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In the singlet ground-state systems CsFeC13 and CsFeBr3 a large single-ion anisotropy causes a singlet
ground state and a doubly degenerate doublet as the first excited states of the Fe + ion. In addition the
magneteic interaction is anisotropic being much larger along the z axis than perpendicular to it. There-
fore, these quasi-one-dimensional magnetic model systems are ideal to demonstrate unique correlation
effects. Within the framework of the correlation theory we derive the expressions for the excitation
spectrum. When a magnetic field is applied parallel to the z axis both substances have phase transitions
to commensurate long-range order. In CsFeC13 this transition is preceded by two transitions to incom-
mensurate structures. The calculated fluctuation effects can indeed explain the experimentally detected
incommensurate order in CsFeC13, and also the absence of that in CsFeBr3. A sophisticated numerical
and graphical method leads to a self-consistent determination of the induced magnetization and the
quadrupole moment as well as to the determination of the excitation spectrum for CsFeBr3 and CsFeC13
as a function of the magnetic field. For magnetic fields below the phase transition the experimental data
can be excellently described by the self-consistent random-phase approximation results. For magnetic
fields near the critical magnetic field only qualitative conclusions can be obtained. Numerical results for
the critical scattering, the correlation lengths, and the specific heat, which are based on the analysis of
the first-moment frequency, support the supposition that the field-induced transition is approaching a
second-order phase transition.

I. INTRODUCTION

The static and dynamic properties of crystal-field sys-
tems with weak interactions are examples of very general
problems in physics. It is the problem of interacting ob-
jects with internal degrees of freedom. In particular the
systems which have a nonmagnetic singlet ground state
(SGS) have attracted interest. ' Here one refers to the
mean-field ground state. The true ground state in these
systems is basically unknown; therefore a theory of mag-
netic excitations encounters the same difTiculties as the
theory of antiferromagnets. Hybrid mean-field and
crystal-field theories were developed by several authors.
A self-consistent theory for systems strongly inAuenced
by crystal fields using standard basis operators and the
random-phase approximation (RPA) was developed by
Hayley and Erdos. This was formally extended in the
correlation theory (CT), which includes the eff'ects of
pair correlations. A realistic self-consistent RPA calcula-
tion was previously performed for Pr (Ref. 5) and shown
to accurately describe the softening of the most critical
mode as a function of temperature. Using the correlation
theory for Pr the line-shape behavior including the possi-
bility for a dynamical central peak in a SOS was dis-
cussed. A central peak is found experimentally in the
rather complicated Pr system, but its origin is not yet
quite clear. The problem is that the wave vectors for the
soft mode and the central peak are close, but they do not

coincide exactly as would be expected from simple
theories. A preliminary analysis for the case of planar
magnets suggested that a pronounced central peak in the
line shape for the soft mode could occur in the strongly
correlated systems, such as CsFeC13. The theory for
different directions of the ordered moment in the ordered
phases was developed in the context of martensitic trans-
formations. It is convenient to follow this notation here
and simplify it to the case of one sublattice.

In this paper we are mainly interested in studying the
applications of the self-consistent theories to the ideal
singlet-ground-state systems CsFeBr3 and CsFeC13. They
are both S =1 magnets with strong antiferromagnetic
and ferromagnetic correlated chains, respectively, cou-
pled antiferromagnetically in a triangular pattern. ' '"
The anisotropy energy is of the form DS, and is large
enough to prevent three-dimensional (3D) magnetic or-
dering in the limit of zero temperature. Nevertheless, the
magnetic excitations show an interesting behavior. Even
in the nonordered phase there exist well-defined magnetic
excitations which originate from single-ion excitations to
the excited doublet. However, by applying a magnetic
field perpendicular to the hexagonal plane a 3D magnetic
order can be induced. For CsFeBr3 this leads to a frus-
trated 120 structure in the hexagonal plane. The phase
transition is driven by mode softening with the ordering
vector Q at the K point in the reciprocal space. With no
external field the minimum of the dispersion in CsFeC13 is
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displaced from the E point. ' This may be explained by
the inhuence of dipolar forces' which split the doubly
degenerate exciton modes except at the K point. In prin-
ciple this effect should also be observable in CsFeBr3 It
was not observed in CsFeBr3. ' When an external field
along the chain direction is applied, magnetic ordering
occurs with an incommensurate Q close to the K point in
CsFeC13. ' In this case dipolar forces cannot explain the
effect because the modes are already split by the magnetic
field and the RPA dispersion relation has the minimum
at the K point for large fields. A possible cause of incom-
mensurability is that the exchange interactions are of
long range. For physical reasons there is no basis for ex-
pecting the range to be different for CsFeBr3 and
CsFeC13. The dispersion relation for moderate fields con-
sequently shows no indication of the minimum displaced
from the K point for CsFeC13. However, Lindgkrd'
has shown that correlation effects qualitatively give an
explanation for the experimental results even when dipo-
lar forces are neglected. This will be further studied in
this paper.

