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Second-order self-energy of the Hubbard Hamiltonian:
Absence of quasiparticle excitations near half-filling
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The electron self-energy Z(k, u) corresponding to the one-band Hubbard Hamiltonian on clusters
of the square lattice has been obtained as a function of the band filling up to second order in the
interaction parameter U. The k dependence of the self-energy is completely taken into account. As
a consequence, the imaginary part of the self-energy shows a linear behavior for fillings close to one
electron per site whereas for large doping rates the quadratic cu dependence characterizing Fermi
liquids is recovered. The origin of this behavior has been investigated analytically: linear terms
associated with nesting are shown to exist in any finite-dimensional lattice although its numerical
relevance decreases very rapidly for space dimensionality larger than two. Implications of these
results on the renormalization factor Z have been analyzed. From a practical point of view, we
conclude that a standard second-order perturbative treatment is quantitatively precise for U values
of the on-site Coulomb interaction smaller than the bandwidth of the noninteracting spectrum.

I. INTRODUCTION

Since the discovery of the high T superconductors,
there has been a renewed interest in strongly correlated
systems. The simplest model proposed to explain both
the normal and the superconducting phases of this rn.a-
terial taking into account the electron correlation is the
one-band Hubbard Hamiltonian. Although it has been
extensively studied by a great number of groups, very
few exacts results are presently known. Not only does
the pairing mechanism remain a mystery but also the
transport and spectral properties of the normal metallic
state of this compound are not well understood.

One phenomenological model that explains qualita-
tively most of the anomalous properties of the normal
state is the marginal Fermi liquid hypothesis. A micro-
scopical explanation for the rather drastic assumption
made in this model about the low-temperature charge
and spin polarizabilities has not yet been achieved. The
basic assumption made in Ref. 5 can be summarized in
the following behavior for the electron self-energy:

Z(k, ~) - g K (0) i
(sin ——i —2:

~2

x = max(~ur~, T) .

The most interesting characteristic of Eq. (1) is the
linear behavior of the imaginary part of the self-energy
close to the Fermi energy [Z(k, w) tv for u 0]. This
linear dependence implies a logarithmic vanishing of the
quasiparticle weight.

Several attempts have been made to derive this behav-

ior of the self-energy from first principles. In the work
of Schweitzer and Czycholl the self-energy originated by
the interaction term of the Hubbard Hamiltonian was
obtained in standard second-order perturbation theory.
Starting from the local approximation for Z(k, w) (which
is exact in an in6nite-dimensional Hubbard model ), a
1/X expansion was developed in the half-filled case for
the one-, two-, and three-dimensional models. The im-
portance of considering the whole k dependence in one
and two dimensions was demonstrated. Also Moreo et
al. computed the second-order self-energy of an 8 x 8
cluster of the square lattice for U/t = 4 and half an elec-
tron per site. Their results were in excellent agreement
with Monte Carlo simulation. On the other hand, Ref.
7 stressed the relevance of the nesting of the Fermi sur-
face that occurs in the square lattice close to half-6. lling.
Its relation to the nonconventional behavior of the self-
energy was also addressed.

More generally, the second-order self-energy approxi-
mation to the Green function has been extensively used
in many-body calculations proving its usefulness to
deal near the small interaction limit. Besides a previous
work showed that a second-order perturbative analysis
of the Hubbard Hamiltonian of the two-dimensional 4 x 4
cluster gave quantitative agreement with Monte Carlo
simulations of the same system up to U values compara-
ble to the bandwidth of the noninteracting case (a sim-
ilar conclusion was reached in Ref. 15 studying the one-
dimensional chain of six sites). In the present paper we
extend the range of validity of the perturbative analysis
through the computation of the second-order self-energy
in clusters of diferent sizes and for the whole range of
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fillings. Special attention is paid to the range of validity
of the method and to the behavior of the imaginary part
as a function of the number of holes added to the cluster.
We leave for future work the computation of magnitudes
that could be related with experiment within a realistic
model including Cu-0 planes (spin susceptibility, mag-
netic structure factor, or correlation functions, for exam-
ple). Work in this line was done in Ref. 13. They success-
fully compared the weak coupling predictions [random
phase approximation (RPA)] for the transverse nuclear
relaxation rate and the magnetic response with experi-
ments on YBa2Cu307.

II. METHOD

The Hamilton operator representing the Hubbard
model is

where c,. creates an electron of spin o on site i, (ij)
represent pairs of nearest-neighbor sites on the two-
dimensional square lattice, n, is the electron occupation
operator on site i and spin o. , —t is the hopping energy
(t ) 0), and U is the on-site Coulomb interaction.

