
PHYSICAL REVIEW B VOLUME 48, NUMBER 3 15 JULY 1993-I

Collective modes in charge-density waves and long-range Coulomb interactions
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We study theoretically the collective modes in charge-density waves in the presence of long-range
Coulomb interaction. We find that earlier works by Takada and his collaborators are inadequate since
they introduced inconsistent approximations in evaluating a variety of correlation functions. The ampli-
tude mode is unaffected by the Coulomb interaction, while the phase mode splits into the phason with
linear dispersion (i.e., acoustic mode) and the optical mode with an energy gap in the presence of the
Coulomb interaction. In particular, we establish the temperature dependence of the phason velocity v&.
A comparison with recent neutron-scattering data on the phason velocity in the charge-density wave of a
single crystal of blue bronze Ko 3Mo03 indicates that mean-field theory which includes the long-range
Coulomb interaction gives an excellent description of the observed phason velocity.

I. INTRODUCTION

Frohlich conduction in the charge-density wave
(CDW) in NbSe3 and other systems is now well estab-
lished both experimentally and theoretically. ' More re-
cently the validity of three-dimensional 3D mean-field
theory has been established in most of these systems. For
example, the ratio of b,, /T, observed in most CDW's is,
we believe, due to imperfect nesting. Here 6, is the
quasiparticle energy gap determined from the electric
resistance and T, is the CDW transition temperature.
Perhaps the clearest signature of imperfect nesting is the
pressure dependence of T, . In the model with imperfect
nesting, T, decreases with pressure since the pressure in-
creases the dimensionality. On the other hand, in an al-
ternative fluctuation model, T, should increase with pres-
sure, since the fluctuation is suppressed by emerging
dimensionality. ' However, the fluctuation effects on the
thermodynamics and the transport properties are under-
stood only partially.

The object of this paper is to study the role of long-
range Coulomb interaction on collective modes of the
CDW. This problem has been considered by Lee and
Fukuyama at T =0 K and later studied more extensively
by Takada and his collaborators for all temperatures.
However, unfortunately due to their inconsistent approx-
imations [i.e., some correlation functions are evaluated in
the static limit (co «g), while others are in the dynamic
limit (co))g) where co is the frequency and g= v~q with q
the wave vector in the most conducting direction], their
results are not reliable especially in the vicinity of T= T, .
Within the Frohlich model all the functions necessary
for the present study are already available' for arbitrary
a ( =co/g), when the effect of imperfect nesting is neglect-
ed. As we shall see, the condensate density for arbitrary
a plays an important role in the present analysis. Then

within the time-dependent mean-field theory (i.e., the
random-phase approximation) we determine the collec-
tive modes' dispersion at all temperatures. The spectral
weights of these modes, which are proportional to the
scattering amplitude of neutrons, are obtained. At high
temperatures the acoustic mode almost exhausts the
phason spectral weight, while at low temperatures (say
T & 0,2T, ) the optical mode does. The present theory de-
scribes extremely well the temperature dependence of the
phason velocity U& observed" in a single crystal of
KQ 3Mo03 by neutron scattering. This indicates again
that the effect of Quctuations is rather small even in
CDW of blue bronze.

II. FLUCTUATION PROPAGATORS

We consider the Frohlich Hamiltonian properly gen-
eralized to three dimensions and we add the long-range
Coulomb interaction

1
H, =4~e g n n

q
9'

where n is the electron-density operator. Then the am-
plitudon and phason dispersions are determined from
the pole of

D~(q, co)=[1—g cot2(cot2
—co ) '([h„b.,])]

x ( —
)Q Q

(2)

and
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D~(q, co)= Il —g tog(tog —co ) '([b2, b2]) j 'cog(cog —a) )

= —(2h) (Af) a) —g —co f 1—2
2 g2

—1

—= —(2&) (&f) '(1 f)— (1 f)+—f co —gm
(3)

where 61 and 62 are the real and the imaginary parts of the CDW order parameter and the effect of the Coulomb in-
teraction is incorporated within the mean-field theory. ' The last line in Eq. (3) is obtained by putting co~ = ac. Further,
here we limit ourselves to the longitudinal case q~~a the most conducting direction. A short derivation of Eq. (3) is
sketched in Appendix A. Here A, is the dimensionless electron-phonon coupling constant, co =(4n.e n /m)'~ the plas-
ma frequency, and f is the generalized condensate density'

,' —f—dPtanh( —,'Pb, cosh&)[sinh (P —Po) —(1—a )P] ' for a& 1 (4)

,' f—dPtanh( —,'Pb, cosh/)[cosh (P —Po)+(I —a )P] ' for a) 1

and

a for n(1
tanhbo= '

0 ~ 1 fOr ~)

2 g2 2 $2 2

(2b. ) 15 (2b, )

and we obtain '
(12)

respectively, and g= g/[2b. ( T) ]. Here we neglect the
effect of imperfect nesting for simplicity. Further,

co~ —A,co~ + 1 Pl

Pl
(13)

f =1 for a=1
independent of temperature.

