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Magnons in a one-dimensional spin glass: The high-field and zero-field limits
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The high-field and zero-field behavior of the linearized magnetic excitations (harmonic magons) in a
one-dimensional +J Heisenberg spin glass are studied. In the high-fie. d limit —a field strong enough to
ensure complete alignment of the ground state —the density of states (DOS), the inverse localization
length (ILL), and the dynamic structure factor are calculated over the interval —4J & E —H &4J (H is

applied field) by employing the coherent-exchange approximation (CEA), negative-eigenvalue counting,
and matrix diagonalization. In the low-energy regime (0.001 & E—H &0.1J), the CEA closely approxi-
mates the exact results reproducing, in particular, the anomalous power-law behavior of the DOS
p(E) -(E —H)' ' and the ILL 1/L (E)-(E—H) for the symmetric distribution of the exchange in-

teractions (concentration c =0.5). In zero field, the DOS and the ILL are calculated using negative-

eigenvalue counting for 0&E &4J and 0.0001 &E &0.01J. For c=0.5, a connection is established be-

tween the zero-field and the high-field limits, and for other concentrations, a phenomenological ap-

proach is developed in the low-energy regime where it is found that p(E) =f(c)E '~' and

1/L (E)=g (c)E

I. INTRODUCTION

The nature of the ground state and the ground-state
dynamics of three-dimensional Heisenberg spin glasses
are still demanding problems in spite of the great efforts
spent to establish a satisfactory theory. Because of frus-
tration, the ground state is highly degenerate (apart from
trivial spin rotations) ruling out any standard theoretical
methods established for systems with long-range order.
In order to bypass this degeneracy, we recently studied a
three-dimensional spin glass in the high-field limit —the
field was assumed to be strong enough to align all the
spins in the direction of the field. We used the coherent
exchange approximation (CEA) and numerical simulation
techniques and compared the results of two approaches
in calculations of the density of states (DOS) and the dy-
namic structure factor.

The Heisenberg spin-glass system in more than one di-
mension involves considerable difriculty in both analytical
and numerical treatments. However, in one dimension,
the spin-glass problem even for large arrays can be exact-
ly solved with numerical methods since the ground state
is not degenerate (see below). The Hamiltonian of a one-
dimensional spin glass can be investigated using various
methods developed for other disordered systems —e.g. ,
electronic states and lattice vibrations; it is even possible
to compare the spin-glass behavior with analytical results
developed for other disordered systems in the limit of
weak disorder. The calculations in the one-dimensional
spin glass can also provide qualitative insight into ap-
proximate three-dimensional models.

In this paper, we studied a one-dimensional Heisenberg
spin glass in the high-field and zero-field limits. In one
dimension, there is no frustration so that the system has a
nondegenerate (but random) ground state contrary to the
three-dimensional spin glass. We first studied the prob-
lem in the high-field limit where the large Zeeman in-
teraction overcomes the noncollinear ground state. In

this case, the system has complexity intermediate be-
tween a spin glass and a ferromagnetic system. Because
the ground state is fixed, the CEA method can be used.
The density of states and the inverse localization length
(ILL) can be determined from negative-eigenvalue count-
ing techniques and compared with the results of analyti-
cal methods. In the zero-field case, Stinchcombe and
Pimentel studied the harmonic magnons in a one-
dimensional spin glass having a symmetric distribution of
the exchange interactions. They showed that in the low-
energy and long-wavelength regime, the system has
anomalous dispersion relation E cck contrary to the
hydrodynamic picture, where the dispersion relation is
E o-k. Boukahil and Huber numerically computed the
DOS and the ILL for the same distribution of the ex-
change interactions and formally connecting the spin
glass to the one-dimensional discretized Schrodinger
equation; they showed that the DOS is consistent with
the pronounced anomalous dispersion relation. Here, we
carry out computations for asymmetric as well as sym-
metric distributions of the exchange interactions. We
show that for the symmetric distribution of exchange in-
tegrals the behavior in the high-field limit is equivalent to
that in zero field. Developing a phenomenological
method, we found the following relations in the low ener-

gy regime in zero field: the integrated density of states,
integrated DOS, I (E)=f (c)E ~, and the ILL
I/I. (E)=g(c)E, where c is the concentration of the
exchange interactions. Note that the CEA cannot be
used in the zero-field case since the ground state is ran-
dom.

