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Theoretical analysis of magnetic dichroism in the x-ray-resonance scattering
of cubic systems at the X and L edges
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Magnetic dichroism is investigated in second-order processes, especially for x-ray-resonance scatter-

ing, in a semirelativistic treatment. The matrix element of the cross section is expressed by the Green
function of the system for the unoccupied states and by the Fourier-transformed density for the occupied
states. The lattice harmonic expansion of the Green function is used, the coefficients of which can be
calculated by a band-structure investigation. For cubic systems and resonances at the K and L edge, re-

spectively, the matrix elements are evaluated for dipole and quadrupole contributions. It is analyzed
how to measure different contributions independently by observing Bragg peaks in and outside the
scattering plane and by changing the polarization of the incoming and of the scattered photon.

I. INTRODUCTION

Magnetic properties of materials can be studied via x-
ray experiments by taking advantage of the beam polar-
ization of the synchrontron radiation. The success of
preliminary investigations stimulated experimental and
theoretical developments. Synchrotron beamlines are
available and improved, e.g., Vettier' reported that at the
European Synchrotron Radiation facility a new magnetic
scattering beamline is to be opened to users in 1995. Us-
ing new sources the problem associated with the small
scattering cross section can be overcome. Fields of in-
terest are the second-order processes magnetic x-ray
Bragg scattering, magnetic x-ray resonance scattering,
magnetic Compton scattering and the first-order process-
es magnetic dichroism in the x-ray absorption spectra
and magnetic dichroism in the photoelectron emission.

Magnetic x-ray dichroism may be caused by the spin
polarization of the valence electrons and by the spin-orbit
splitting of the valence states in ferromagnetic materials
and in the rare earth, by the spin-orbit splitting of the
core states, and by the relativistic corrections in the in-
teraction of the light with the electrons.

Linear and circular magnetic x-ray dichroism at the
absorption edge was observed, e.g. , by van der Laan
et al. , Schutz et al. , and Chen et al. Ebert et al.
succeeded to explain such spectra by spin-polarized rela-
tivistic band-structure calculations where spin-
polarization and spin-orbit coupling are treated on a
common level. Multiple scattering contributions could
be included using the relativistic scattering path operator.
The spin and angular momentum contribution to the
spin-polarization of the unoccupied states can be investi-
gated.

Magnetic circular dichroism in the core-level photo-
emission was investigated by Baumgarten et al. Thole
and van der Laan ' analyzed that different combinations
of the three polarizations in the experiment allow to dis-
tinguish eight fundamental spectra. Angular-resolved
measurements of photoelectrons from valence bands can

be compared with the electron energy bands of magnetic
materials including the spin-polarization and the spin-
orbit interaction.

Our considerations are concentrated to the second-
order processes. The cross section for the scattering of
photons by electrons was calculated by Lipps and
Tolhoek' including the polarization. The amplitude was
given by Platzman and Tzoar" and by de Bergevin and
Brunel. ' Platzman and Tzoar have shown that it is pos-
sible to determine the spin-dependent momentum distri-
bution of the electrons by the incoherent Compton
scattering of polarized x rays and to determine the mag-
netic structure of antiferromagnetic solids by the
coherent Bragg scattering. de Bergevin and Brunel re-
ported Bragg scattering results for zinc-substituted mag-
netite. Magnetic Compton profiles have been measured
for iron' ' and nickel. ' Special features in the low-
momentum region could be explained' ' by the nega-
tively polarized s-p band electrons.

A second-order resonance process can be observed in
the emission spectra, too. Strange, Durham, and
Gyorffy' describe that information is available about the
spin polarization of the occupied and the unoccupied part
of the energy bands from dichroic x-ray fluorescence ex-
periments.

Blume analyzed the magnetic scattering of x rays and
discussed the possibility of resonance effects in the Bragg
scattering. At the K edge this resonance effect was first
observed by de Bergevin and Brunel ' for iron and by
Namikawa et al. for nickel. The resonance effect is
enhanced, if there is a spin-orbit splitting of the core lev-
el. Thus, large effects have been predicted in the vicinity
of the I.»»j and the M&v v edge. ' Magnetic x-ray res-
onant scattering recently was investigated for Ho,
UAs, and TmSe. It was pointed out that quadrupole
transitions give a remarkable contribution, ' if local-
ized 4f states are involved.