In the adiabatic limit [i.e., co, g&(2b, (T)] we obtain
oo Q2

f, = lim lim =2vrT g„=, ( '„+6')'"

For T&0 K, it is important to distinguish two limits
(co&)g and co«g), since the latter limit is most likely
realized in the neutron-scattering experiment. ' ' Espe-
cially in the high-temperature regime we obtain

A, cogfd + —,
'
g for co &)g

and
2 =.

A,cogf, + g for co&(g .m*
S

(14)

fd= lim lim f dpsech ptanh( —,'pb. cosh/) .
co—+0 g—+0 0

Here subscripts s and d mean the static and the dynamic
limit.

The temperature dependence of f, and fd is shown in
Fig. 1. From Eq. (2) the dispersion of the amplitudon is
given by

Therefore the amplitude frequency co& =v'A, co&(f, )'
obtained by Rice and Strassler' is valid only in the static
limit. Here we introduced m, ( T), which is defined by

m f 2

co~ = [(2b, ) +g ]=—A, co f +
m * (2&)

(10)

where the second line is valid as long as A,
'

co& &2b, (T),
which holds always except in the immediate vicinity of
T= T, (i.e., T, —T & 10 T, ). Here the phason mass m *

is given by

0.5 .

= 1+(2b, ) /Ace& f .

It is of interest to note that Eq. (10) together with Eq.
(ll) guarantees a solution co =g =A,co& in the CDW in-
dependent of temperature.

At T =0 K, we expand f in powers of g/2b, and co/2b,
as

0
0.5

&= TIT,
1.0

FIG. 1. The condensate density f, (the static limit) and fd
(the dynamic limit) are evaluated numerically and shown as a
function of the reduced temperature t = T/T, .
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FIG. 2. The phason mass m,*(T) (in the static limit) and
md*(T) (the dynamic limit) are shown as a function of the re-
duced temperature.

FIG. 3. The longitudinal and the transverse phason velocity
v& and v&& are shown as a function of the reduced temperature.

with

(15)
Pl

Uy/Uy = IS

1/2

1 f, + f,—
' —1/2

similarly we can define md*(T) by replacing f, in Eq. (15)
by fd. The temperature dependences of m,*(T) and
md*(T) are shown in Fig. 2. It is important to note that
the temperature dependence of co&(T) is quite di6'erent
especially in the vicinity of T =T, depending on which
limit you are in.

III. ACOUSTIC AND OPTICAL MODES

As already pointed out by Takada and co-workers, the
longitudinal phason consists of two modes, which are
determined from

(f —1 1) 2 —g2

Acing

oo 2

0
den co ImD (q, co)= ci)—

Q ~ (20)

which in independent of g, T, and co . Now if we evalu-
ate the contribution of the acoustic pole we obtain

The temperature dependence of U&/Uz is shown in Fig. 3.
As T decreases from T„U& increases rapidly and ulti-
mately at low temperatures (T=0.3T, ) the sta—tic limit
becomes no longer valid. Also as discussed already by
Takada and this collaborators the acoustic mode merges
with another acoustic mode around ( T—=0.2T, ) and com-
pletely disappears for the lower temperatures. It is of in-
terest to consider the spectral weight of the acoustic
model. From Eq. (3) we obtain

We shall examine these modes here.

A. Acoustic mode 0f dc' cU IIIID (q, co) — co
1 f, —

One solution is given by

co = „1—f+ „f g2 X 1—
S

(21)

where m */m defined in Eq. (11) has to be used. For not
too low temperatures ( T &0.3T, ) we have co ((g and we
can simplify Eq. (17) as

co =U&q,

The acoustic mode almost exhausts the spectral weight as
long as 1 f, »m/m, * (i.e.—, T &0.3T, ).

It is also possible to derive the acoustic mode for an ar-
bitrary q. Making use of the angular integral

( ~~+3 2 icos+)

(g~~+&2$ cosy) —co

1+~2( (g2 2(2)—3/2+~4( (g2 3(2)(g2 2(2)
—7/2+



COLLECTIVE MODES IN CHARGE-DENSITY WAVES AND. . . 1371

we obtain

m
CO—

m*
S

1/2

f g3(g2 2(2) —3/2
—1/2

[g2+ ( 1 f )g2]1/2

1/2
m

m*
S

( 1 f )
—1/2[g2+ ( 1 f )g2]1/2 (23)

where ~ii 3'Fqii ~& v~,q, . Unf««na«ly the firs«qua-
tion in Eq. (23) breaks down around

g~~

——&2$j. But Eq.
(23) is correct in the limits $1=0 and /~~=0. Also the
second line in Eq. (23) is adequate for practical purposes.
In particular, when

q~~
=0 we obtain

1/2

(24)

:-=—', (1 fd+—xo) (1—
—,'Gd ) (30)

The optical mode almost exhausts the spectral weight at
low temperatures ( T ~ 0.2T, ). When 1 fd -=m/—m * the
spectral weight is very quickly transferred to the acoustic
mode as we have shown already. In Appendix B we
derive the optical mode for an arbitrary q at T =0 K.