The use of thermal averages including the crystal field
only gives rise to RPA theory, which is not fully self-
consistent. A fully self-consistent generalization of the
theory —the correlation theory —has been developed in
terms of the generalized angular momentum operators,
the so called Raccah or Stevens tensor operators. The
CT has, like the RPA theory, the virtue of being simple
and applicable to many systems, including disordered sys-
tems, because short-range order effects are taken into
account by including pair correlations self-consistently in
both static and dynamic properties.

In the following we introduce the model Hamiltonian
and then discuss the excitation spectrum, the free energy
and self-consistently calculated spin-spin correlation
functions by means of CT. The inclusion of correlation
effects as a function of magnetic fields H perpendicular
to and within the hexagonal plane will be discussed.

II. MODEL HAMILTONIAN

For discussing the magnetic properties of the SGS we
consider the general, Fourier transformed Hamiltonian

&= ——g jJ'is'S' +J S+S: +IC S+S+
2

q

+K*s S:

+ACIDS'

(R) —H~~S'(R) —H~s'(R)] .
R

J~ and J denote the Fourier transformed exchange in-
tegrals along and perpendicular to the chains, respective-
ly. Kq stands for the Fourier transform of the anisotrop-
ic part of the dipolar interaction. If dipolar forces are
neglected J ~~ =J and K =0. We define the Fourier
transforms as J =QRJRexp(iq R). In order to discuss
the two possibilities —the external field perpendicular
and parallel to the z direction, respectively —we rewrite
the Hamiltonian (1) in the following form, neglecting the
dipolar interaction

%=——g JqSq S q+g (DS H—
)~S ) H—j QS;

1

q

(2)

III. THE EXCITATION SPECTRUM

A. Overview of the general correlation theory

The aim of CT is to calculate both the static and dy-
namic properties self-consistently, including correlation
effects in a mode-mode coupling approximation. A de-
tailed summary has been reviewed recently ' so here we
only give a few basic steps. The starting point is the con-
struction of a dynamical vector variable Aq, which con-
sist of a relevant number of spin and quadrupolar opera-
tors. For A the exact first- and second-order equations
of motion can, by separating out all terms proportional
to A, be written as (we set fi = 1 )

i Aq=[ Aq, &]=(~co ) Aq+Xq, (4)

—
Aq=(~co ) A +X~q ',

~&'=&~co'& —&coq&' . (6)

X and X' ' are the so-called random forces which are
not proportional to Aq. (co q) is the frequency moment
matrices of the relaxation function ( A A ) . If b q is
nonzero, it directly tells us that the spectrum does not
consist of 5 functions, but that the excitations have a
finite line width. Using i(AB )=([A,B )) we can
derive exact matrix equations for the first moment and
the susceptibility matrices

Lq=(~q& ' I, (~q)=Ipse',
I=([Aq, Aq]) .

Similarly using (5) we can deduce the following expres-
sions which explicitly include correlation effects:

&co, & =I((co,&I+p, ) '(&co, )'+b, ', )=Ip, '(co, &',

=(( ) +& ) '(( „)I+p )=& p

p, =&[X,, A,']) .

(10)

The reason why it is advantageous to use the second-
order time derivative to define the first moment and sus-
ceptibility is, that this includes the time-dependent varia-

We define the following quadrupolar operators

Q =2(S, —S ), Q =2(S, —S„),
(3)

g, =2(s„'—s,'), E"=(s's~+s~s'),
with the remaining E, cc=x,y, z, obtained by cyclic per-
mutations. The correct treatment of the anisotropy term
requires the introduction of these operators. The corn-
mutators between the spin and the quadrupolar operators
give again quadrupolar operators, and commutators be-
tween two quadrupolar operators give spin operators for
S = 1, as can easily be checked.
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tions in the neighborhood of the operator we are dealing
with. Therefore, the correlation with the neighborhood
is explicitly involved. The relations (9) and (10) consti-
tute a useful starting point for approximations as well as
the following exact formal solution by Mori' for the fre-
quency dependence of the Laplace transformed dynami-
cal relaxation function

( A, A', ), =y, [zI—i & ~,&+X,(z)]-',
X (z) = (XqXq),y q

' .
(12)

are sufficiently close to the exact projections so we can
use the Mori result (12), and finally (c) the dynamical as-
sumption that the second-order random-phase relaxation
function is unimportant in the frequency range of in-
terest. In the following we will apply the general theory
to two specific cases. The task is to identify the relevant
dynamical variables A, to perform the commutators
Eqs. (4) and (5), perform the decouplings and then per-
form the self-consistent numerical evaluation of thermo-
dynamic quantities.