We analyze the resonant scattering for cubic systems as
iron and nickel. The transition metals are investigated
intensively, nevertheless there is a considerable interest at
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II. HAMILTONIAN

We consider the interaction of electrons in a solid with
the photon field including relativistic corrections. In the
Hamiltonian

K =m, c P+crg. [p eA(t)]+ V,(r—— Pg B,(r,2 eA

(1)r

I a 0
0 ' 0 o

0 0
—I ' I

the electronic properties of the cubic ferromagnetic 3d
metals. Recently Hammond, Fahsold, and Kirschner
have investigated the elastic and inelastic reAection of
spin-polarized low-energy electrons from Fe(110), van der
Laan et ah. have observed the magnetic circular di-
chroism in Ni 3p core-level photoemission, Waddill, To-
bin, and Pappas ' have measured the 2p core-level photo-
emission from thin Fe layers on a Cu(001) substrate.
Schneider, Venus, and Kirschner have shown that more
detailed features can be investigated by magnetic circular
dichroism in angle-resolved photoemission spectra.
Ebert et al. have presented a completely relativistic
treatment of the polarization dependence of the 2p-core-
level photoemission spectra of Fe. Stahler, Schiitz, and
Ebert reported on magnetic K-edge absorption measure-
ments and relativistic calculations in 3d elements. Smith
et a/. have calculated magnetic circular dichroism at
the L» and L»& edges of Ni and Fe using a relativistic
tight-binding band-structure approach.

We do not include orbital contributions. Orbital con-
tributions are more important for rare earths. Carra
et al. , Thole et al. , and Altarelli have derived sum
rules to split off orbital and spin contribution to the mag-
netic moment. Jo, Yoshida, and Sawatzky have shown
that including an orbital contribution 0.07pz it is possi-
ble to explain the observed magnetic circular dichroism
in the 2p and 3p x-ray absorption spectra of Ni.

We briefly discuss basic formulas and perturbation
theory in Secs. II and III. In Sec. IV the Green function
is discussed and the cross section is expressed by the
Green function in Sec. V. The spin summation is evalu-
ated in Sec. VI. The matrix elements at the L and L edge
are calculated in Sec. VII and VIII, respectively, and the
results are discussed in Sec. IX.

the Coulomb and exchange interaction is described by
V ff and B,ff, which usually are calculated in the local
density approximation. A static external field B0 can be
added to B,ff. I is the unit matrix and o the Pauli spin
vector.

In our semirelativistic treatment we consider the Pauli
equation. We include the exchange splitting of the elec-
tron energy bands

H = +V — o'.BeA

2 cff 2me mq

In the core states the spin orbit splitting [s=(()t/2)cr ]

l dVeff 2L.s
r drIIis =—0 1

4 m, c

(2)

(3)

can be included. Thus the wave functions, called ~i ), ~f )
in the following, are two-component spinors. The in-
teraction of the photons with the electron contains linear
and quadratic terms in the photon field'

H('= — Ap — ~ B,e eA'

m~ 2me

2 2p
o (AX A) .

2m 4m 2g2

(4)

We restrict the electromagnetic field

E= —A, B=VXA
(scalar potential /=0) to an expression where the vector
potential contains two photons:

A=((/fi/2epQco[ee' ' "+e*e ' ' "]
+QA/2E Qtp'[e'e'q ' "+e'*e 'q ' "]

The factor volume A is canceled in the final result, there-
fore we put Q = 1 in the following formulas. q= qadi/c is
the wave vector of the plane wave. A real e describes
linearly polarized photons. Circularly polarized photons
can be included by complex e. e is always perpendicular
to the wave vector e q=0, e'.q'=0.

The resonance scattering is a second-order process.
H' ' contributes in the first-order perturbation theory
and H'" in the second order. We only include those
terms

H (i)— p+i o"(q X
'e—) QA'/2epco e'q'e ' ' — e'* p —i—o"(q' Xe" ) QA'/2c. co' e '~ 'e'

2 m~ 2 0

—:8' e ' '+8"~e'"'

H(2) E' '6 l
.A(tp'+to), ,„, fi 1;(q q)., ;(„),

2
a.ie Xej e 'e

4m, c2 2~p &cp'co

i (u' —co)t

which describe the absorption of the photon q, e, co and the emission of the photon q', e', co'.
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III. PERTURBATION THEORY

(flWi n)(nIW', Ii)+ 6(Ef + fico' E;—i)lc—o )dK'

Time-dependent perturbation theory results in the matrix element

(fl W't In )(nl W, Ii )
M(f, q'&', t, q&)=&flw2li)+ g E; +Ace' —E„ (10)

for the process where an electron in an initial state Ii ) is
excited into the state

If ) and a photon qe is scattered
into q E .

At this point we have to remember that we have a
many-electron system, say N, electrons. We have to in-
clude the Pauli principle. The total Hamiltonian is a sum
over expressions (1) with r; instead of r and the wave
function is a Slater determinant with orthogonal one-
particle states, called

If ), In ), Ii ) in (10). Thus, the sum
n runs over unoccupied states only. Furthermore we get
different expressions for elastic and inelastic photon
scattering.