A one-dimensional Heisenberg nearest-neighbor +J
spin glass can be described by the following Hamiltonian:

Hg S„'—g J„„+—,S„S„+,,

where H is the applied field (in units of g)M~). The ex-
change interaction J„„+&takes on the values +J( = I )
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with probability 1 —c and the value —J ( = —1 ) with
probability c, and there is no correlation between
different bonds, that is, the probability distribution of
J„„+&has the form

P( J„„+,)=(I—c)6(J„„+,—J)+c5(J„„+,+J) .

Note that c =0 describes the ideal ferromagnet, whereas,
c =1 describes the ideal antiferromagnet. When the field
H)) J, the ground state is in perfect alignment, i.e.,
(S„')=S for every lattice point n (S is the magnitude of
the spin). However, for the zero-field case, (S„') is ran-
dom dependent on the distribution of J + &. The linear-
ized equation of motion for the operator S„+(=S„+S~)
can be written

i S„+=(H+S„' +J„„++S„',J„,„)S„+

where for the high-field case, W' =E H—and g„=J„„+,,
and for the zero-field case, &=E and g„—= +,",J, , +, .
In both cases,

~ J„„+,~ =1. The respective definitions of
the u„are given in Appendix A. The difference between
the high-field and the zero-field limits is rejected in the
random number given above. Equation (7) is similar to
that of one-dimensional discretized Schrodinger equation
with a random potential (see Ref. 3).

The complex Lyapunov exponent is given in terms of
the amplitude ratios by the equation

y( W) =——g 1nR„,

where X is the number of the spins in the chain and am-
plitude ratios R„are given by

—S:(J...+iS.++i+J.—i,.S.+—i ) (3)

(in units where A'= 1). Postulating a harmonic time
dependence S„+-e ' ', Eq. (3) can be written

R„=—
un —j.

(uo=l) .

The real part of the Lyapunov exponent

(E —U„)S„+= —S„'(J„„+,S„++,+J„ i „S„+ i ),
where

(4)
N

Rey =—g ln
~ R„~

N „
(10)

U„—:S„'J„„+i+S„' iJ„
From this set of equations, we can build a tridiagonal dy-
namic matrix whose eigenvalues are the magnon energies.
Thus the problem is reduced to a set of equations that are
coupled by the Hamiltonian in a simple manner. In the
high-field limit, the dynamic matrix is symmetric.

The integrated DOS, the DOS, the ILL, and the dy-
namic structure factor can be obtained by solving Eq. (4).
The dynamic structure factor, which is related to the in-
elastic neutron cross section, can be determined from the
eigenvalues E and eigenstates v of the dynamic matrix
by means of the following equation:

S(Q,E)=2~ + + 6(E E) ( v S„+~0—) exp( —iQn)
~

In our calculations, the delta function is approximated
with a Gaussian with an adjustable width.

is the ILL (in units of reciprocal of the lattice constant) as
shown by Thouless. The ILL gives information about
the spatial extension of the magnon excitations. If it is
zero, then the excitations are extended throughout the
chain; otherwise, the excitations are localized.

The imaginary part of the Lyapunov exponent is

Imy =—g s„,

where

1 if s„(0
s 0, otherwise '

Imp is related to the integrated DOS in the electronic
problem. This is the consequence of the negative-
eigenvalue counting method developed by Dean. Using
arguments similar to those developed for the disordered
antiferromagnets, Imy can also be shown to give the in-
tegrated DOS for the spin-glass problem.

II. LYAPUNOV EXPONENT

(2 —$„8')u„=u„+,+u„ (7)

The complex Lyapunov exponent has been fruitfully
used in understanding the spectrum of the electronic dis-
order problem where the product of the random matrices
also arises. It provides information about the integrated
DOS and the ILL. However, there is no analytical ex-
pression, even in one dimension, for the general
Lyapunov exponent, except in some limiting cases, e.g.,
the weak disorder limit. An analysis of the Lyapunov ex-
ponents for the one-dimensional Heisenberg spin glass in
the high field and zero field is made in Refs. 3 and 5.

