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Spin-dimerized states are useful in the construction of spin-disordered wave functions but difficult to
deal with because of nonorthogonality. For the spin- —kagome antiferromagnet, a systematic expansion

of matrix elements of these nonorthogonal states is made possible by considering generalizations of the
kagome structure in the hyperbolic plane. The first nontrivial term in this expansion is an effective spin
Hamiltonian which describes resonance among dimerized states. Minimum-energy states of the effective
Hamiltonian correspond to a high degree of resonance among a small fraction of the dimers.

I. INTRODUCTION

Recent theoretical interest in the two-dimensional
Heisenberg antiferromagnet with spins arranged in the
kagome structure was kindled by two unrelated experi-
mental systems: (a) kagome sheets of spin- —,

' Cr + ions in

the layered oxide SrCrs Ga4+„0» (Ref. l), (b) nuclear-
spin- —,

' moments of second-layer He atoms adsorbed on
graphite. ' While neither system is an ideal realization
of the simple theoretical model, interest in the kagome
antiferromagnet has grown rapidly because of its unusual
ordering properties. At high spin, calculations by
Sachdev and Chubukov predict coplanar ordering of
moments into the &3 X&3 pattern. For spin- —,', however,
there is strong numerical evidence that the average mo-
ment at each site vanishes. Singh and Huse have per-
formed a high-order perturbation expansion about the Is-
ing limit of the Hamiltonian which corresponds to the
+3 X&3 magnetically ordered state. The radius of con-
vergence of the expansion was found to be well below the
isotropic Heisenberg point, thus implying a new type of
ordering in the isotropic model. Numerical diagonaliza-
tion studies on a 36-site kagome cluster indicate a very
rapid decay of the two-spin-correlation function in the
ground state —again implying a new "exotic" type of or-
dering. Other two-dimensional quantum spin models
with proven or proposed exotic ground states are consid-
erably more contrived than the spin- —,

' kagome system.
A popular strategy for exploring new phases of quan-

tum antiferromagnets has been the use of 1 /N expansions
where X represents the size of a suitable enlargement of
the group SU(2). As emphasized by Sachdev, expansion
schemes differ not just in the choice of group but also in
the choice of representation. One choice has been the
fermionic representations of SU(N), where the N= ac

ground state is constructed by dimerizing all spins into
near-neighbor singlet pairs. To select among the many
dimerizations, 1/N corrections must be computed. This
is where the kagome structure first enters the picture.
Considering only the lowest nonvanishing corrections,
Mar ston and Zeng found that the preferred dimer
configurations have the maximum number of hexagons
covered by three dimers. This still leaves a large degen-

cracy; in particular, the state having three dimers at one
hexagon rotated by 60 has the same energy. Sachdev,
using bosonic representations for the groups Sp(N), finds
a low-spin phase of the kagome antiferromagnet where no
symmetries (including spin) are broken. This is in
conflict with the SU(N) prediction where translational
symmetry —in the form of near-neighbor spin-spin ex-
pectation values —is broken.

The approach used in this paper is similar in spirit to
the "quantum dimer model" introduced by Kivelson and
Rokhsar ' for the square lattice spin- —,

' antiferromagnet.
In this model the Hilbert space is spanned by the same
kinds of states that are selected at large N for the SU(N)
model. However, since N is kept equal to 2, the tunneling
amplitude between different dimerizations is not an ex-
ponentially small quantity and the ground state takes the
form of a superposition. There are two difFiculties with
this approach: the enumeration of the dimer basis states,
and the nonorthogonality of the basis. For the kagome
structure it was shown that the entropy of dimer cover-
ings is equal to (N/3)ln2 where N is the number of spins.
Since N/3=M is just the number of hexagons, this sug-
gests it is possible to represent dimer states by Ising vari-
ables associated with the hexagons in the structure.
Moreover, as was already hinted by Kivelson and Rokh-
sar, it should be possible to develop an expansion of ma-
trix elements by taking advantage of their exponential de-
cay with the length of loops appearing in the correspond-
ing transition graph (superposition of the two dimeriza-
tions). The kagome structure is an excellent candidate
for this type of expansion, since the shortest nontrivial
transition graph must contain a loop of length 6 that sur-
rounds one hexagon. The small parameter in the expan-
sion can be made explicit by considering a generalization
of the kagome structure, where each hexagon is replaced
by a polygon of n sides and treating n as large. For n & 6,
such structures are homogeneous when embedded in the
hyperbolic plane with curvature becoming more negative
as n increases. Thus we may think of the limit n —+ ~ as
joining the more familiar geometrical device
d(dimensionality)~ ~ in the elucidation of interacting
lattice systems.