A number of exact results for the formal theory are sum-
marized in Ref. 4. The approximation made in the corre-
lation theory consists of the following three assumptions:
(a) that the effect of the remaining operator X' ' in (5)
can be neglected, (b) that the terms in A (4) proportional
to A obtained by the random-phase-approximation

q ~ ~

(RPA) decoupling, and the terms in A (5) proportional
to Aq, obtained by a mode-mode decoupling of all triple
products of operators such as

~ac-& ~a&c+& wc&a+&ac&~,

We introduce the q-dependent field and anisotropy terms

H =H —JM D =D —JQq 1 q 1& q q

and the squared frequencies

(16)

~qD +~qa +~qex +H
1 ~

coqi =(H, H —
coqD )/0, .

(18a)

If we neglect the transverse part of (18a), i.e., all J
terms, we get the mean-field result A,q+=(D+H, ) . This
shows that the degenerate crystal-field doublet at D is
split up in two modes by the internal field H&. The eigen-
value A. + belongs to resonance frequencies from the
ground state to the upper excited mode. The other eigen-
value A, corresponds to excitations between the ground
state and the first excited state. Without writing the full
derivation for the effect of including the dipole forces we
give the dispersion relation for the modes which are non-
degenerate in their presence as the solution to the follow-
ing equation:

(co —
A, q+ )(co —

A, )

=H H& ~ =DD (17)~qex q q & qD q

where Q =
& Q &, n=x, y, and by symmetry Q"=Q~.

Here coq, is the frequency found in the absence of the an-
isotropy D, and u D is the exciton frequency found in the
absence of magnetic order.

The eigenvalues A, + for (15) are the solutions of the
determinant equation. Then the dispersion relation for
the Hamiltonian (2) can be written

=—'0, [1+(I—4' /0 )' ]

B. Magnetic excitations when the external
magnetic field is parallel to the z axis =i2K

i I(H, M, DQ ) co —M, I . —(18b)

The induced magnetization and the internal field are
for the field along the z axis given by

Mi=&SO&, Hi=H +J~ (13)

The solutions of (18b) gives the dispersion relation for the
full Hamiltonian (1). In order to derive the susceptibility
matrix X q

from (7) we have to determine the matrix I
which can be directly found from (8)

(14)

Here H& is the molecular field and M, the induced mag-
netization along the field. For the transverse excitations
corresponding to S" and S modes, we need the dynami-
cal variable vector

A =column(s", L~,S~,L") .
1=&[A,A', ]&=i

Mi —
Q

—Q~

Q~ o o

0 0
The L operators are generated by the equations ofq
motion for S . The first-moment matrix is directly found
from (4) by a RPA decoupling of operators on different
sites, as for example

+qs'„+qs' „-Jq"&s;&s~q .
k

Operators on the same site are treated exactly,
(Snsat )

1

Jl
1 q

(20)

L,=&~, &
'I

The RPA susceptibility for the transverse modes are
found by using the (1,1) and (3,3) matrix elements of (19):

(A A)

H~
q

—D~ Hq 1

D 0 0

0 0

(15)

where R
&

is the inverse local susceptibility which is
found to be

1 H1 —D

HiMi DQ— (21)

If M, and Q are evaluated in the mean-field approxima-
tion, (21) agrees exactly with the directly calculated Van
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Vleck susceptibility. ' This shows that the decoupling is
exact with respect to single-site properties. Using (17)
and (20) we can derive the following simpler expression
for the lowest excitation frequency. When this is much
smaller than the upper mode frequency we can expand
Xq coq i and rewrite this as

co )=K,M, /yq, (22)

C. Magnetic excitations when the external
magnetic Aeld is perpendicular to the z axis

The induced magnetization and the molecular field are
for the field along the x axis, perpendicular to the z axis
defined as

K& is a weakly q-dependent constant of order 1. Equa-
tion (22) shows that the first-moment frequency vanishes
at the temperature or magnetic field at which g diverges
for a special q. As can be seen from Eq. (7), this is an
exact result if the exact first moment is known. The RPA
expression for this is quite accurate, provided that the in-
volved thermodynamic averages are calculated self-
consistently, including the q-dependent dispersion and
using sums over q. This level of sophistication is closely
related to the so-called spherical approximation for a
Heisenberg magnet. With this one can predict the transi-
tion temperature correctly within a few percent.

=
—,'0 [1+(1—4 /0 )' ]

Q2 —co g) +co +H2

coq2 H2H (H2H co D)/02

(29)

0 M Q»

0 Q' M2

,=(,) (30)

—Q» —M2 0 0

The RPA susceptibilities are given by the (1,1) and (3,3)
matrix elements and read

1

R =J2 q (31)

If we are neglecting all exchange interactions, i.e.,
Jq Jq 0, we reduce our Hamiltonian to a simple local-
ized one. Accordingly we get the mean-field eigenvalues
Aq+ = ,' [D+(—D +4Hi )' ]. This shows that, contrary to
the case H~~ z axis, one mode of the doublet moves to
higher energies, while the ground state lowers its energy
with increasing field.