With proper transformation (see Appendix A), Eq. (4)
can be reduced to the form

III. COHERENT EXCHANGE APPROXIMATION

The coherent exchange approximation (CEA), another
version of the coherent potential approximation for ran-
dom alloys, was introduced by Tahir-Kheli who applied
it to the dilute ferromagnets and antiferromagnets. How-
ever, this method can only be applied to systems with
known ground states, which in the spin-glass case is the
high-field limit. According to this method, the
configurational averaged Green's function at zero tem-
perature is given by

( G ( W, Q) ) = j 8' —J, ( W)Sz ( 1 —y g ) ]

where 8 =E —H, z =number of nearest neighbors, and

y& =cosQ (in one dimension). The coherent exchange in-
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[(W 2J )2 (2J )2]
—1/2 (14)

After solving J, ( W) from Eq. (13), we can calculate the
DOS and the dynamic structure factor by means of

p( W) = ——Im( Go( W+i E) )
1

and

S(Q, W)= ——I m(G(W+i aQ)),1

tegral characterizing the reduced random medium J, ( W)
is calculated self-consistently from

IdJP(J —J, ( W))/[ I —[J—J, ( W)]

X [ W(GO( W) ) —1]/J, ( W)] =0, (13)

where the distribution of the bonds P(J) is given in Eq.
(2), and the zeroth-order Green's function is

(G, ( W) ) =—y (G( W, Q) )
1

W =0 since, for this case, the exchange integral takes on
+ values with equal probability.

The CEA curves shown in Fig. 2 for the DOS do not
give all the details of the histograms but correctly predict
the qualitative features. This is expected since the CEA,
a mean-field-like theory, can reproduce only the average
behavior. However, surprisingly, for W close to 0—
corresponding to long-wavelength excitations —the CEA
and the numerical results appear to be in good agree-
ment. The high-resolution studies in the next section
show that this agreement is indeed very good.

The inverse localization lengths (ILL) for concentra-
tions are shown in Fig. 3 for c =0.1, 0.2, 0.3, 0.4, and 0.5.
For the pure system, c =0 or 1, the ILL is zero, that is,
all the magnon modes are extended throughout all the
sites. However, for finite concentrations, the ILL takes a
finite value corresponding to localization. Figure 3 shows
that all the modes for W &0 are heavily damped. The
modes for small positive W are less localized than any
other modes in the spectrum. The localization of the
modes starts growing as the concentration increases.

respectively. The imaginary part of W, a, is set equal to
the root-mean-square width of the Gaussian, i.e.,
(2vra )

' exp[ (E E—) /2a—
] which is an approxi-

mate substitution for the delta function in Eq. (6). The
ILL is given in terms of the real part of the Green's func-
tion by the equation '

I /L ( W) = J dy p(y) 1n~ W —
y~

=j dx Re( Go(x) ),

c = 0.5

c = 0.4

because differentiation of the integral over y with respect
to W yields Re( Go( W) ).

IV. RESULTS IN THE HIGH-FIELD LIMIT
FOR THE ENTIRE SPECTRUM 0.3

In this section, the numerical and analytical results in
the high-field limit are presented for the entire spectrum.
The bandwidth for spin glass in this limit is 8 (in units of
J) contrary to the zero-field ferromagnetic and antiferro-
magnetic cases where the bandwidths are equal to 4 and
2, respectively. This is the effect of the high field since
for the homogeneous interactions, i.e., c =0 or c =1, an
eigenvalue is between 0 and 4 or —4 and 0, respectively,
and for the inhomogeneous case, it can take any value be-
tween —4 and 4. The numerical results are presented for
the concentrations c =0.1, 0.2, 0.3, 0.4, and 0.5 with an
array of size of 10 . Note that the results for c )0.5 can
be obtained from the data for c &0.5 by reAection about
W=O (E =H)

The numerical results shown in Fig. 1 display rather
detailed structures with dips and peaks. For c )0.1,
gaps develop in the DOS particularly for W values
2.0 & W & 2. 1. As the concentration increases, the modes
move towards the lower edge of the spectrum, and the
heights of the peaks decrease, but for all concentrations
the peaks at W=0 maintain their heights and positions
more persistently than the other peaks in the DOS. For
c =0.5, the modes are symmetrically distributed about

c = 02

c = 0. 1

g flfan m
-4 —Z O 2 4

E—H

FIG. 1. Histograms of the density of states for the high-field
limit for a chain of 10 spins for various concentrations of nega-
tive, —J, bonds. J =S=1. All the histograms have a unit area
and energy is measured in units of J.
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These results are in accord with the predictions of the
theoretical investigations of one-dimensional disordered
systems where (essentially) all the modes in one dimen-
sion are localized for any finite concentration of impuri-
ties.

Figure 4 shows the dynamic structure factors for the
various concentrations for the following Q values: vr/4,
m/2, 3w/4, and ~. The numerical computations involve
diagonalization of a 650X650 tridiagonal dynamic ma-
trix. Due to the finite size of the array, the delta function
in Eq. (6) is replaced by a Gaussian function with a width
cr ( =a ) =0.2 centered at E„. In the CEA analysis Im W
is set equal to o. .