We wish to stress that our use of negative curvature is
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strictly formal. Although the method has identified a
new small parameter in a class of models, in the end we
will only be interested in the case n =6. Generalized ka-
gome structures with n )6 are pathological in having an
extensive boundary. There are serious problems in prop-
erly defining, for example, the asymptotics of correlation
functions on such objects and we do not attempt to do so.
Our interest in the curvature expansion method is
confined to the derivation (order by order) of an effective
Hamiltonian. Once obtained, this Hamiltonian will only
be used for the original zero-curvature kagome model.

The body of this paper is organized as follows. Section
II describes the pseudospin representation of the dimer
states and gives formulas for overlap and Hamiltonian
matrix elements in the n ~ ~ limit. In Sec. III the form
of the ground-state wave function —including next-
nearest-neighbor singlet-bond Auctuations —is specified
and an effective Hamiltonian for the pseudospins is de-
rived. Using coherent-state wave functions for the pseu-
dospins, the energies of various schemes of translational
symmetry breaking are investigated. Conclusions are
given in Sec. IV.

(a)

(b)

FIG. 1. Generalized kagome structure in the n = ~ limit. (a)
Dimerization with no defects. (b) Dimerization with one defect
(indicated by circle).

II. DIMERIZED STATES IN THE HYPERBOLIC PLANE

A. Pseudospin representation

We choose the additive constant in the definition of the
Hamiltonian so that for n = ~, the ground-state energy is
zero:

(2.1)

where

H;Jg =
—,'(S;+S)+Sk) ——', (2.2)

is the interaction among spins on one triangle of the ka-
gome structure. In what follows, the notations (ij) and
(ij k) denote nearest-neighbor and three mutually
nearest-neighbor objects, respectively. For n = ~, the as-
sembly of triangles forms no closed loops and the struc-
ture becomes the tree shown in Fig. 1. Moreover, one
can then dimerize the spins [Fig. 1(a)j so that each trian-
gle contains one singlet pair and becomes a spin- —, object.
Because H,zk is linearly related to the total spin operator
on a triangle —with the lowest eigenvalue corresponding
to total spin- —,

' —we see that constructions such as shown
in Fig. 1 give the lowest possible energy for the whole
system (zero).

There are other dimerizations where some triangles
contain no singlet bonds. Such triangles represent defects
in the dimerization because they have positive energy; an
example is shown in Fig. 1(b). Dimerizations containing
defects are no longer eigenstates of the Hamiltonian (2.1)
but this can be fixed by including singlet-bond Auctua-
tions (next-nearest neighbor, etc. ) localized around the de-
fect. A useful property of defects is that we may view
their number Nd as being conserved. This comes about
rather trivially for the case n = ~, in that the transition
graph of two distinct dimerizations contains an infinite

chain of singlets, thus causing all off-diagonal matrix ele-
ments to vanish. For finite n, loops in the transition
graph can move defects around but their number will not
change. To see this it is convenient to represent dimeri-
zations by means of arrows on the edges of a graph com-
posed of only n-sided polygons. Figure 2 shows an arrow
pattern for a structure formed out of 7-sided polygons in
the hyperbolic plane. The allowed combinations of ar-
rows at each vertex correspond to the two types of trian-
gle dimerizations shown in Fig. 3. Arrow patterns of two
different dimerizations are related by reversing arrows on
simple closed paths since at each vertex either zero or
two arrows must be reversed in order to remain con-
sistent with the vertex rules. The pattern of arrow rever-
sals is, in fact, just another representation of the transi-
tion graph. Now, if two dimerizations have a nonvanish-
ing matrix element, the length of their transition graph
must be finite so that the corresponding arrow reversals
occupy a finite region. The directions of arrows crossing
the boundary of this region and, in particular, their flux