The matrix I and the susceptibility matrix L q in (7) are

M, =(S",), H, =H, +J~, . (23) where the local inverse susceptibilities are

Aq=column(S», Lq, Sq, L»q ) . (24)

Here H2 is the internal field and Mz the induced magne-
tization along it. We need now the dynamical variable
vector

H2
R~~ =

HpR2=
H2M2 DQ'—

(32)

(33)

(co, ) =i

0 H' D
—D' H

q 2

0 7

D3
q

0 0

For the first-moment frequency matrix we obtain

(25)

Similarly to (22), A,
q

can be reformulated in terms of the
susceptibilities (31)

= CO 2
=K2M2 /(y»q~q2 )

' (34)

where K2 is of order 1. This shows that the first moment
vanishes, although differently from the previous case,
when the critical susceptibility component g 2 diverges.

which we have defined with the same notations as in (16),
but in addition we have introduced D. Inclusion of fluctuation effects

and

Dz Jll Qz Qz ( Q )

We introduce the following squared frequencies:

(26)

(27)

In order to clarify the discussion the dipole forces are
neglected in the following. We use the result (9) to calcu-
late the Auctuation effects by decoupling the second-order
equation of motion for the dynamical spin variables. For
both cases —the external magnetic field parallel and per-
pendicular to the z axis —we find that the pq and 5

q
ma-

trices are diagonal. The matrix elements for the spin
operators are given by the expressions

qex
=

q q& qD =DDq (28)

where co,„ is the frequency in absence of anisotropy and

coqD that in absence of the external field. The eigen values
A, +. for the Hamiltonian (2) are the solutions of the deter-
minant equation (25)

c(1) g2 g(2) g(1)J ~ — /g2 (35)pq q ~ q q q q~ q pq q ~

where C" ' and C' ' are correlation functions in various
combinations. Calculating the susceptibility according
to (10) one finds that the general RPA form of the suscep-
tibility is recovered but that the local susceptibilities



13 640 PER-ANKER LINDGARD AND BURKHARD SCHMID

1/R are replaced by renormalized and, in principle,
wave-vector-dependent susceptibilities 1/R . For case

q
(1), where the magnetic field is parallel to the z axis, we
find that R, must be replaced by

Rx Rx ( x(2) /( x(1)
1 ql q q

(36)

Cq r (Jk Jk —q)Jk &~sk~s —k &

N

+(Jk —Jk —q)Jk '&SkS'—k &

where 5sk =Sk —&So & and Jk" " is 1 and Jk for n =1
and 2, respectively. By symmetry, R

q&
=R q&. At

low temperatures the longitudinal (z) fiuctuations
can be neglected. Since ( 1/NJO)gkJk & Sks k & is
a nearest-neighbor correlation function and
( 1 /NJO ) gkJk &SkS k & is a sum of an on-site and a
next-nearest-neighbor correlation function, R qi is a non-
local inverse susceptibility for a small cluster.

In case (2), where the magnetic field is perpendicular to
the z axis, we find that R 2 must be replaced by

can well reproduce the excitation spectrum below the
phase transition. It seems to fail to describe accurately
the region of the phase transition. However, the calculat-
ed correlation functions, correlation lengths, and specific
heat strongly indicate the approach of a phase transition
of second order.

In CsFeC13 an onset of incommensurate ordering has
been detected experimentally as a function of the applied
magnetic field. ' The inclusion of fluctuation effects can
explain this field-induced incommensurability. '

A. Self-consistent RPA Theory

Let us consider the case where the field is along the z
direction. In order to obtain the excitation frequencies at
finite temperatures and fields we have to calculate self-
consistently the thermodynamic quantities, the average
quadrupole moment Q = —Q, and the induced magneti-
zation M&. Using S(S+1)=2=S +S +S, we can
write

(Q, +Q )/2=2S(S+1) —3(s„+Sy )

or by using the symmetry, write

R~ ~R ~ =(-~(2) /C~(» R R z =C~(2) /C~(~)
2 q2 q q ~ 2 q2 q q

(37)
Q= —4+ y &s,+s:,+s;s+, & .

217
(38)

where the C '"~ are obtained from (36) by cyclic permuta-
tions and now 6Sk is inserted instead of Sk. However,
these longitudinal terms can be neglected at low tempera-
tures.