With increasing c, the peaks broaden and shift towards
the low-energy edge of the band. The broadening of the
peaks rellects the fact that Q is not a good quantum num-
ber indicating the absence of the translational invariance.
For c (0.4, the peaks with higher Q values are damped
less than those peaks with small Q. For c (0.2, some
small tails are developing on the low-energy side which
eventually become satellites. As the concentration in-

creases, these satellites grow and become symmetric at
c =0.5 (in the thermodynamic limit).

The CEA curves evidently give the primary peak posi-
tions quite accurately as well as the shifts towards the
lower edge of the band and the broadening with increas-
ing concentration (see Fig. 5). The CEA also predicts the
development of the satellites with increasing c and the
symmetric peaks at c =0.5. It does not reproduce any
other features of the peaks and for 8'=0, it gives minima
quite contrary to numerical data.

V. HIGH«RESOLUTION STUDIES
IN THE HIGH-FIELD LIMIT

As we mentioned before, the CEA results are in good
agreement with the numerical data at low energies. We
studied in great detail the energy interval 0 ( 8' & 0. 1 us-

ing the CEA. Numerical data were obtained for an array
of 10 spins for two regions of energy: 0.01(8'&0.1

and 0.001 & 8 (0.01 at intervals of 0.01 and 0.001, re-
spectively.
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FIG. 2. Density of states obtained from the coherent ex-
change approximation for various values of c. All curves have
the unit area and the imaginary part of the energy v=0. 015 and
J=S=1. The curves are to be compared with the correspond-
ing histograms shown in Fig. 1. Energy is measured in units of
J.

FIG. 3. The inverse localization length (ILL) for a chain of
10 for various concentrations of negative sign bonds. The ILL
is measured in units of the reciprocal of the lattice constant.
J =S= 1 and energy is measured in units of J.
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1/L ( W) =Rey( W) —=3/2 ' W'sin 8' =0.29768'
3the form

For small W, the Green's function [E . (14)'q. ~ assumes

(G, (W)) —= —( —4J W)-'"

and the self-consistent equation [Eq. (13)] is written

VW(J, —1)+2i(pJ —J' )=0c

(18)

(19)

1 d
p( W):——

Imy ( W) —=0. 109 44 W

(22)

(23)

where the mean of the ex
p= „„+,/=1 —2c (J=l . F

e exchange interactions
/= — = ). For c =0.5 (notice that

p =, Eq. (19) has a rather simple solution
1/3

respectivel . Ty. "ese results are very close to the ri orous
results that were calculated in Ref. 2 f
electr onic disorder problem for h' h h

in e . or the equivalent

power-law behavior occurs i. h
or w ic t e anomalous

s, i.e., w en the mean of the
ran om potential is zero. The Derrida-Gard
for the inteegrated DOS, the ILL, and the DOS are writ-

rri a- ar ner results

Then we cae can calculate the integrated DOS the I
th DOS( Rf 5f de . or etails) which are

I( W) =Imy( W)/sr= —2
3

7T
sin W =0. l64 W'"

3
7

(21)

I(W)= 3 z/3W '=0. 1595. W'"
7r I 1/6)

61/3
1/L(W)= W =0.2893

2I (1/6)

(24)

(25)
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nergy is measured in units of J
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E —H
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FIG. 6. The integrated density of states and the inverse local-
ization length for c =0.5. The solid line represents the coherent
exchange results, the dashed line is the exact calculation of Der-
rida and Gardner, and the symbols represent the data. The cal-
culations are carried out for E values within these intervals:
[0.001, 0.01] and [0.01, 0.1] for a chain of 10 spins. The energy
is measured in units of J(=S=1).

FIG. 8. The inverse localization length for various values of
c (0.5. The solid line represents the coherent exchange results
and the symbols represent the data. The calculations are car-
ried out for E values within these intervals: [0.001, 0.01] and
[0.01, 0.1] for a chain of 10 spins, and energy is measured in
units of J ( =S = 1).

p(w)= I(W)=0. 10944 . . W= d
d8' (26)

IO

respectively, where I is the well-known gamma function,
and we made our connection with these results using the
parameters defined in Appendix A (see also Ref. 3). Fig-
ure 6 displays the CEA results, the numerical data, and
the exact calculation of Ref. 2.

