 1 for the E2„representation.
H,~~2 is independent of the paramagnetic effect. The anisotropy
ratio, q=2. 6, is chosen to show a crossover at finite tempera-
ture. Note that the paramagnetic coupling makes the upper
critical field more isotropic.
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0.5-

0.4

Hc2 /Ho

Hff(2

would exist in the absence of the paramagnetic coupling
is reduced because the paramagnetic limit has a greater
eff'ect for the direction in which the upper critical field is
larger. Similar results are obtained for other even-parity
representations.

0.3

0.2

0.1

0.2 0. 4 0. 6 0. 8 1.0

IV. IMPURITY SCATTERING

We consider the E&„representation to illustrate the
effect of impurity scattering on the upper critical field.
We assume nonmagnetic and s-wave impurity scattering.
The upper critical field can be computed by solving the
gap equation, Eq. (7), with the self-consistent equation for
impurity self-energy. For the E&„state, these equations
can be diagonalized exactly even in the presence of im-
purity scattering. When H~~z the upper critical field
occurs for

b (k&, R) =z [a/2(R)i'*(k& )+bpo(R)g(k& ) j, (31)

FIG. 3. Similar plot as in Fig. 1 for the E2~ representation.
We choose q=3e7 and p=0, where a very weak crossover is
possible. For a nonzero value of p the upper critical field be-
comes even more isotropic. For even-parity representations H„
is bounded by the paramagnetic limit for any orientations of the
field.

calculation with ri, =$0(R,a). As shown in Fig. 3, a very
weak crossover is possible for a small range of parame-
ters, e.g. , 3.0 & g &4.2 for p=0. This is so small that its
weak crossover may be an artifact of the variational cal-
culation. We find that the inclusion of a paramagnetic
term further reduces its anisotropy. Any anisotropy that

I

where again ti(k(i)-k„+ik». This differs from the order
parameter of the clean limit, Eq. (24), by a different com-
bination of (ff)0 and $2 terms. The impurity self-energy has
the following forms:

( f(k~, R, e))i, =zd(e)pf(R),

(f(k&, R, e))i, = —ie(e)pf(R) .f

(32)

(33)

It can be shown that d(e) and e(e) are a real-valued odd
and even function of e, respectively.

By putting Eqs. (31)—(33) into Eqs. (7)—(9) and using
the formula (23), we obtain a set of coupled equations for
a, b, d, ande:

r

2 4, 2—=4~T $ f d~ exp —2r(e+~wo) — cos(2rfMH) a 1 —2p + +b
2 2 v'2

3

+we P'2p — — ldlRefl(e)exp(2(r)xH)f ),2
(34)

b—=4vrT g f dr exp —2 (e+rmwo) — . cos(2rpH) a —+b
oo

2 V'2

—wep ltj')IRef2(e)exp(2(rpH )l ),
where Re I I denotes a real part of the argument and I(e) =d(e)+ie(e) The equatio. n for I(e) becomes

(35)

1=2e J dr exp —2r(e+wwe)+2(r(xH — e —x 2p+ — +bp ')pl+we(1 —p )l
)

.
0 2

The upper critical field is the largest eigenvalue of II in
Eqs. (34)—(36). The results are summarized in Fig. 4.
Note that the impurity scattering reduces the values of
0,2 from the clean limit at all temperatures. Paramag-
netic coupling limits the upper critical fields away from
T, and reduces the range of the Ginzburg-Landau region
where H, 2 depends linearly on temperature. Close to T,

we obtain

h. 2 5(3+~6) 312r' wo1+
21$( 3 ) 1008((3) t,

g0 «1 . (37)
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0.8-
Hc2 /Ho

p='0, m, =0

0.1

0.8-
HC2 /Ho

QOOOOOOOOO

H ][a

0.6- 0.1 0.6-

0. 4 0.4

0.2- 0.2

0.2 0. 4 0. 6 0. 8 1.0

Tc

0.2 0.4 0.6 0.8 1.0

Tc

FIG. 4. Plot of H,~~2/Ho vs T/T, for the E,„representation
when H~~c. Note that T, is a transition temperature in the pres-
ence of impurity scattering and the vertical axis is scaled by the
same unit Ho as in the pure case. Impurity scattering reduces
the value of H, ~ for all temperature. The paramagnetic effect
reduces the range of the linear T dependence of H, 2 close to T, .

FIG. 5. Plot of H,~~2 and H, 2 vs T for the E&„representation.
We choose q=3. 37 and p=0. 68 as in Fig. 1. The top two
curves are in the clean limit, while the bottom two are for
w0=0. 1. Note that impurity scattering can move the crossover
point to lower temperature.

dh„S(0) dh,',
S(too lt, ) dt pure

where

(38)

S(x)= g (2n + 1+x)
n~p

(39)

Note that Eq. (38) is valid for any cases in which
(f ) = ( f ) =0. This includes the nonidentity representa-
tions of even-parity states such that ( b,(kf ) ) =0. In the
plot of H, 2/Hp vs T/T„ the slope of H, z at T, is gen-
erally smaller than that of pure superconductor due to a
large reduction of T, by impurity scattering. On the

For H~~x the upper critical field is independent of the
paramagnetism and the impurity self-energy terms van-
ish, ( f ) = (f ) =0. The upper critical field is then com-
puted by a simple substitution of e~e+~wp in the gap
equation of the pure case, Eq. (12). Close to T, we derive
a general expression:

contrary the impurity scattering can enhance the values
of H, 2 for the identity representation in which there is no
reduction of T, .' In Fig. 5 we show the effect of impuri-

ty scattering on the anisotropy of H, 2. The values of H, z

are reduced by impurity scattering for both directions,
while the crossover point moves towards lower tempera-
ture. This might explain the fact that some experiments
for UPt3 do not show a distinct crossover at finite temper-
ature. '
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