IV. NUMERICAI. CALCULATION OF THE SOFT MODE
AND OF INCOMMENSURATE ORDERING

The possibility of inducing a phase transition in
CsFeC13 and CsFeBr3 to three-dimensional magnetic or-
dering by applying an external magnetic field along the z
direction have stimulated many physicists to investigate
the behavior of the excitation spectrum and the nature of
the phase transition. ' ' ' A recent detailed experimen-
tal study of CsFeBr3 has shown that the field-induced
phase transition can be classified to be of second order. '

In the following we show that a fully self-consistent RPA

The spin-correlation function &Sq S:q & can be deter-
mined from the imaginary part of dynamical susceptibili-
ty according to the dissipation fluctuation theorem. This
is simply related to the relaxation function we have intro-
duced in Sec. III A:

Imp+ (q, co) =co Re(Sq S: ),=; +,
If we neglect line-shape effects the general result is given
in Eq. (12) for X q(z)=0 in terms of the eigenvalues for
the first moment & co &, in Eqs. (18a) and (18b)

d~ co Re(S+S:q),&s+s: &=
1 —exp( —Pcs)

and similarly for (
—+ ). Finally we get the following two

equations for the Q factor and the induced magnetization
M)

—4+(3/2N) g I[M, (J M, +A, )](A. ) '[coth(Qq ) —coth(Q+)]+2M, coth(Q+)j

1+(3/2N) g D (A, ) '[coth(Q ) —coth(A+ ) ]
(40)

where Qq~=2pl. q+, A,q= —'(A,q++A, ) in terms of the
solutions (18a). By introducing the standard basis opera-
tors az„= ~p & & n

~
and solving the equations of motion,

Hayley and Erdos introduce a monotopic condition
which leads to the same expression for the Q factor.
They also give the following expression for the induced
moment

where

sinh(PXq )+J M i (2XO ) 'sinh(P&0 )

cosh(PX, )
—cosh(PAD)

(A, ) 'sinh(PRO)

cosh(PXq ) —cosh(PA, 0
)

4(1+X)
1+3(1+X) +(2—3Y)Y

(41) ~ith Eqs. (40) and (41) it is possible to determine the
dispersion of the excitations as a function of temperature
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and magnetic field numerically self-consistent. Figures
1(a), 1(b), and 1(c) show the results of a fully self-
consistent RPA calculation for CsFeBr3 and CsFeC13.
We have calculated the excitation frequencies at the K
point as a function of the magnetic field [Fig. 1(a)]. We
see that for magnetic fields below the critical magnetic
field the calculated excitation frequencies describe very
well the measured ones. The calculated quadrupole mo-

ment Q [Fig. 1(b)] and the induced magnetization M,
[Fig. 1(c)] are also shown. It would be of considerable in-
terest as a check on the present theory if Q could be
determined directly experimentally.

The used anisotropy and exchange parameters have
been determined by fitting (lga) to the measured excita-
tions at zero field. ' ' In Table I we have listed the ob-
tained parameters. The

g~~
factor used in our calculation

has been determined experimentally as
g~~

-2.4 for both
CsFeBr3 and CsFeC13. ' ' We calculate for the critical
field in CsFeBr3, H, =45 kG and in CsFeC13, H, =50 kG.

It has to be pointed out that a numerical self-consistent
solution of (40) and (41) using an iteration method is only
possible for fields below 37 kG in CsFeBr3 and below 39
kG in CsFeC13. In the following we discuss a semigraphi-
cal and seminumerical method we have developed to get
self-consistent results for the induced magnetization and
the quadrupole moment beyond these magnetic fields.
We use the results on CsFeBr3 as an example. At higher
magnetic fields than 37 kG in CsFeBr3 the calculated fre-
quencies in the q space in the neighborhood of the K
point may become negative because the soft mode is ap-
proaching the frequency zero with increasing magnetic
field and a small deviation of the chosen start parameters
Q and Mi from the real solution has a large influence on
the calculated frequencies around the K point. To obtain
high accuracy in the q summations we have divided the
hexagonal Brillouin zone along the directions I -M and
M-E as well as perpendicular to these directions in 61
points each. In a second step the eight nearest boxes to
the K point are further subdivided into 64 boxes each.
To get a self-consistent solution for Q and Mi for H ) 37
kG, we used the graphical procedure the results of which
are shown in Fig. 2. This is done as follows. For a fixed
magnetic field the quadrupole moment Q„i, is calculated
for a fixed magnetization M&f,„and for different start pa-
rameters Q„„,. We use (40) by calculating for each box
of the q space the two excitation frequencies. If at least
one of the calculated frequencies is negative we draw the
conclusion that Q„„does not exist for the chosen set of
the starting parameters. Finally, we determine graphical-
ly the solution of the following equation:

Qcalc(Qstart&Mlfix ) Qstart (42)

We repeat this calculation for another fixed magnetiza-
tion M, „„.At the end we get for different values of the
fixed magnetization M &f„self-consistently determined
values for the quadrupole moment Q„&,. In a second step

10 20 30 40 50
Magnetic Field (kG)

