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Existence of spin-wave solitons in an antiferromagnetic film

A. D. Boardman
Department ofPhysics, Joule Laboratory, Uniuersity ofSalford, Salford, M5 4WT, England

S. A. Nikitov
Institute ofRadioengineering and Electronics, Russian Academy of Sciences, Mokhouaya Street, 11, 103907, Moscow, Russia

N. A. Waby
Department of Physics, Joule Laboratory, University of Salford, Salford, M5 4WT, England

(Received 10 May 1993)

The propagation of nonlinear dipole spin waves in a film consisting of a two-sublattice, uniaxial, anti-
ferromagnetic material has been investigated. The external magnetic field is assumed to be parallel to
the anisotropy axis of the antiferromagnetic film and is directed parallel, or perpendicular, to the film

surface. The existence of envelope solitons of spin waves is predicted and conditions for their creation
are discussed.

I. INTRODUCTION II. GENERAL BRIGHT SOLITON CONDITIONS

In the last few years envelope solitons of spin or mag-
netostatic waves in thin ferromagnetic films have attract-
ed a significant degree of attention. The conditions for
their existence have been discussed and experiments
directed towards their observation have been report-
ed. ' In contrast, thin films of antiferromagnetic ma-
terials have only recently been studied, because the main
problem was to obtain high-quality films. This is now
possible due to advanced technology based on molecular
beam epitaxy. It is expected that many new things will
now be possible even though the microwave properties of
bulk antiferromagnetic media have been studied rigorous-
ly in the past. Indeed, even the spectra of linear dipole
spin waves in antiferromagnetic plates has been predicted
and calculated. ' It is the nonlinear behavior of anti-
ferromagnetics that is of interest in this paper and these
have been investigated, theoretically, during a study of
the transmission of electromagnetic waves through an an-
tiferromagnetic plate. ' ' In the latter investigations the
nonlinear susceptibility and permeability tensors were
calculated and bistable regimes of transmission were ob-
tained. Further investigations of the nonlinear properties
of antiferromagnetics seem to be called for: first of all,
because of the interest in the fundamental properties of
this type of material and, second, because of its possible
applications.

The antiferromagnetic resonance frequencies and the
frequencies of any excited spin waves belong to the in-
frared part of electromagnetic wave spectrum and these
facts make the use of antiferromagnetic media in different
applications very attractive.

In this paper we discuss the formation of spin-wave en-
velope solitons in thin antiferromagnetic films, for
different combinations of external magnetic-field spin-
wave propagation directions.

The starting point for the investigation of nonlinear
spin waves in an antiferromagnetic film is a coupled set of
Maxwell and Landau-Lifshitz equations for the ac mag-
netization. In anticipation of amplitude-modulated pulse
transmission, it is assumed that pulse envelope is a slowly
varying complex function. This means that the potential
function in frequency space co can be written as'

P(r, co —coo) =F(x,y ) A (z, co —coo) exp(izko),

where F(x,y ) is the modal field of the guided wave, ko is
the carrier wave number, coo is the carrier frequency and,
most importantly of all, the envelope A(z, co —coo) is a
slowly Uarying function of the propagation distance. In-
serting this function into the Landau-Lifshitz equation,
coupled to Maxwell's equations, leads to more equations
involving the nonlinear wave number k(co), where
k(co) =k(co)+6k(co), k(co) is the linear wave number as
a function of frequency co, and b,k(co) is the nonlinear
shift. After expanding k(co) about ko (the carrier value)
in a power series in (co —coo), the following familiar non-
linear Schrodinger equation arises' '
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where p2 = (c) k Ic)co ) is the linear group-velocity

dispersion parameter (evaluated at coo), sgn(pz) is the sign
of pz, y =c)k/c)

~
A

~
is the nonlinear coeflicient and

sgn(y ) is the sign of y. It should be emphasized that p~ is
defined by the continuous-wave (cw) linear dispersion
equation, whereas y is defined by the cw nonlinear disper-
sion equation. Also, the necessary condition for the for-
mation of bright envelope solitons is the Lighthill cri-
terion'

p,y&0.
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Let us now consider different types of dipole spin waves
propagating in an antiferromagnetic film.

1/2

gH, &co&g H, + R
2

III. TANGENTIALLY MAGNETIZED
ANTIFERROMAGNETIC FILMS

1/2

cH2+ &co&g[H, +R ]'i

In this section an antiferromagnetic film, with thick-
ness d, and an external magnetic field Hp parallel to the
easy axis is considered. It is assumed that the antifer-
romagnet has two sublattices and that the easy axis is
parallel to the film surface. The net magnetizations (Ma)
of each sublattice are equal to each other. For this case,
surface and volume waves could propagate in the film but
the calculation is restricted to waves propagating perpen-
dicular to the external magnetic field, as surface spin
waves.