The evaluation of the matrix element

IM(q'e', qe)l p(co) .
0

(13)

The integration over dE' results in co' =ai and
I
q'

I

=
I ql.

Due to the Bloch character of the wave functions Ii )
and

I
n ) the integration in the matrix element can be re-

stricted to one elementary cell and the structure factor
IS(K)l appears in the cross section where

matrix element. Thus the cross section for the x-ray-
resonance scattering is determined by

2
do. 1 2~ g M(i, q'e', i, qe) p(co)

i

N

(

bled

0 (rj ) Ic ) (el+ 0 (rk ) Ia )
—rK R1

N R
(14)

of a one-particle operator O(r) gives diff'erent sums for
elastic and inelastic scattering. Here we follow the nota-
tion of Blume and Namikawa et al. where

I
b ), I

c )
and Ia ) are X,-electron wave functions. For the inelastic
scattering (Fig. 1) we have a final state with a definite
hole at

I
i ) and an electron in the definite state

If ) .
Thus, the hole

I
h ) in the intermediate state has to be

placed at
I
i ) and there remains only a sum n over unoc-

cupied states.
The Compton scattering is an inelastic process. We do

not observe the scattered electron and we get contribu-
tions from all electrons Ii ). The number of final states
dN' for the scattered photon contains their density of
states p(co')

gives contributions, if the scattering vector K=q' —q is
equal to a reciprocal lattice vector. N is the number of
unit cells. The constant factors in (g), (9), and (11) can be
summarized into the square of the classical electron ra-
dius ro=e l4irsorn, c which gives the order of magni-
tude of the cross section.

IV. GREEN FUNCTION

The sum over the intermediate states can be expressed
by the Green function

1 codN'=p(co')d0'dE'= d0'dE' .
(2m. ) itic G(E) y ln )(nl

„E—E„
Gg 0
0 Gg

(15)

Thus the cross section is given by

d2(7

d Q'dE'
] occ Ullocc 2

IM (f,q'e';i, qe)I
I0

X5(Ef +fico' E; —A'co)p(ai') .— (12)

Io = c/0 is the current density of the incoming photon.
For the elastic scattering (Fig. 2) the final state Ib ) is

equal to the initial state Ia ) and two sums remain in the

The one-particle Green function of the many-electron
system has poles in the upper half of the complex energy
plane for states below the Fermi energy EF and poles in
the lower half plane for E )Ez. Equation (15) is just the
second part. Because we assume that the states In ) are
eigenfunctions of o„Gis diagonal in the spin space.

The imaginary part of the Green function (15) de-
scribes the density of states (DOS) of the unoccupied
states

U nOCC

FIG. l. From right to left: initial state (Fermi sphere), inter-
mediate, and final state of the total system for an inelastic pro-
cess.

FICi. 2. Initial state (Fermi sphere), intermediate, and final
state of the total system for an elastic process.
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D(E)= — Im(6 (E)+G (E))=— ImG(E),1 1

Nm
(16)

D (E)= — Im( G (E) G—(E))—:— ImG, (E),1 1

Xm x~

where 6 =6
&
+6

&
gives the total DOS D (E) and

6, =6&+6& describes the spin DOS D, (E). A factor
1/N usually is added, where N is the number of elementa-
ry cells. The real part of the Green function can be cal-
culated from the imaginary part using a Kramers-Kronig
relation. D and D, and their local (at a special site) and
partial (for a special angular momentum) components re-
sult from band-structure calculations. We investigate
what components can be measured by the magnetic x-ray
resonance scattering.

The Green function with r and r' within one atomic
sphere can be expanded into lattice harmonics:

6(r', r, E)=g g 6&&, (r', r, E)Ei «(e')E& (e) . (17)
rr ll'

TABLE I. Cubic irreducible representations built from
spherical harmonics of angular momentum I.

r,
I is

r„,r„
r, r„,r„

nr

1

3
23
133

D (r', r, E)= — ImG (r', r, E)1

D(E)=g g nrDi (E)
I l

from the imaginary part Aii =( —I/Nm)ImG&i of the
coefficients Gii in (17) by integration over an atomic cell.

=g g A&i (r', r, E)Ki"«(e')lC&"«(e), (18)
ry ll'

we get the expression for the partial DOS

Di"(E)=j dr r A&i(r, r, E),
0

This and the following relations hold for both G and G, .
Kl ~ is a lattice harmonic corresponding to the represen-
tation I of the point group of the atomic site. It is a
linear combination of spherical harmonics Y& (e). y de-
scribes diFerent functions of the representation I accord-
ing to its dimension nr. It is an advantage of the expan-
sion (17) that the coefficients Gii. are independent of y.