60

FIG. 1. (a) Calculated excitation frequencies for CsFeBr3
(full line) and CsFeC13 (hatched line) at T = 1.6 K as a function
of the magnetic field parallel to the z axis. Experimental values

(0 ) for CsFeBr, are from Ref. 18 and ( ) for CsFeC13 (Ref. 20).
(b) Calculated quadrupole moment Q for CsFeBr3 (full line) and

CsFeC13 (hatched line) at T = 1.6 K as a function of the magnet-
ic field parallel to the z axis. (c) Calculated induced magnetiza-
tion M& for CsFeBr3 (full line) and CsFeC13 (hatched line) at
T=1.6 K as a function of the magnetic field parallel to the z
axis.

CsFeBr,
CsFeC1,

0.621
0.522

—0.066
0.0629 —0.0095

—0.0062
—0.0042

TABLE I. The parameter sets in THz used for CsFeBr3
(from Ref. 14) and CsFeC13 (from Ref. 20). D denotes the ion
anisotropy, J& and J& are exchange parameters between nearest
and next-nearest neighbors along the z direction, J' is the ex-

change parameter between nearest neighbors in the hexagonal
plane.
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we calculate in a similar way self-consistently determined
values for the magnetization Mi„i, by using (41) as a
function of fixed values for the quadrupole moment Qfi„,
i.e., we determine the solutions of the equation

Mcalc(Mstart~ Qfix ) Mstart

The graphical determined solutions of (42) and (43) are
shown in Fig. 2 for various magnetic fields. The inter-
secting point of the two functions (42) and (43) deter-
mines the required self-consistent solutions. For magnet-
ic fields H'"~46 kG, no graphical solution is found. We
interpret this feature as the onset of the three-
dimensional magnetic ordering: A more elaborate theory
is needed for describing the ordered phase with the same
degree of accuracy, including up to seven self-consistent
parameters.

We obtain for the critical field H, -45 kG. In recent
experiments on CsFeBr3 we have determined a critical
magnetic field of H, =40.2+0.5 kG. ' The difference be-
tween the RPA results, which are self-consistent in the
"spherical" approximation, and the experimental value is
related to neglecting the explicit nearest-neighbor corre-
lation functions. The critical field is slightly overestimat-

0. 15

ed ( =10%) by the RPA theory and the softening of the
first moment is underestimated. The RPA theory is an
excellent description of the experimental data far below
the critical magnetic field. For magnetic fields which are
comparable to the critical field the RPA results can only
be qualitatively interpreted.

The free energy F is given by the following exact rela-
tion:4"

In this equation, the self-consistently calculated functions
entering in (&& from (1) should be inserted. Integrating
(44) yields for the 5-function response in the RPA theory
the harmonic oscillator result for the free energy and
the specific heat

F =FT o+ kit T g in[ 1 —exp( —PA, ) j,
(45)

Ct =g (PA,~ ) expPA, /(expPA, —1)

where FT o denotes the quantum-mechanical zero-point
energy and k denotes the eigenvalue (p =+). In Fig.
3(a) we have shown the calculated free energy as a func-
tion of the magnetic field (for clarity we have set
FT o=0), and Fig. 3(b) shows the corresponding specific
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FIG. 2. Graphical, self-consistent determined solution for
the quadrupole moment Q and the induced magnetization M,
for magnetic fields H ~ 38 kG. The upwards sloping curves are
the self-consistently calculated Q(M) for various M from (42);
and the crossing curves are M(Q) from (43) for various Q.
Where the curves cross the fully self-consistent solution is
found. There is no solution for H =4.6 T=46 kG.
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FIG. 3. (a) Calculation of the free energy as a function of the
magnetic field according to Eq. (45). For clarity we have set
ET O=0. (b) Specific heat as a function of the magnetic field ac-
cording to (45).
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heat. The latter is strongly increasing for H —+H, indi-
cating the approach to a second-order phase transition.
Figure 4 shows the calculated correlation function for q
along 1 -K &Sqs q ) as a function of the magnetic field.
This is proportional to the integrated inelastic-scattering
intensity, which can be determined by neutron scattering.
Near q=Qz „.„, the correlation function is found to be
of the expected Lorentzian form

&s,"s,) =
q

g
—2+ 2 (46)

where C is a constant and Q —Qx. „„,=q. Correlation
lengths deduced from (46) are shown in Fig. 5 for
different field values. The strong increase in the calculat-
ed critical peak intensity and in the deduced correlation
lengths at the K point for H~H, further supports that
the transition is approaching a second-order phase transi-
tion. These results are based on the analysis of the self-
consistently calculated first-moment frequency. The ac-
tual line shape for the excitations for fields close to H, is
expected to broaden and become overdamped at least for
q close to the critical q vector Qx. „„„,.