There are only two parameters in the model: first, U/t,
which is a dimensionless ratio that measures the impor-
tance of the on-site Coulomb interaction relative to the
hopping energy, and, second, the number of electrons per
site that fill in the system. We will start from the small
U/t limit and will later show that our results are valid
up to U values comparable to the bandwidth TV of the
noninteracting case. As usual we will work in the grand
canonical ensemble and control the number of electrons
adding a chemical potential term p0N to the Hamilton
operator given by Eq. (2).

The self-energy of the electrons is computed within
perturbation theory up to second order. Standard rules
at zero temperature give the following expression:

( ) ( )
f'U) 8(e )8(e )[1—O(e )]+ [1 —O(e„)][1—8(e )]8(e )

) ct) —Un —cg+q —Ep q + cp

where L is the number of sites, 0 is the step function,
ek is the unperturbed dispersion relation, and n is the
Hartree occupation of spin —cr. As it is shown explicitly
by the denominator of the second-order term, the Hartree
solution is used as the starting point.

The double sum in momentum can be easily done for
chain lengths up to 2000 sites in the one-dimensional
model. Unfortunately, computational effort increases as
the fourth power of the side of the cluster in the more in-
teresting two-dimensional system. Nevertheless, one can
save a lot of memory and time of computation taking
into account that most of the terms in Eq. (3) have the
same denominator and can be grouped in only one term
after adding numerators. With this method we were able
to study two-dimensional clusters up to 40 x 40 for some
magnitudes. In the three-dimensional case the effort that
is necessary to evaluate this summation increases even
more rapidly as the cluster size increases. Therefore, it
is more advantageous to follow the method described in
Ref. 6 in this case.

The advantages of our approach are the following.
(i) It is a systematic and proven approximation to ob-

tain the one-particle spectrum and related properties of
the Hubbard Hamiltonian i4, i5, iv, is We will show later
that the present form of second-order perturbation the-
ory yields accurate results within the range U/t ( W.
Most probably, this interaction regime applies to high-T
compounds.

(ii) Cluster sizes as large as 40 x 40 sites can be con-
sidered with a reasonable numerical effort. All the pa-
rameters appearing in the model such as the U value,
system filling, or temperature can be easily changed, in

contrast with the limitation of size and temperature for
exact diagonalizations and Monte Carlo.

(iii) Effects related to the finite size of the cluster can
be easily isolated increasing the number of sites of the
cluster. We have checked that all results presented in
this work have been converged to the corresponding con-
tinuous limits.

(iv) In principle, this approximation can be further
improved adding families of diagrams of higher orders or
considering a self-consistent solution for higher values of
U/t .

Of course the limitations are also clear: We will never
be able to study the large U/t limit within our per-
turbative scheme. In particular, the atomic limit of
the Hubbard model will never be reached (upper and
lower Hubbard bands). A second but minor limitation
of our perturbative analysis is that we will never be able
to study the exactly half-filled case, since in this case
the Fermi level coincides with a highly degenerate one-
electron level. This situation is not tractable within our
method because levels should be either completely filled
or completely empty in our calculations to avoid uncer-
tainties in the evaluation of the noninteracting Green
function. For example, we saw in our previous study
that one has to use standard perturbation theory of de-
generate levels to obtain the ground state of half-filled
clusters. This is not a severe limitation because the half-
filled limit is continuously approached as soon as the clus-
ter size is increased. Moreover, we can do a scale analysis
whenever it is necessary.

Using Z(k, ~) the following physical magnitudes can
be directly calculated:



13 656 J. GALAN, J. A. VERGES, AND A. MARTIN-RODERO

(i) Energy:

OO

E = —— lim ) e' "[~+e (k)]G (k, ur), (4)
2 gmp+ ~ 2&

k,a

where, as usual, g guarantees that the occupied poles of
the Green function contribute to the integral.

(ii) Number of electrons:

I(d
N = —i lim ) e' "G (k, (u) .

r]mp+ ~ 2'
k, o.

At this point, it is worth mentioning that our solution
verifies Luttinger theorem; i.e. , there exists an energy
that plays the role of the Fermi energy in the many-body
system. Unfortunately, since Z(k, ~) is truly k depen-
dent, the shape of the interacting Fermi surface is dif-
ferent from the noninteracting one and the new Fermi
energy is not easily related to the original one.