FIG. 2. Tiling of the hyperbolic plane by 7-sided polygons.
The arrangements of arrows at each vertex corresponds to one
of the two triangle dimerization in Fig. 3.
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(b) p

FICz. 3. Representation of triangle dimerizations by arrows.
The Aux of arrows from a triangle with a defect (b) is (

—3)
times the fiux from a triangle without a defect (a).

must be the same for the two states. But because the Aux
of arrows crossing the boundary is just the sum of the net
divergence of arrows at each triangle, which is different
for defect and nondefect triangles, the number of en-
closed defects cannot change.

That defects are unavoidable when n is finite can be
seen from trying to dirnerize spins on triangles belonging
to just two adjacent polygons. For the ordinary kagome
structure, i.e., n =6, the boundary of a large, compact
(e.g. , circular) region is crossed by far fewer arrows than
vertices enclosed by it. Thus the average divergence of
arrows at each vertex is required to be zero, giving a de-
fect fraction of —,

' (Ref. 3). This is no longer true for
n )6, where the length of boundary grows as fast as the
enclosed number of vertices and a nonvanishing mean
divergence can be accommodated.

Since any two dimerized states are related by loops of
arrow reversals on an arrow diagram (Fig. 2), the set of
all dimerized states can be enumerated by fixing one
dimerized state as a reference state ~DO ) and specifying
all other states in terms of appropriate arrow reversals.
Moreover, the possible patterns of arrow reversals corre-
spond essentially to the set of all Ising domain walls gen-
erated in a model where a pseudospin o'=+1 is situated
at each polygon center. To help us distinguish the pseu-
dospin states from the states of the original spin model,
we will use the notation

(2.3)

where Do represents the reference dimerization. Clearly
a pseudospin state with all o' values reversed corresponds
to the same domain-wall pattern and the same physical
state. This twofold global redundancy should not affect
properties of the model in the thermodynamic limit. In a
finite system with periodic boundary conditions (realiz-
able for n = 6) it is possible for two dimerizations to be re-
lated by a transition graph with odd winding numbers
around the torus —thus making a two-coloring of Ising
domains impossible.

" This topological relationship be-
tween dimerizations decomposes the set of states into
four equivalent sectors, each of which can be represented
in the form (2.3). In a large enough system it is not
necessary to consider the mixing of states from different
sectors since the corresponding matrix elements are ex-
ponentially small.

B. Matrix elements

In the hyperbolic plane, the domain wall around a clus-
ter of Hipped pseudospins grows in proportion to the

number of enclosed pseudospins. Since overlap matrix
elements of dirnerized states decay exponentially with the
length of the boundary, they also decay exponentially in
the number of overturned pseudospins. For the lowest
nontrivial order in an approximate calculation, we con-
sider only a single Aipped pseudospin. Specifically, we
are interested in dimerized states ~D ) and D') with the
pseudospin representations,

/ [ D » =
] [cr'„. . . , cr'„, . . . , o M; Do »,

, ~M;Do» .

(2.4a)

(2.4b)

The matrix element &D ~D') depends on our convention
for the orientations of the singlet wave functions, i.e., the
order of spin up and down along the bond that produces
a positive sign. The simplest choice for general n is to
orient the singlets clockwise around the triangles. With
this choice we obtain

& D ~D' &
= &&D

~
~o"„f„~~D' && =O(E),

where

(2.5)

(2.6)

where b, = 4 is the energy of one defect. Off-diagonal ele-

ments involving one Aipped pseudospin are given by the
formula

(b)

FIG. 4. Reference dimerization Do used in the definition of
matrix elements. Case (a) corresponds to formulas (2.6) and
(2.9); (b) corresponds to replacing o.