B. Field-induced incommensurability and fluctuation eff'ects

The inhuence of the dipolar forces may be neglected
for explaining the occurrence of incommensurability be-
cause the excited modes are, according to Eq. (18b), al-
ready split by the magnetic field along the z direction, as
argued in Ref. 15. It has been checked that when includ-
ing the dipole terms Eq. (1), the minimum in the RPA-
dispersion relation remains at the K point for fields
H=H, . The details in the selection of q vectors at the
field-induced incommensurability found for CsFeC13 are a
result of an interplay between the large correlation effects
due to the low dimensionality of this system and the dipo-
lar effects.

Because several of the dynamical variables in (14) do
not couple when the magnetic field is applied parallel to
the z axis we need to consider only two operators in our
dynamical vector Aq =(Sq, L

q ), where L is given by
S,S +S S„where S—=S +iS~. To determine the
first-moment frequency matrix including Auctuation
effects we have to evaluate (9). The dynamical variables
generate the matrices

M, Q HI —J MI D

Q M ' & —q) D —JQ H (47)

(j J )(c(1)+c( )
)

(J,—J, )m("
(J,—J, )m"'

Z, (sc(,"+c'„")
—J,s(," (48)

2 —(Jo —J )J m"' —JoJqm' ' J2(5c(2)+c(&) )
II

(49)

where in terms of yq Jq/Jo

c'"'=—g) "&s+s )
1

k

and

c((("' =—X y&& as~as' & ),(n)

k
(soa)

(50b)

1 00 I I I I
I

I I I I
I
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I

I I I I
I

I I I I
gyq(&L~S:q)+&SqL g)), n =1,2 .
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Here (quad) stands for neglected correlations between
longitudinal quadrupolar operators. The correlation
functions m'"' are zero for H =0.

For 0 =0 the susceptibility (10) including correlation
eff'ects assumes the RPA functional form (20)

O
~~
C)

LL

1.5 CSFeCI
3

~ ~ ~ ~ i ~ ~ ~ ~ i ~ ~ ~ ~ f ~ ~ ~ ~2 I ~ ~ ~

c(1)
(Sq S:q)=, (Lq L:q)=, , (51)J, R —y,

'

where R =(cI '+ct~ ')/(cI" +cI~") and R'=R. R is the
ratio of the correlation functions (50a) according to (35),
(48), and (49), whereas RRPA =D/JOQ. The correspond-
ing frequency is given by

coq= JOQD(R —yq),

a 0 5
CO

Ol

a 0
Q
O

-0.5
0

s(1)

m(2)

m{1)

10 20 30 40 50
Magnetic Field (kG)

which has the same form as co D in (17). When correla-
tion effects are included, the RPA-functional form is
correct for both they q

and ( co
q ) but the anisotropy con-

stant D is replaced by JOQR. Therefore, D is also renor-
malized with temperature. In spite of strong renormal-
ization of the RPA parameters in CsFeC13 at H =0 the
minimum of the dispersion is still at the K point when di-
polar forces are neglected. For finite magnetic fields R
becomes q dependent, since the off-diagonal elements in
(48) become finite. This yields the possibility of displac-
ing the minimum cu from the K point. The excitation
frequencies including correlation effects are given by the
eigenvalues of (9) and therefore determined by (47)—(49).
The RPA first-moment matrix ( co

q ) has the eigenvalues

kq+ of (18a). Magnetic ordering occurs when the
minimum eigenvalue of (9) is approaching zero. To
evaluate (9) we have first of all to determine the induced
magnetization M& and the quadrupole moment Q. For
our numerical calculations in CsFeC13 we used the same
division in reciprocal space and the same semigraphical
and seminumerical method for calculating MI and Q as
described for CsFeBr3. Figures 1(b) and 1(c) show the ob-
tained results for Q and MI. The parameters of the an-

isotropy and the exchange for CsFeC13 used in the calcu-
lations are summarized in Table I. We get a critical mag-
netic field of H, —50 kG for T=1.6 K.

For low magnetic fields the induced magnetization is
small. The minimum of the energy still occurs at the K
point as in the RPA theory when evaluating (9). For
magnetic fields close to H, the induced magnetic moment
M, and also m'" and m' ' are much larger in CsFeC13
than in CsFeBr3 due to different interaction parameters.
As a consequence, a minimum in the dispersion relation
develops in a ring around the K point when evaluating
(9). In our numerical calculations we have neglected the
longitudinal correlation functions c~~~"' and used only the
in-plane exchange interaction when determining Jq and

Jo in (48) and (49). However, the full three-dimensional
dispersion y is used for evaluating the correlation func-
tions (50). In Fig. 6 we show calculated transverse corre-
lation functions (50) as a function of the magnetic field.
The correlation functions m " and m' ', (50c), which
determine the ofF-diagonal elements of (48) and (49) at
magnetic fields near to the critical field H, =50 kG, are
sufficiently large to give rise to a displacement of the

FIG. 6. Calculated transverse correlation functions for
CsFeC13 according to Eqs. (50) as a function of the magnetic
field parallel to the z axis.

minimum of (9) from the K point. The numerical results
are shown in Fig. 7 for H =49 kG indicating that a three-
fold symmetry around the K point should occur. This
calculation shows that correlation effects alone can ex-
plain the onset of incommensurability in a field.