(iii) Momentum distribution:

U2
Im Z~ i(k~, (u) =-

47r[deI, /dk ('„„ (8)

Applying this result to the half-filled situation, the fol-
lowing nonanalytic behavior of the imaginary part of the
self-energy is obtained:

U'

i 2 ) 167rt2

expansion is surprisingly large: of the order of magnitude
of t as the comparison with numerical results shows a pos-
teriori. In this way, it is possible to perform the single
integral over momenta that remains in Eq. (3) when the
imaginary part of the second-order self-energy is evalu-
ated. Based on the perfect nesting that exists in one
dimension for any filling factor, a naive reasoning shows
that the allowed integration space increases as a linear
function of ~~~ giving

A(k)= () cg ck )
d(d= —i lim ) e' "G (k, ~) .

g —+p+ ~ 27t
(6)

These results do not take into consideration possible di-
vergences of the integrand. When they are properly con-
sidered, the numerical prefactor that appears in Eq. (9)
diminishes somewhat:

BReZ(ky, ~)
t9ca)

4P =IF

The possibility of calculating Z in this way depends crit-
ically on the good convergence of the real part of the
self-energy to its continuous limit. In the next section,
we will use these equations to evaluate the relevant mag-
nitudes of chains and clusters of the square lattice.

III. RESULTS

We have checked our approach comparing the energy
with results of the one-dimensional case and small two-
dimensional clusters: 4 x 4, 8 x 8, and ~10 x ~10, where
precise numerical results are available. Let us begin
with some results concerning the one-dimensional Hub-
bard model.

A. One-dimensional case

An analytic investigation of the one-dimensional case
reveals several interesting features of the second-order
self-energy. The analysis is based on the approximate
linearization around the Fermi energy of all the disper-
sion relations that appear in Eq. (3). The validity of this

In this work, we have always started perturbation theory
&om the paramagnetic ground state. This situation does
not change after adding a finite number of perturbation
diagrams to the noninteracting Green function. There-
fore, both spin directions are equally populated in all of
our solutions.

(iv) Benormalization constant Z:

(10)

An analysis of the behavior of the imaginary part of the
self-energy that takes into account the divergences of the
integrand shows that the naive result given by Eq. (8)
is strictly valid for fillings smaller that one-quarter but
should be corrected in other cases. Nevertheless, the ap-
pearance of a linear term in ~m~ remains. Now, this ana-
lytic prediction can be compared with numerical results
obtained for very long chains. The linear dependence on
~u~ is confirmed by our calculation and besides we found
that this behavior extends over a very large energy range
(see Fig. 1 where the imaginary part of the self-energy
is given for the Fermi wave vector). This last feature is

related to a further property of Im Z: It can be proved(2).

that the imaginary part is an odd function of ~w~. As a
consequence, only odd powers of ~w~ appear in a series ex-
pansion about the Fermi energy and the range of linear
~cu~ dependence increases.

The existence of two diferent energy scales should be
emphasized. The first scale is related to the form varia-
tion of the Fermi surface as the perfect nesting situation
is left behind. As soon as the Fermi surface is deformed,
the volume argument that gives Eqs. (8) and (9) loses
its validity. On the other hand, there is a second energy
scale related to the correctness of the linearization of en-
ergy dispersion relations. As our numerical results show,
this second energy scale is much larger than the first one
and explains the linear behavior of the imaginary part of
the self-energy well behind the nesting condition. This
point is particularly relevant in the application of the
second-order perturbation theory to the square lattice:
While a linear u dependence around the Fermi energy
does not survive the change in occupation, the global



SECOND-ORDER SELF-ENERGY OF THE HUBBARD. . . 13 657

—15

~ O. 12—
3

0.08—

0.04—

0.00
4 6 8 10 12

FIG. 1. Imaginary part of the second-order self-energy of
a chain of 2000 sites calculated as a function of energy at
the Fermi wave vector. We have used a small broadening to
smooth the self-energy function. It is this small but finite
broadening the only reason of the nonzero value of the imagi-
nary part of the self-energy at the Fermi energy (E& = t for
U = 2t).

FIG. 3. Ground-state energy vs U for ten electrons on a
4 x 4 cluster of the square lattice. The solid line gives exact
results obtained by the Lanczos method (Ref. 25), the dashed
line gives naive second-order results of a previous calculation,
and the dotted line gives present results obtained by Eq. (4).

linear behavior remains after large changes of the band
Riling (see Sec. III 8).