For an asymmetric distribution of the bonds, c & 0.5,
we obtained the integrated DOS, the ILL, and the DOS
for small energy (see Appendix B):

I(w)= "w'", (27)

Q2
1/L(W)= W,

8p

p(w)—= " i(w)= "w-'",
d 8' 2~

(28)

(29)

respectively. The mean of the interaction p=1 —2c and
the standard deviation is

6—:(J„„+,) —(J„„+,) =1—(1—2c) (30)

lO

10 10
E—H

10

These results are in exact agreement with the well-known
theoretical studies of random chains for small energies
done by Matsuda and Ishii. ' Again, the CEA repro-
duces the well-known results in the low-energy regime
when the potential has nonzero mean. In brief, the low-
lying modes are strongly influenced by the nature of the
random bonds only if the mean of the interaction is zero;
otherwise, the dynamics of the low-energy modes is the
same as the pure system with regard to power-law
behavior. The numerical and the CEA results are shown
in Figs. 7 and 8. It is clear from the figures that the ap-
proximation works very well except for c =0.4 where the
approximation starts breaking down for 8'-0. 1.

FIG. 7. The integrated density of states for various values of
c (0.5. The solid line represents the coherent exchange results
and the symbols represent the data. The calculations are car-
ried out for E values within these intervals: [0.001, 0.01] and
[0.01, 0.1] for a chain of 10 spins, and energy is measured in
units of J (=S=1). For c =0.4, the approximation breaks
down for high-energy values.

VI. RESULTS IN ZERO FIELD
FOR THE ENTIRE SPECTRUM

This section is devoted to a presentation of the results
of the spin glass in zero field over the entire spectrum.
The magnons are distributed between 0 and 4 (in units of



48 MAGNONS IN A ONE-DIMENSIONAL SPIN GLASS: THE. . . 13 631

J). In the limit of c =0 and 1, the spin glass reduces to a
ferromagnetic or an antiferromagnetic system, respective-
ly. In zero field, the ground state shows no long-range
order, a feature which is characteristic of the spin
glass. The average magnetization per site
m, =(1/N)g„= &

( S„' ) =0, where ( . . ) is the average
over the disorder for large number of spins. The z com-
ponent of the spin S„'=g„=Qk J& k+, (see Appendix A).

The DOS histograms obtained by negative-eigenvalue
counting for a chain of 10 sites at concentrations c =0.1,
0.2, , and 0.9 are shown in Fig. 9. The histograms show
very rich structure for most the concentrations. At
c =0. 1 and 0.9, the distributions resemble the distribu-
tions for a ferromagnetic and an antiferromagnet, respec-
tively. As the concentration increases, the modes with
the high and low energy move towards the energy E =2
(notice that W =E for zero field) where the distribution
of the antiferromagnetic modes has a peak. This is due to

the fact that the antiferromagnetic interactions start to
dominate strongly as the number of the —J interactions
is increased. For 0. 1&c &0.5, several gaps open espe-
cially for 2&E &2. 1 and 3&E &3.1, and for c )0.5 the
gaps widen until eventually all the modes are found in the
interval 0 &E &2 (c =1). Although the histograms sug-
gest that the DOS histograms assume a finite value for all
concentrations and small E, the high-resolution studies
revealed that the DOS diverge for all concentrations as E
approaches 0.

Figure 10 shows the ILL results for all the concentra-
tions in zero field. As apparent in the plots, all the modes
are localized except for the ones at E =0. This is again
in agreement with the fact that essentially all the modes
in a one-dimensional disordered system are localized.
The zero-energy mode involves simultaneous rotation of
all the spins about a common angle, in which case the re-
storing force is zero. The low-energy modes are less

c = 0.5 c = 0.9 c = 0.5 c = 0.9

c = 0.4 c = 0.8 c = 04
~ ~ \ ~

c = 08

~ ~ ~
'I

~ ~ ~ ~ ~ ~ ~ ~

c = 0.3 c = 0.7 c = 0.7

LLI
~ ~

~ ~ ~ ~ ~~ ~

c = 0.2 c = 0.6 c = 02 c = 06

~ 0
~ ~ ~

~ ~

~ ~ ~ ~
~ ~

c = 0 1 c = 0.5 c = 01 c = 05

~ ~

0 2
E

3 2
E

2
E

2
E

4

FIG. 9. Histograms of the density of states in zero-field limit
for a chain of 10 spins for various c values. All the histograms
have the unit area and energy is measured in units of J
(=S=1).