Without dipolar forces the minimum at H =49 kG
occurs at the wave vector q=(1, 1/3 —e, 0), where
@=0.055 and at the equivalent vectors [in reduced units
in a rectangular coordinate system with q '"=q, "=1
and q

'"=
—,
' and qz. „„,=(1,1/3, 0) j. The minimum is

2.1 X 10 THz below the K-point energy, which is given
by 0.004576 THz. The calculation thus gives a very Aat
dispersion in a region around the K point. In the present,
more detailed calculation, the obtained wave-vector re-
gion in reciprocal space is in much better agreement with
that found experimentally, ' than that obtained in the

M

FIG. 7. Calculated excitation energies in CsFeC13 for H =49
kG parallel to the z axis including correlation eA'ects. The
minimum energy of the dispersion occurs in a ring around the K
point yielding the possibility of the occurrence of incommensur-
able ordering. Dipole forces are neglected in these calcu1ations.
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preliminary calculation. ' The interplay of correlation
effects and dipolar forces may determine the exact posi-
tion in reciprocal space where incommensurate ordering
occurs.

In CsFeBr3 the similar calculation of the frequencies
(9) with the inclusion of correlation effects at H =44 kCr
gives no hints of a displacement of the energy minimum
from the K point. Our numerical results show that the
correlation functions m ' " and I ' ' in CsFeBr3 at 44 kG
are only one-third of the value of the correlation func-
tions m'" and m' ' in CsFeC13 at 49 kG. The off-
diagonal elements in (48) and (49) for CsFeBr3 are not
large enough to cause a displacement of the energy
minimum from the K point. This is in agreement with
the experimental observation of absence of incommen-
surability in CsFeBr3.

V. CONCLUSION

In this work we have provided a theoretical description
for the static and dynamic properties of the singlet-
ground-state magnets on the basis of the correlation
theory. This theory generalizes the RPA theory by in-
cluding correlation effects which may become very im-
portant in low-dimensional magnets. As a starting point
we deduced within the framework of CT mathematical
expressions in the RPA for the dispersion relations in the
presence of an external field. In a second step we includ-
ed correlation effects and showed that the general RPA-
functional expressions are recovered but that the local
susceptibilities are replaced by renormalized and wave-
vector-dependent ones. A numerical self-consistent RPA
calculation yields critical magnetic fields H„which
overestimate the experimental values with about 10%%uo.

This is due to the fact that Auctuation corrections are not
taken fully into consideration in the RPA calculations.
Because of the mode softening at the K point, simple nu-
merical procedures give unreliable results when calculat-
ing the induced magnetization and the quadrupole mo-
ment self-consistently. A semigraphical —seminumerical
method has to be developed to determine the self-
consistent solutions. The inclusion of correlation effects
leads to a displacement of the minimum of the dispersion

relation from the E point for magnetic fields close to H,
in CsFeC13. The experimentally detected incommensur-
able ordering in CsFeC13 in a magnetic field parallel to
the z axis could be explained in this manner. The inter-
play between dipolar forces and correlation effects should
define the precise position of the ordering vector for the
incommensurability in the physical system. The correla-
tion effects in CsFeBr3 are not sufficiently large to cause
the same effect in that material, in agreement with the ex-
perimental observations.

Predictions for the dynamical properties of correlation
theory, which are based on Eq. (12), include the possibili-
ty of the occurrence of a central peak and a more compli-
cated line-shape dependence of the excitation spectrum
than the 5-function spectrum discussed in this paper, in
particular when approaching the phase transition. The
self-consistently renormalized 6-function spectrum indi-
cates the best frequency consistent with the first frequen-
cy moments. In the presence of moderate line-shape
broadening this is still a good measure for the peak posi-
tion as observed by neutron scattering. However, for
strongly damped modes the peak position no longer cor-
responds to the first moment frequency. This can be de-
duced by assuming, as is the natural first step, a damped
harmonic oscillator line shape, see Refs. 4 and 23. The
line shapes determined experimentally do not allow a fit
to a more complicated function than the damped har-
monic oscillator form, the two-pole line-shape function,
and thus give no evidence for presence or absence of a
central peak in the case of the soft-mode transition in a
magnetic field parallel to the z axis. For a general discus-
sion of line-shape effects more detailed theoretical and ex-
perimental studies are necessary.
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