The dispersion relation for surface spin waves has the
following form: '

2R 2d2 —kd
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gzH2+gz( 1 ekd)R
p c

The schematic spectra for these waves are shown in Fig.
1(a).

For this last case (Ha=0) the group-velocity disper-
sion coefficients are the following:

Lower branch:

exp(2kd) =[(C i
—1)'—VzV[(S i+1)'—S z] (4)

R g (co+A co )
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2 2 2 2
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where p„p2 are the magnetic permeability tensor com-
ponents

Upper branch:
g2R 2d2 —kd

pz=-
2cop1

gRde"Vi=
2ct)p1

&0,

1/2

(9)

( Ci3 CO+ )CO

(CO+ CO )(CO CO )

R =8mMpH, ,

where co+=g(H, +HD), H, =H~(2Hz+H, ), H, =(P
—P, )M0, Hz= —AMD, P and Pi are anisotropy con-
stants, A, is the exchange constant, and, finally, g is a
gyromagnetic ratio. There are two branches of surface
waves. There is a lower branch, between the frequencies

1/2

CO1 (CO (g H + R —Hp

1/2

cH2+ +Hp & CO & C02,

Pz & 0 [sgn(Pz) = —1],
the region has anomalous dispersion. The boundaries of
the frequency spectra are set by co, and co2, where

co, z= —[2g (H, +Ha)+g R1

+ [g"R +8R g H +16g HQH ]'

This region has a Positive Pz [i.e., sgn(Pz)=+1] and is
called the normal dispersion region. For the upper
branch, between frequencies

co0, = g H, +g (1+e "
)

The nonlinear coefficients y [Eq. (2)] can be calculated
in a number of ways. A more complicated way' ' '
than the simpler method of Zvezdin and Popkov' is not
justified in terms of accuracy. The simple method,
developed for ferromagnetic films, yields a value of the
nonlinear coefficient y that is the correct order of magni-
tude for this coefficient at the homogeneous antiferro-
magnetic resonance. It is, therefore, correct to rather a
high accuracy for thin films, when kd « 1.

The calculation of y can be performed by setting the
uniaxial axis to coincide with the z axis. For small devia-
tions of the magnetization from the equilibrium state, the
z component of the magnetization then becomes

Im. I'+
I ~, I'

M=M 1— (10)z 0 2M 0

where Mp is the static value and m are the ac com-
ponents.

In the limit kd « 1, M, =MD —MD I
A I, and, after set-

ting Ha=0 and using the inequalities (7), the nonlinear
coefficient for the lower and upper branches are respec-
tively,

lower branch:

gH, HE+ I' [2H H. +H']'" '

upper branch:

If Ha =0 (note that the microwave field is not equal to
0) the waves propagate within the frequency regions

gHEH,

[2H H +H ]'y=+ (12)
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2 gC
g(H +RPC

Thus, the Lighthill criterion (3) is satisfied for the
upper branch but is not satisfied for the lower branch.
The dispersion equation for volume spin waves is

kd
tan

+Pi
2+pi
p) 1

(13)

g(H, +R )i
2 The spin-wave spectrum for Ho&0 consists of two

branches. The lower branch is

g Hc

g (H, +Ho ) & co & co,

and the upper branch is

g ( H, Ho —
) & co & co2,

(14a)

(14b)

where co, 2 are defined by Eq. (6). The schematic spectra
for these spin-waves are shown in Fig. 1(b). In this case,
however, the waves belonging to both branches possess
anomalous dispersion.

If Ho =0 the only branch that exists with anomalous
dispersion lies in the frequency region

g(H, -H )

gH, &co&g[H, +R ]''2 .

For this last example

1 g R d
I 2 4+g2H2+g2R 2

g R d

2/g H +R

(0,

(15)

(16)

g (H,+H,)

The nonlinear coefficient is given by Eq. (12), except for
replacing V, by V2 . Thus, for these waves, the Lighthill
criterion (3) is also fulfilled

IV. PERPENDICULARLY MAGNETIZED
ANTIFERROMAGNETIC FILM

EX|st

g(H, +H,)

The two-sublattice antiferromagnetic film with uniaxial
anisotropy and an easy axis perpendicular to the film sur-
face will now be investigated. In this case, for a rather
weak external magnetic field (0&HO &H, ), magnetiza-
tions of the sublattices are counter parallel to each other
and are also perpendicular to the film surface.