l in these formulas by —o.l.
Broken bonds show the dimerization when the sign of the cen-
tral pseudospin (o.o) has been reversed.

is a product of n factors involving the pseudospins which
surround pseudospin r, and z= ,'+i j&—8 The .formula
for f„depends on the reference state Do. The choice of
Do used in (2.6) is the one (valid for even n) where dimers
alternate around the polygon of the Ripped pseudospin as
shown for n =6 in Fig. 4(a). Other choices of Do corre-
spond to replacing some combination of the cr' in (2.6) by
their negatives. An example is shown in Fig. 4(b), where
the correct formula is given by the substitution
ol~ —o', . For n=6, the value of f„varies from —

—,',
when the transition graph is a hexagon, to —,'„when the
transition graph is a six-pointed star. We will use
@=2' " —the largest absolute value of the overlap —to
denote the small parameter in our expansion.

Diagonal matrix elements of the Hamiltonian merely
count the number of defects in the dirnerization, i.e.,

(2.7)
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& D I& I
D '

&
=4 « D

I I
o "„f„(Nd —g„) I I

D » =o(~), (2.8)

where

1g„=—g (outcr'+ I) .
(pqr )

(2.9)

The remarks concerning the choice of reference dimeriza-
tion given above apply here as well. For a different
choice, appropriate combinations of o' are replaced by
their negatives in both f„and g„.

III. GROUND-STATE WAVE FUNCTIONS

A. Defect fluctuations

As discussed above, at finite n all dimerizations have a
nonvanishing density of defects. When the Hamiltonian
acts on a state containing defects, the resulting state has
an admixture of next-nearest-neighbor singlet bonds in
the vicinity of each defect. A good variational wave
function must include such fluctuations in each of the
dimerized states of the superposition. We will consider
the simple one-parameter class of wave functions formed
by superimposing

ID. &=
defects in D

(ij k)

( 1 +aH; 7, ) D & , (3.1)

where the Xd factors in the product commute since de-
fects never occur on neighboring triangles. Wave func-
tion (3.1) does quite well on the n = oo tree when the di-
merization contains one defect [Fig. 1(b)). There, one ob-
tains the Hamiltonian expectation value

A pseudospin state can be defined which uses the same
amplitudes:

I lq » = y q(D) I ID » . (3.5)

&it. 4.&=« itllexp(S. ) lg»=«gllg»,
where

llg»=exp(-, 'S ) lg» .

(3.6)

(3.7)

For a =0, we can use the formulas in Sec. II B to obtain
M

Sp= g o"„f„+O(e ) . (3.8)

The effective pseudospin Hamiltonian & is defined by

(3.9)

The denominators in (3.9) are equal so that we need to
construct the operator & with the property that

The main advantage of (3.5) is the orthogonality of the
basis states

I ID ». The norm of (3.4), when expressed in
terms of (3.5), is given by the expectation value of an
operator that is off diagonal in the pseudospins. An ex-
pansion of this operator in powers of e resembles a Mayer
cluster expansion. The first term in the expansion is or-
der e . This is followed by M terms of order e', M terms
of order e, etc. The M terms of order e are, of course,
just half the square of the first-order terms plus 0 (M) ad-
ditional terms of order e . By the usual linked cluster
theorem, the expansion exponentiates giving

3/4+ (9/4)a+ (45/16)a
1+(3/2)a+ (9/8)a

(3.2) « @I lexp( —,'S )~.exp(-,'S. ) I I@&&
=

& @.I~I q. & (3.1O)

The minimum, 6 =
—,
' is achieved for o, = —

—,
' and

represents a significant improvement over the "bare" de-
fect energy Ao= —,'. Including higher-order Auctuations
around the defect does not improve the energy greatly.
At the next order, incorporating up to two applications
of & in the admixture, the energy is only reduced to
0.4708. When there are more defects on the tree struc-
ture, one finds

& =b, Xd+&'+O(e ) . (3.1 1)

The formulas in Sec. II B are sufficient to evaluate the e'
term for +=0:

for arbitrary amplitudes f(D). Again, using a cluster ex-
pansion in powers of e to evaluate the right-hand side of
(3.10) and expanding exp( —,'S ) in powers of e as well, we
obtain