Figure 2 shows the ground-state energy as a function of
band filling for several U values. Perturbative results are
compared with exact results obtained within the Bethe
ansatz. It can be seen that our second-order approach
[Eq.(4)] works accurately up to U = 4t, i.e. , while U is
less than the bandwidth. Moreover, it can be observed
that perturbation theory works better after separating
the system from half-filling.

B. Square lattice

As mentioned above, we have first checked the range of
applicability of our approach through a comparison with
exact results obtained for small clusters of the square
lattice. Figure 3 compares the ground-state energy ob-
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FIG. 2. Ground-state energy per site vs band filling of the
one-dimensional Hubbard model plotted for several U values.
The number of electrons per lattice site is n. Solid lines are
exact results from Shiba (Ref. 23) whereas small squares are
second-order results obtained by means of Eq. (4).

FIG. 4. Ground-state energy vs band filling of the
two-dimensional Hubbard model for several U values. (a)
Second-order results. (b) Comparison of second-order results
with mean field solutions of the unrestricted Hartree Fock
(Ref. 27) type (dashed lines).
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1tained via second-order perturbat' thion eory with Lanc-e 1

zos results for the 4 x 4 cluster. It can be seen that an
accurate estimate of the energy is obtained up to U values
comparable with the bandwidth (St). In addition, we can
learn by comparison with previous results obtained by a
second-order Goldstone calculation of the same cluster,
that perturbation theory is considerably improved when

e yson equation.t e Green function is used through th D
e same range of validity is obtained by further checks

t at we have done for smaller clusters.
Figure 4 shows again second-order results for the

ground-state energy but now obtained as a function of
band filling for the largest cluster that has been studied
within this total energy context (20 x 20 sites). Maxi-
mum filling is 0.96 in this case. In the absence of exact
results for this situation we have chosen the unrestricted

are given in panel (b) of Fig. 4. It can be shown that per-

fill
tur ative results are sensibly better i th h l f

ing ratios. It is interesting to notice that the relative
error of the UHF calculation increases for the largest U
value (U = 6t~ in s( = ~„pite of being a variational approach

~ ~ ~

that is valid for large U values. Of course t b t
. eory reaks completely down for very large interact'

parameter whereas UHF theory r '
b

'
lory remains eing qualita-

tively valid even in this range.
igure 5 shows the momentum distribution for a 20 x 20

cluster close to half-filling (n = 0.96) corresponding tcorrespon ing to
three U values (U/t = 0, 1, 4). The distribution is
given along the direction from (0, 0) to (7r, vr). Nothing
can e said about the existence or not of a discontinu-
ity that would define the interacting Fermi surface be-
cause the separation between points in the k space is too

ri ution drops to a small value. Nevertheless, the shape
of the momentum distribution remains steplike for the
studied U values and similar to th ' to e nonin eracting one,
in agreement with Monte Carlo results Therefore any)

-u/t=o
U/t = 1

u/t =4

experimental probe that tests the Fermi surface with a
finite resolution would find a shar h

'
la s arp c ange in nk close to

the noninteracting Fermi surface.
A very visual means to have an idea of the importance

of many-body e6'ects is just to look at the evolution of the
one-body Green function as the value of the interaction
parameter U increases. Figure 6 give th
of theo the Green function (the special part) for three different
values of U. It can be observed that for U = 8t the inter-
action produces a large spreading of the spectral function

e ecrease o theof an electron at the Fermi surface. The d
weight of the b peak at the one-electron energy is related

esu yo Zal-to t e renormalization constant Z. Th t d
lows t e c aracterization of the small eenergy exci ationst t
prevailing in the system, i.e. , the physical behavior of the
system. In particular, it allows the distinction between

~ ~

Fermi liquid and marginal Fermi or L tt' lr u inger iqui . In
order to explore the possibility of a non-Fermi-liquid be-
havior of the system we have plotted the renormalization
factor Z against filling for different values of the interac-
tion and difI'erent sizes of the cluster. Results are given in

for high values of U/t. It is worth to mentioning here that
results ointin to tp

' '
g e same kind of nonconventional be-

havior have been obtained within hin a non omogeneous un-
n is wor t e overlaprestricted Hartree-Fock theory In th k th

within the UHF wave function of the half-filled
and the self-

o e a — e system
an e se -consistent ground-state wave funct' ft

e introduction of a single hole has been shown to vanish

28 are compatible with the second-order perturbation re-
sults of the present work.