B. Optical mode

Another solution of Eq. (16) is readily found at T =0
K as

ci)~ —
&

A,co + 1 m
op z Q (25)

where we inserted Eq. (12) in place of f. Although the
optical frequency is known already the coef5cient of the

term is new. At low temperatures the optical frequen-
cy is given by

co, =- —,'[A,cog+(2b, ) (1 f, )](l ——,'Gd)—
where

G„=2J dP sech"P(1+e~ ""~)
Q

(26)

(27)

The optical frequency is fairly constant at low tempera-
tures but starts increasing rapidly around T -=0.3T„then
takes a maximum value of —A(T) around T=0.9T„and-
then decreases rapidly to

co, =(2b) 1—
4T

2 2
'2

A,cog1—
(2b, )

(28)

and hits 2b, ( T) at 2h( T) =3/Ace& from below. There will
be no optical mode in the region 2b, (T)~3/A. co&. Fur-
ther, co, (T))co„(T) for all temperatures. At low tem-
peratures the spectral weight of the optical mode is given
by

dao co ImDP(co, q) =—cog(1+xo+:-)(xo+:-)Q

X (1 fd +x11+2:-)—
where xo=Aco&/(2b, ) —=m/m

(29)

The effect of the long-range Coulomb interaction disap-
pears completely in the transverse limit. In Fig. 3 we
show also v&~ as a function of the reduced temperature
t =T/T, . v&~ increases with decreasing temperatures,
but very slowly.

IV. CONCLUDING REMARKS

We have studied the collective mode in the CDW in
the presence of the long-range Coulomb interaction. Al-
though the amplitudon is unaffected by the Coulomb in-
teraction we obtain results as to the dispersion of the am-
plitudon in the vicinity of T = T, . The phason splits into
two modes in the presence of the Coulomb interaction.
The acoustic mode with lower phason velocity v4, dom-
inates the spectral weight at high temperatures
( T ~0.3T, ) while the optical mode does at low tempera-
tures. The predicted phason velocity is confirmed by re-
cent neutron-scattering data" from a single crystal of
KQ 3Mo03 ~ Also the scattering data for the transverse
phason velocity appear to be consistent with the present
theory. Although the amplitudon has been seen in the
CDW of blue bronze KQ 3Mo03 in the Raman scatter-
ing' and in the neutron scattering, ' the optical mode
appears not to be seen in any of these experiments. On
the other hand, in these experiments as well as in a recent
milliwave conductivity' in the CDW in KQ 3MOO3
another mode has been identified, the nature of which is
still unclear. As to the

fluctuation

in blue bronze
KQ 3Mo03 the pressure dependence' of T, appears to
suggest the model of imperfect nesting. Unfortunately,
however, this is not the whole story. Contrary to the ex-
pectation of the model with imperfect nesting, the ratio
6, /T, also decreases with pressure. ' Perhaps a small
admixture of the Auctuation effect may be required but
certainly more work is desirable on this question.

ACKNOWLEDGMENTS

We thank D. Baeriswyl and K. Biljakovic for drawing
our attention to the experimental works on the amplitude
mode in blue bronze. One of us (K.M. ) thanks the
Research Institute for Solid State Physics at Budapest,
where a part of this work was done, for the kind hospital-
ity. The present work was supported by the National Sci-
ence Foundation under Grant No. DMR89-15285 and
the Hungarian National Research Fund No. OTKA2944
and T4473.



1372 ATTILA VIROSZTEK AND KAZUMI MAKI

APPENDIX A: DERIVATION OF KQ. (3)

In the presence of the long-range Coulomb interaction ( [b.2, hz] ) is evaluated as'

& [~„~,])=
& [~„~,]).— (Al)

where n is the fiuctuation of the electron density and ( )o is the retarded product in the absence of the Coulomb in-

teraction. Then inserting corresponding retarded products, we obtain

'(1 f)—
([b, , b, ])=N ' —+2& 2 0 g (2g)P P

~2 g2 ~2f
2 2

where Xo is the electron density of states at the Fermi surface per spin and A, =g Xo.

(A2)

APPENDIX 8: OPTICAL MODE FOR AN ARBITRARY q

At T =0 K the analysis given in Sec. III 8 is easily extended for an arbitrary q. Now making use of

2' o g —co 3 (2Q) 5 g +g

f dX 0f =kg [I—
—,'(&i+3&i— ')(2~) '+ ' ' ' ]

(81)

(82)

where

++2gj cosX, (83)

and we made use of Eq. (12) in the text, the optical mode is now given by

~' —&t'&+&gf &'&f &
' t, ( )m a&

where ( ) means the average over y.
Substituting (Bl) and (82) into (84), we obtain

~2 —3 Z~2 g2(g2+ g2)
—I + m (g6+ 1 igg2 g2g4+ 5g6)( g2+ g2)

—2
II

(84)

(85)

The energy gap in the optical mode depends strongly on the direction of q and vanishes completely when qla.
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