&D.I~ID. & =b,~Ad+0(a ),
a a

(3.3)

M
mp'= —~p y a„f„g„+O(~') . (3.12)

B. Pseudospin Hamiltonian

Perhaps a more important improvement of the wave
function for finite n (in particular, n =6) is to form a su-
perposition of dimerizations D:

I @.& = & P(D ) ID. & . (3.4)

where the first term is independent of the defect arrange-
ment. Thus, at the level of defect fluctuations of the form
(3.1), it appears that defects are noninteracting. This is
no longer true at finite n, although the interactions turn
out to be extremely small (see Sec. III B).

Z Z Z Z Z Z+CgO 10 20 34740 5CT6 (3.13)

The reference state Do as well as the numbering scheme
for pseudospins shown in Fig. 4(a) has been used. Terms
indicated by . in (3.13) are cyclic permutations of the
leading term and the coefficients have values

When multiplied out for the ordinary kagome structure
(n =6), the coefficient of o p is given by

fpgp=ci+c2(&i%2+ ' ' )+c3(aia3+ . )

+c4(cr io ~+ )+c5(o', rrzo 3o4+ )

+c6(cTfiT2cT3(T5+ ' ' )+c7(cicr2crT4cr5+ ' '
)
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(Cl, . . . , C8

=,I, (33, 13, —15, —27, —15, —27, —15, —27) .

(3.14)

When a&0, the expression for &' changes in three ways:
(a) the coefficients (c„.. . , c8) become functions of a (as
does the defect energy, b, ); (b) new diagonal terms (in-
volving only o') appear; and (c) new off-diagonal terms
appear which couple o. at one site with 0' at next-
nearest-neighbor sites. Both (b) and (c) are of order e'
but unlike (a) they vanish as a for small a. Terms (b)
and (c) were also found to be numerically very small in
the case of interest (n =6, a = —

—,') and were neglected in
the calculations described in the next section. The
coefficient functions for n =6 are tabulated in the Appen-
dix.

We note that once a state is constructed from a super-
position of dimerized states, it is no longer obvious that
the spin-spin correlations are short ranged. It was shown
by Kohmoto and Shapir' that this property is preserved
on the square lattice even when all dimerized states are
given equal amplitude. We fully expect this to be the
case on the kagomi structure as well.

C. Pseudospin coherent states

Finding the ground state of the pseudospin Hamiltoni-
an & to order e' is clearly the same as finding the
ground state of the operator &'. Since the latter de-
scribes resonance among dimerized states, we refer to its
lowest eigenvalue as the resonance energy. We note how-
ever that & is quite nontrivial, certainly no simpler than
the original kagome Hamiltonian. This should not be
viewed as a failure of the present enterprise but rather as
the unavoidable result of having exposed the low-energy
degrees of freedom in the original model. With this in
mind we expect that even a relatively crude treatment of
the gf' ground state should shed some interesting light
on the problem.

A simple upper bound on the resonance energy can be
found using coherent-state wave functions for the pseu-
dospins:

The state formed by taking an equal amplitude super-
position of all dimerized states (with Auctuations added
around defects) corresponds to the choice 8=0 for all
pseudospins. From (3.12) we see that the resonance ener-

gy per pseudospin on the ordinary kagome structure is
just —c i 6 in (3.13); its behavior with a is shown by the
upper curve in Fig. 5. This maximally resonant state is
translationally invariant and has been called a "spin
liquid. "

By breaking translational symmetry, the resonance en-
ergy can be lowered further. This comes about through
the "order by disorder" mechanism already noticed by
Sachdev' in the simple square lattice quantum dimer
model. Three periodic patterns of translational symme-
try breaking for the kagome structure are shown in Fig.
6. The reference state D0 is indicated in each diagram by
the thick unbroken bonds. It is a relatively straightfor-
ward numerical exercise to find the angles 0&,0&, . . . ,
which minimize the resonance energy in each case. This
was done for —0.6(a(0; the results are given as the
three lower curves in Fig. 5. Pattern (a) in Fig. 6 has the
smallest unit cell which has the full point-group symme-
try. At the resonance angles 8„=Oui =sr/2 the defects
(indicated by circles) are arranged in the honeycomb pat-
tern of the reference state. The energy per defect, i.e.,