The same nonconventional behavior of Z can also be
inferred &om the imaginary part of the self-energy. Fig-
ure 8 shows the imaginary part of the second-order self-
energy for u close to the Fermi energy for the largest
cluster that we have studied (40 x 40). Ten different
band fillings have been considered for an interaction en-

irrelevant in a discussion of the shape of the second-order

FIG. 5. Momentuntum distribution corresponding to the
two-dimensional Hubbard model calculated for three U va ues

s o q. ~~6&. It starts at the center of the Brillouin
e or ree values

zone and ends at its corner. Ser. Symbols give occupation at k
points that actuall a eay ppear in our cluster calculation whereas
solid lines are simple guides for the eye.

v/t. =o

FIG. 6. EvEvolution of the imaginary part of the Green func-

separation of ticks in the horizontal energy scale is 0.5t.
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FIG. 7. Renormalization factor Z of the two-dimensional
Hubbard model as a function of band filling. Several U values
have been considered.

FIG. 9. Density of states as a function of cu for several U
values. The system is very close to half-filling. The separation
of ticks in the horizontal energy scale is 0.5t.

self-energy: The U prefactor modifies absolute values
but not forms). A linear! w! dependence of the self-energy
can be observed for fillings close to one electron per site.
This very peculiar behavior disappears when the number
of holes increases. A clear!w! dependence is reached at
a filling n 0.70. It can be said that a gradual transition
from a marginal Fermi liquid behavior to a conventional
one is obtained by our perturbative analysis. This result
reinforces the idea obtained from the study of Z (see Fig.
7) that although the system is strictly nonconventional
at half-filling in agreement with previous perturbative
studies a smooth disappearance of this behavior occurs
after doping. As shown by our calculation, a clear Fermi
liquid situation is only reached below n 0.70.

The last figures (Figs. 9 and 10) show the evolution
of the total density of states as U increases from 0 to 8t.
Figure 9 corresponds to a half-filled situation. It can be
observed how the starting density of states showing one
single central peak evolves to a three-peak shape due to
the appearance of two new peaks that extend the one-
particle spectrum. These peaks due to many-body ef-
fects tend to appear at —U/2 and U/2 energies for large
enough U values. Figure 10 shows the same evolution but
now for a cluster containing half an electron per site (one-
quarter filling). Surprisingly, a new peak evolves just at
the Fermi energy in a region that is initially structureless.
Larger U values give rise to the standard two peak situa-
tion corresponding to the infinite U limit of the Hubbard
model.

IV. CONCLUSIONS

The conclusions of our work are the following.

(i) The second-order self-energy is a good approach
to the study of the Hubbard Hamiltonian for all fillings

—10 —6 -2 2 6 10 14

FIG. 8. Imaginary part of the second-order self-energy [see
Eq. (3)j plotted as a function of m for several band fillings.
The inset gives a more quantitative comparison of the two
quite different behaviors obtained: The quasilinear u de-
pendence obtained near half-filling changes to the standard
quadratic dependence for a dilute system. The jagged be-
havior of the curve is due to the finite size of the cluster
(40 x 40). We have introduced a small broadening to the b

peaks (rl 0.02).

FIG. 10. Density of states as a function of u for several U
values. The filling of the system is close to one-fourth. The
Fermi energy coincides with the position of the central peak.
The separation of ticks in the horizontal energy scale is 0.5t.
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given that the value of the on-site interaction is not larger
than the bandwidth of the noninteracting spectrum.

(ii) The Luttinger character of the one-dimensional
Hubbard model manifests itself giving rise to a linear
~~~ dependence of the imaginary part of the second-order
self-energy. This behavior is independent of the band
filling.

(iii) No matter how small is the value of U, we obtain a
nonconventional behavior for the self-energy close to the
Fermi energy when the half-filled situation is approached
on the square lattice.

(iv) The linear ~cu~ dependence mentioned in the last
two remarks is not restricted to the neighborhood of the
Fermi energy but extends over a broad energy range (sev-
eral units of t). Analytical reasons have been given to
explain this property.

(v) Perturbation theory shows that although the renor-
malization constant Z does not vanish away from the

perfect nesting condition, its actual value is considerably
smaller than one.

(vi) In our opinion, second-order perturbation theory
applies to the actual interaction strengths observed in
cuprate oxides. Nevertheless, a definite conclusion about
the validity of perturbation theory for real materials has
to wait to a future work that starts from a realistic model
of the band structure of cuprate oxides.
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