FIG. 10. The inverse localization length, in units of the re-
ciprocal of the lattice constant, for various c values for a chain
of 10 spins. Energy is measured in units ofJ{=S= 1).
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damped. . than those at high energy. The magnons with
more ferromagnetic interactions (c (0.5) are localized
more strongly than those modes for c &0.5. For c close
to 1, a very sharp increase in the ILL is observed for
E )2. The ILL plot for small energy values appear to in-
dicate different power-law behavior for different concen-
trations; however, as discussed below, the high-resolution
studies revealed that for E & 0.01, the ILL for all t." values
have the same power-law behavior.

VII. HIGH-RESOLUTION STUDIES IN ZERO FIELD

In this section, we report the studies of the one-
dimensional spin glass in zero field for asymmetric bond
distributions. The numerical data of the integrated DOS
and the ILL are computed for two regions of E:
0.0001 &E &0.001 with increments of 6E =0.0001 and
0.001 &E &0.01 with increments of 5E =0.001. We de-
velop a phenomenological approach to calculate the same
quantities. The numerical and the phenomenological re-
sults of the integrated DOS and the ILL are displayed in

Figs. 11 and 12.
The phenomenological equations were obtained as fol-

lows. First, we computed a "best fit" to determine
power-law behavior, i.e., AE with A and x adjustable
parameters —the method is described in Ref. 3. The es-
timated values of A and x are given in Table I. Table I
shows that the exponents of the integrated DOS and the
ILL are very close to —,'. The coefficients ( 2) decrease as
the concentration increases for both integrated DOS and
the ILL in agreement with the overall results. In the
zero-field case, the anomalous power-law behavior ( —', ) ex-
ists effectively for all concentrations; whereas, in the
high-field limit, it exists only for the symmetric distribu-
tion of the exchange integrals. This may be connected
with the fact that our numerical tests showed that the
average of the random potential U„=( g k Jk k +, )E taken
over the sites is zero for all finite concentrations, i.e.,
( I /N)Q„U„=O. As explained earlier, the anomalous
power-law behavior is seen when the average of the ran-
dom potential is zero.
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FIG. 11. The integrated density of states for various c values
in the low-energy regime. The symbols are the numerical re-
sults and solid lines are the theoretical results for the phenome-
nological model. The calculations are carried out for E values
within these intervals: [0.0001, 0.001] and [0.001, 0.01] for a
chain of 10 spins, and energy is measured in units of J
(=S=1). For c =0. 1 and 0.9, small deviations are due to
finite-size effect.

FIG. 12. The inverse localization lengths (ILL), in units of
the reciprocal of the lattice constant, for various c values in the
low-energy regime. The symbols are the numerical results and
solid lines are the theoretical results for the phenomenological
model. The calculations are carried out for E values within
these intervals: [0.0001, 0.001] and [0.001, 0.01] for a chain of
10 spins, and energy is measured in units of J (=S=1). For
c =0. 1 and 0.9, small deviations are due to finite-size effect.
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TABLE I. The coefficient 3 and the exponent x of the in-

tegrated DOS and the ILL.

1/(E) =Rey(E) (ILL)
X

I(E)=Imy(E) (int. DOS)
A X

0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900

0.665
0.488
0.394
0.331
0.287
0.248
0.212
0.172
0.127

0.677
0.674
0.670
0.666
0.666
0.664
0.663
0.659
0.657

0.264
0.233
0.205
0.181
0.161
0.141
0.125
0.106
0.084

0.640
0.657
0.663
0.665
0.668
0.668
0.671
0.672
0.677

Second, close examination of Table I shows that for
c =0.5, not only ( U ) =0 but also ( U U„)=0 except
when n =m. On the other hand, for all the other concen-
trations, ( U ) =(1—2c) -0 for m )2 and
( U~ U„)=(1—2c) ", which is significant for the
nearest-neighbor pairs (m, n) and for m =n. Thus, the
configuration average of U involves a power determined
by the absolute distance from the origin m; hence, it is
effectively zero. However, the correlation of U U„ in-
volves a power determined by the relative distance
~m n~ b—etween the sites; as a result, it is large for both
n =m and when n and m are nearest neighbors. As indi-
cated earlier, the existence of ( —, ) power is associated with
the random potential having zero mean which is shown
above to be the case for all concentrations in zero field.
Moreover, the Derrida-Gardner results are analytically
exact for the integrated DOS and the ILL for c =0.5 in
the weak disorder limit and involve only the second mo-
ments, for example, I (E)=0. 1595(A, ( U U ) )'
where =1 for the corresponding spin-glass problem.
One may assume that, for the asymmetric case, terms like
( U U„) which are nonzero and functions of c, might
contribute to the integrated DOS and the ILL. Starting
from this idea, it is plausible that the integrated DOS and
the ILL coca.cients must be the functions of c, i.e.,
I(E)=f(c)E and 1/L(E)=g(c)E ~ . For c =0.5