(3.16)

is minimized for a= —0.327 and 0& =34.5', Oz =82.7 .
Since IcosOii is relatively small, the resonance energy is
dominated by the A pseudospins. The most important
oA'-diagonal matrix elements correspond to parallelogram
shaped transition graphs around the A pseudospins. For
this matrix element fz = + —,', which explains why the op-
timal 0& is close to zero rather than ~.

A significant further lowering of the energy is achieved
in patterns such as 6(b} and 6(c) where the defects are
condensed into resonating six-pointed stars. Pattern (b)
is the smallest unit cell with this property; pattern (c) is
the smallest which has the full point-group symmetry.
The reference states in these patterns are essentially the
same as those identified by the SU(X}analysis of Marston
and Zeng. The minimum of c.d for both patterns occurs

(3.15)

Taking the expectation value of &' in (3.15) simply re-
places the pseudospin operators o. by unit vectors. The
coherent state with all unit vectors parallel or antiparallel
to the z axis corresponds to a definite dimerized state and
has zero resonance energy, i.e., ((&' )) =0. Resonance
always lowers the energy. It is easily seen that in the op-
timal arrangement all the unit vectors lie in the x-z plane.
Consider rotating a particular unit vector n0 about the z
axis. The only change in ((&' )) produced by this rota-
tion is the change in the single term which depends on
n0. Since n, ~ appears linearly, a suitable rotation will
make this term negative (or zero) and at the optimal rota-
tion angle n p =0. We may, therefore, assume that in the
ground state each unit vector is specified by a single "res-
onance" angle 8 where (n", n') =(cosO, sin8).

—0

FIC'r. 5. Resonance energy ((&' )) per pseudospin of four
coherent-state wave functions as a function of a. Upper curve is
the liquid; remaining curves, from top to bottom, correspond to
symmetry-breaking patterns (a), (b), and (c) in Fig. 6.
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(lower curve in Fig. 5) was always slightly lower than that
of (b). The lowest energy, Ed =0.3723, was achieved for
a= —0.510 and 0~=97.1, OD =78. 1'. To express this
energy in the more conventional terms of energy per spin
for the Hamiltonian without the additive constant —„we
use the formula E„„,=(sd —3)/6= —0.4380. This com-
pares well with the value E„„,= —0.4384 obtained by nu-
merical diagonalization of a 36-site kagome cluster.

Figure 7 shows E,d for the spin-liquid and the three-
symmetry broken states (Fig. 6) as a function of a. The
behavior of all the curves is dominated by the function 6
which has a minimum at o.= —

—,'. Thus, most of the
lowering of the energy comes from the inclusion of defect
fIuctuations. In contrast, energy differences between
different resonance patterns are generally quite small,
particularly so for patterns such as (b) and (c) (Fig. 6),
where defects have condensed onto the smallest possible
number of stars. Resonance effects would be even smaller
in hyperbolic geometries with n & 6 while the magnitude
of defect fluctuations would remain the same.

FIG. 6. Three translational symmetry-breaking patterns.
Hexagons bearing the same label ( A, B, etc.) have the same res-
onance angle 0. The dimerization corresponding to
0„=8&= . =m/2 is represented by thick unbroken bonds.
Optimal resonance angle for hexagon A in (b) and hexagons A
and B in (c) is m and corresponds to an equal amplitude super-
position of the broken and unbroken bond dimerizations. The
number of kagome spins per unit cell in (a), (b), and (c) is 12, 18,
and 36, respectively.