The dispersion relation for dipole spin waves is the fol-
lowing:

Symmetric modes:

cotall+p i kd =Qp ) (17a)

Antisymmetric modes:

tan+@,kd = —Qp, (17b)

The spectrum, again, consists of two branches, for
which the frequencies are defined as follows:

Lower branch:
FIG. 1 . Dispersion spectra co( k ) for the three types of mag-

netostatic spin waves in an antiferromagnetic film: (a) surface
waves in a tangentially magnetized film; (b) volume waves in a
tangentially magnetized film; (c) volume waves in a normally
magnetized film.

co, & co & g (H, Ho ) . —

Upper branch:

g(H +HQ) & co & co2',

(18a)

(18b)
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gHcd gH d
P,= — &0, V, =

3

The nonlinear coeKcient is

gHEH, &0.
V3 H,

(20)

(21)

Hence the Lighthill criterion is not satisfied.
It is worth noting that this situation is opposite to that

with a normally magnetized ferromagnetic film. For the
latter, the nonlinear coefficient is positive. This difference
arises because of the inhuence of the demagnetizing field
inside a ferromagnetic film. In a normally magnetized
antiferromagnetic film with oppositely magnetized sublat-
tices this demagnetizing field is equal 0. This is an impor-
tant distinction that can change the sign of the nonlinear
coefficient and as a consequence, break the fulfillment of
the Lighthill criterion. Nevertheless, the Lighthill cri-
terion can be fulfilled for the case of a normally magnet-
ized antiferromagnetic film, if the external magnetic field
is greater than H, . Under this physical condition the
preferred arrangement of the magnetic moments of the
sublattices, with respect to the uniaxial axis, is sym-
metric. This produces a ferromagnetic magnetization
vector, in the direction of the uniaxial axis. The analo-
gous situation can appear for a uniaxial antiferromagnet
with weak ferromagnetism. These cases will be con-
sidered in a forthcoming paper. In the meantime for the
cases considered here the Lighthill criterion and, conse-
quently, the necessary condition for the existence of en-
velope solitons is satisfied for the surface (upper branch)
and volume (both branches) dipole spin waves in tangen-
tially magnetized antiferromagnetic films, with the uniax-
ial axis parallel to the film surface.

The necessary and sufficient conditions for such en-
velope soliton formation must include the fact that the
power of the spin wave is above a certain threshold,
defined by solving the nonlinear Schrodinger equation ex-
actly by the inverse scattering method. This dimension-
less power threshold is

where co, 2 are also given by Eq. (6) and the spectra are
shown in Fig. 1(c). Here, however, waves belonging to
both branches have normal dispersion. In zero external
field (Ho =0) only one branch of dipole spin waves exists,
namely

gH, &co&g[H,'+Z']'"
with a group-velocity dispersion

T07

where To is the width of the initial excited spin-wave
pulse.

~
A

~
can be related to the power of a dipole spin

wave in a tangentially magnetized antiferromagnetic film
through the result

(23)

where linear modal fields have been used (within a weakly
nonlinear approximation), L is the width of the film and d
is its thickness.

The substitution of (23) into (22) gives the desired
threshold value for the creation of solitons of dipole spin
waves. In order to arrive at an estimate, the following
parameters of a typical antiferromagnet MnF2 have been
used: Mo =0.6 kG, H, = 8 kOe, HE ——530 kOe, d = 10
pm, L=0.5 cm, co/2ir=80 GHz, To=5X10 s s. These
figures imply a power threshold, P=5 mW. This value
can be very easily achieved in a conventional microwave
or spin-wave experiment. Hence, the necessary and the
sufficient condition for soliton formation can be readily
fulfilled for dipole spin waves in antiferromagnetic films.

V. CONCLUSIONS

The possibility of envelope soliton formation for types
of dipole spin waves, propagating in two-sublattice uniax-
ial antiferromagnetic films, has been investigated. If the
external magnetic field is parallel to the axis of anisotro-
py, and is in a plane of the film, surface and volume di-
pole spin waves propagate within the film. For an exter-
nal magnetic film perpendicular to the film surface, and
parallel to the anisotropy axis, volume dipole spin waves
can exist in the antiferromagnetic film, for rather weak
fields (Ho &H, ). It has been shown that, for the tangen-
tially magnetized antiferromagnetic film, the necessary
and sufficient conditions for envelope soliton formation
are satisfied. Hence, the solitons can exist for the surface
waves belonging to the optical (upper) branch of the spec-
trum and for volume waves belonging to both the optical
(upper) and acoustic (lower) branches of the spectrum. It
is also explained why solitons cannot exist for volume
waves propagating in a normally magnetized antiferro-
magnetic film. An expression for the power required for
soliton formation is derived and estimates are provided
using the antiferromagnetic material MnF2 as an exam-
ple.
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