f (0.5) and g (0.5) are known from the Derrida-Gardner
results. Taking these results as our basis, we can calcu-
late the functional form of f (c) and g(c) for all c. To
achieve this, we used the numerical data to calculate the
ratios

proach provides an approximate formula for the density
and localization of the low-lying excitations of the spin
glass in the absence of a field as a function of c.

VIII. SUMMARY AND DISCUSSION

We studied the excitations in a one-dimensional +J
Heisenberg spin glass in two limits: high field and zero
field. Although the one-dimensional spin glass is not a
realistic model, many insights can be gained in under-
standing harder problems like the three-dimensional spin
glass. Another advantage is that numerical results can be
obtained for large arrays. In addition, there are exact
theoretical calculations in one dimension. The negative-
eigenvalue counting technique is used to determine the ei-
genvalue distributions and localization lengths while ma-
trix diagonalization is used to calculate the dynamic
structure factors. We transformed the spin equation of
motion to the form of a one-dimensional discretized
Schrodinger equation for which exact results have been
developed in the weak disorder limit for a symmetrical
distribution of the potential fluctuations.

In the first limit, we eliminated the random behavior of
the ground state by means of a very strong applied field
so that we are able to use the coherent exchange approxi-

E
0.01
0.001
0.0001
0.0000

and

R, =I(Eo,c)/I(Eo, c =0.5)

Ri =L (Eo,c =0.5)/L (Eo,c)

(31)

(32)

LLI

O

E
0.01
0.001
0.0001
0.0000

by fixing the energy Eo where ef (c)=f (0.5)R, and
g(c)=g(0. 5)R&. Figure 13 shows the ratios for various
values of the energy. The R; and R& are slightly different
for different values of the energies, but both can be ap-
proximated by 2.1 exp( —

—,'c). Results of this approach
and the numerical data shown in Figs. 11 and 12 are
effectively in agreement except for c =0. 1 and 0.9 where
the size of the chain is probably not long enough to simu-
late the thermodynamic limit. Nevertheless, this ap-

ii ii ii ll I
)

ii I l i I II I
f

I i II ii ii i la il ii I I i f l( ii I i ii ii i

3.0 0.2 0.4 0.6 0.8 1.0

FICx. 13. The ratios given in Eqs. (31) and (32). The horizon-
tal line is concentration c. The line represents the computer
"best fit" which is found for both ratios: 2.1 exp( —~c). Sym-
bols are the ratios for a specified energy.
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mation. The behavior of the spin glass in this limit is
very similar to that of a diagonal electronic problem.
The CEA reproduced numerical data for low energies
and agreed qualitatively with the numerical data over the
whole spectrum. In the case of symmetric bond distribu-
tions, the CEA successfully reproduced the anomalous
power-law behavior of the integrated DOS and the ILL
found in earlier calculations. We also demonstrated that
for c =0.5, the high-field and zero-field cases are
equivalent.

In zero field the ground state is random without frus-
tration. For a low concentration of "wrong sign" bonds,
the distributions are very close to the distributions in fer-
romagnetic and antiferromagnetic systems. In the low-
energy regime, we developed a phenomenological ap-
proach based on the exact results for a symmetric distri-
bution of bonds. We noticed that for all concentrations,
the configuration average of the random potential is zero
which gives rise to the ( —, ) power in the integrated DOS
and the ILL while the correlation of the random poten-
tial does not vanish between different sites. We then hy-
pothesized that these nonzero correlations, which are
functions of c, may cause the integrated DOS and the
ILL for the asymmetric cases to differ from the sym-
metric case in the prefactors multiplying E . The ap-
proximation reproduced the numerical data fairly well
for most of the concentrations, although slight deviations
occurred for c =0. 1 and 0.9 presumably because of
finite-size effects.

The real part of the Lyapunov exponent is used to cal-
culate the localization of the magnons. All the nonzero
modes are localized confirming the long-realized-fact that
all modes are localized in one dimension for any amount
of disorder. Only the zero energy modes are extended
since they correspond to the rotation of the spins about a
common axis where there is no restoring force. The low-
energy modes are the less localized than those at high en-
ergy.