—o.~o.a~a
(e)

—0.3 —0.2 -0.1

FICx. 7. Energy per defect ed =A~+ ((&' )) /Nd correspond-
ing to the four curves in Fig. 5.

when the resonance angle of particular pseudospins, la-
beled 2 in the figure, is m.. This maximal form of reso-
nance is distinct from the situation in pattern (a) (where
8& is closer to zero) and is explained by the fact that
fz = —

—,
' is negative for the short hexagonal transition

graph generated by Gipping one of these pseudospins. In
the more symmetrical pattern (c), the angle 8& is also m

at the minimum but the contribution to the resonance en-
ergy from this hexagon is actually quite small. Over the
range of a considered, the resonance energy of pattern (c)

IV. CONCLUSIONS

Strong numerical evidence ruling out long-range spin
order in the spin- —,

' kagome antiferromagnet ' suggests
that a good ground-state wave function can be construct-
ed using short-range singlet pairs or dimers. The large
degeneracy in the energy of dimerized states is removed
by resonance. A means for studying this kind of ground-
state selection is provided by an effective Hamiltonian
which acts on pseudospins situated in the hexagons of the
kagome structure. A systematic derivation of the pseu-
dospin Hamiltonian is made possible by considering gen-
eralizations of the kagome structure in the hyperbolic
plane.

The picture of the ground state that has emerged from
this approach is consistent with an earlier study but is
more detailed in some respects. Resonance is concentrat-
ed at a minority of the hexagons in the structure —the
same hexagons where there is a large probability of
finding defects in the dimerization. In the coherent-state
approximation, the pseudospin Hamiltonian predicts a
particular arrangement of such hexagons [Fig. 6(c)] in the
ground state. Alternative arrangements, however, have
only slightly higher energy, creating the suspicion that
higher-order corrections to the pseudospin Hamiltonian
or defect fIuctuations might need to be included to reli-
ably resolve these differences. It may also be the case
that quantum fluctuations in the treatment of the pseu-
dospin Hamiltonian are important in a qualitative way.
Thus, tunneling among the quasidegenerate arrangements
of minority hexagons could restore translational symme-
try. It is not obvious how sma11 the diagonal energy
shifts of the different arrangements would have to be in
order for tunneling to play a role, since the tunneling am-
plitudes for such large scale rearrangements would them-
selves be extremely small. Irrespective of whether the
solid or liquid prevails in the end, we can be sure that the
energy scale of excitations within the singlet sector is ex-
tremely small.
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many as six defects and corresponding fluctuation factors
(1+aH,~k) in the initial and final states combined. Over-
lap and Hamiltonian matrix elements are, therefore, poly-
nomials of degree 6 in a; they were evaluated by a FOR-
TRAN computer program. The basic matrix elements
were manipulated by Mathematica to give the coefficients
c„.. . , c8. When expressed in terms of a common
denominator,

APPENDIX q=128(8+12a+9a ) (4+12a+15a~), (A1)

There are eight symmetry inequivalent transition
graphs possible when a single pseudospin is Aipped; two
are shown in Fig. 4. These involve as few as zero and as

I

the coefficients have the form c;=p;/q where the p; are
polynomials in u of degree 8:

p, = 16 896+ 116736o;+ 331 392o; +460 608&x +296 328m —25 368m —144 702' —61 128' —6993'

p2=6656+45056e+149 120m +297024' +358056o."+229 512+ +63 882' +1944m —1485'

p3 = —7680—51200o.—116608' —59072m +134280+ +231 528m +152010+ +48 600+ +6777+

(A3)

(A4)

p~ = —13 824 —86016a—191 872a —103 872a +217 960a +423 240a +317754a +118 152a + 18 279a, (A5)

p&
= —7680 —55296' —142720' —122048o. +57352+ +181608+ +138834o. +49032+ +7263'

p&
= —13 824 —98 304' —278 400m —365 504m —226072m —39096m +22482+ + 11 016' + 1269+

p z
= —7680 —55 296cz —157 056m —200 896' —127 736m~ —58 008cz5 —43 470' —27 432' —7317o,

p 8
= —13 824 —110592' —344 448' —506 304' —382 872m —132 792' —1494' + 10 152cz + 1755'

(A6)

(A7)

(A8)

(A9)
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