Recently, Evagelou and Wang" computed the spectral
properties of a spin glass using an equation equivalent to
(A5) with AP„=g„E. However, they took g„ to be 1 with
probability 1 —c and —1 with probability c. Although
not explicitly stated, their findings apply to the high-field
limit (where they agree with ours), not to zero field.

Nevertheless, the excitations in the spin glass still
remain a challenging problem even in one dimension.
The next step is to find an approximate theory to predict
the qualitative dynamical behavior of a real spin glass in
zero field that gives as good results as the CEA does in
the high-field limit or at least, to reproduce for c depen-
dence of the phenomenological prefactors of the integrat-
ed DOS and the ILL analytically.

APPENDIX A: TRANSFORMATION OF THE SPIN
EQUATION OF MOTION

The equation of motion given in Eq. (4) in the high-
field limit has the form

u„—=J„„+,(S„++,—S„+)

and inverse transformation

S„+—:(u„—u„, ) i(H E), —

(A2)

Eq. (Al) reduces to the form

(2 —J„„+,W)u„=u„+,+u„ (A4)

where W=E —H and J„„+,'s are random independent
variables taking values +1 with the probability distribu-
tion given in Eq. (2). Equation (A4) is equivalent to a site
diagonal disorder form with a random potential
U„=J„„+,8' whose weak disorder expansion corre-
sponds to the small-energy limit since weak disorder
means in general the small fIuctuations of a random po-
tential around its average.

For the zero-field case, we can use another useful trans-
formation of the spin operator

u„=g„S„+ (A5)

known as Mattis transformation' where g„ is specified
later. Then the equation of the motion for the spin
operator Eq. (4) is written in terms of the new operators

(2 —(„E)u„=u„,+u„+, , (A6)

where g„+,=J„+,g„and (S„')=g„=+1. This is again a
diagonal disorder problem with a different random poten-
tial U„'—:g„E=Qk ', Jk k+, . The variables g„are not in-
dependent but rather correlated random variables con-
trary to the high-field limit. This is the cause of the
different behavior in the two limits. However, for a sym-
metric distribution of the bonds, i.e., c =0.5, the random
potentials for both cases have similar characteristics—
such as their mean and their correlation for different sites
are zero —which is the reason for the appearance of the
anomalous power-law behavior. Thus, both cases are
equivalent for c =0.5.

Note that we can describe both problems with one
equation with an appropriate parametrization

(E H—+J„„+,+J„„,)S„

=J„„+,S„++i +J„,„S„,. (Al)

The z component of the spin operators are set equal to 1

because of the high field. Using the transformation'

u„+,+u„,—(w —A/3„)u„=O, (A7)
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where w =2 and XP„=WJ„„+i for the high-field limit or
A,P„=Eg„ for the zero-field case. For the electronic
problem, w =E, A/3„= U„, and u„=~II„, where U„and u„
are the potential and the electron-wave function at the
site labeled n. Through these parameters, we can adapt
the spin-glass problem to other theories developed for the
weak disorder limit.
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APPENDIX B: SOLUTION OF THE SELF-CONSISTENT
EQUATION FOR THE ASYMMETRIC CASE

IN THE HIGH-FIELD LIMIT

When there is an asymmetric distribution of the bonds,
the self-consistent equation (19) for W=O has a simple
solution for the exchange integral

V'W(R + l)sin8+2VR (pR —1)cos8/2=0, (B3)

respectively, where J, =R exp(i8). This set of equations
is still hard to work with. The first term of the Eq. (B3) is
small since 8'-0 and then, if we approximate R =1/p,
the second term of Eq. (B3) goes to zero as well. Then,
we can solve Eq. (B2) for 8 by

J, ( W =0)= 1/(1 —2c)= 1/p, , (B1)

+W (R —1) cos8 —2+R (pR + 1)sing/2 =0, (B2)

where p is the mean of the exchange integral. Equation
(19) is a complex nonlinear equation for nonzero W
values. However, we can solve it with a suitable approxi-
mation. Writing the coherent exchange integral in polar
coordinates and inserting in Eq. (18), we get for the real
and imaginary parts of the self-consistent equation

3/2
'+2 " x —-' ——0,S'& W

(B4)

where x =sinO/2 and the variance of the exchange in-
tegral 6 =1—p . Having determined the coherent ex-
change integral in this manner, we can then calculate the
integrated DOS, the ILL, and the DOS. For the detailed
solution see Ref. 5.
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