If we restrict our considerations to cubic systems with
s, p, and d states in the occupied and unoccupied part of
the conduction band, then we do not have mixed terms
/, l' and a unique relation between I and t', see Table I.
Including f states there is a mixing between I = 1 and
l =3.

If we insert (17) into (16)

V. CROSS SECTION

In the matrix element (10) of the cross section

, =ro~S(K)i iM(q'e', qe)i (20)

we get a zeroth-order contribution and relativistic correc-
tions of the order fico/mc The res. onance scattering (13)
is determined by those terms of the matrix element (10)
with vanishing denominator. Thus, in the first term of
(10) all occupied states are included —core states and
valence states. In the second term the summation is re-
stricted to the core levels and the third term can be
neglected. For the matrix element remains

M(q'e';qe)= e'* en (K)—i e, (e'" Xe)n, (K)flCO

2m c

edge

+ g e'* ~ (i~p'e ' 'Gpe' 'i ) e+i e'* (i p'e ' 'Gcre'q'~i ) (qXe)
me 2mec

i (q—'Xe'*) (i e ' 'oGpe' '~i) e+ 2(q'Xe'*) (i~e 'q'crGcre' '~i) (qXe)
fico, „.; ., ;, (irico)

2m, c 4m, c

(21)

The summation over the occupied states (with spin 1') in
the first term results to the Fourier-transformed density

OCC

n&(K)=g (i~e ' '~i)= Jd rn&(r)e

wave factor exp(iq r) in (21). We have introduced unit
vectors by q = (fico/c)q

VI. SPIN OPERATORS

We have introduced n =n&+n& and n, =n& —n&. Due
to e-q=o the operator p commutates with the plane-

In the cross section we have to evaluate matrix ele-
ments of spin operators. Each operator can be expressed
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by the four operators
T

0 1 0I —
0 1 ' o' 0 —1

(23)

a oo"b=a b+io" (aXb) we get

2a crM= a.MI+(aM+i aXM) o,
2Mo"b=M bI+a(Mb+iM Xb),

0 1

1 0
0 —i

i 0 2a o Mo"b = [ a Mb+ ia (M Xb) ]I

unit matrix, and Pauli spin matrices. Instead of o.„,o. ,

0 2 0 0
0+ —0&+10&= p 0, cT =0& lo& =

2 p (24)

can be used. An arbitrary operator

Mg M+
1 (MI+—M o )
2M Mg

(25)

can be characterized by a scalar M =M&+M~ and a vec-
tor M

M =M++M

M =i (M„—M ), M, =Mt —Mt =M, (26)

or using (24) by

M o =M+o++M o +M 0, . (27)

In the cross section the Green function has to be multi-
plied with spin operators. Using the relation

+a oM b+a Mo"b —a(o"M)b

+i (aXMb) o' . (28)

a, b can contain the momentum operator. Therefore we
do not commute them with M, M. The Green function
(15) is an operator with vanishing off-diagonal elements
M+. In this case (25) simplifies to

G = ,'(GI+G,—o,) (29)

and in (28) only G and G, appear.

VII. RESONANCE SCATTERING AT THE EC EDGE

To get the resonance scattering at the L edge we have
to sum over the electrons in the E shell. Then li ) is an
eigenfunction of o., with quantum numbers m, =+—,

' and
the summation over m, is equal to the trace of the spin
operator in the matrix element. We have trI =2 and
trcr; =0, thus only terms containing I in (28) contribute.
Furthermore we restrict the expressions to the dipole and
quadrupole contribution:

M(q'E';qe')= [E en(K)'](, )
—. l 2e '(6 XE)lt (K) . + .AQ)

2mec

1 &'*.&»I p'6'~'pl » & & .
me

e" ( lslp'(q' r')6' '(q r)pl ls ).e .
me (Iv)

+ . 2(q'Xe'*) ~ (qXe)( ls q' r'G' 'q rlls) .(%co )

4m, c . (vI)

(
e" ~ ( Islp'6, '~'(q r)

l
ls )e, .(q X e)+(q' X e'*).e, ( lsl(q' r')6,'~'pl ls ).eJ ~v~2mec

i e, . (—q'Xe'*)X(qXe)]( lslq' r'6,'~'q rlls) .(A'co )

4m, c
( VII )

(30)

We number the different terms with (I) to (VII). This
numbering differs from that one of Namikawa et al. be-
cause we do not split off the expressions into real and
imaginary parts. Furthermore we have some additional
terms, which do not contribute under the experimental
conditions discussed in that paper. The first term (I)
gives the Thomson scattering. It contains the density of
all electrons. The second term (II) is the normal magnet-
ic scattering coming from the spin density of the elec-
trons. Both terms result from the erst and second term
in (21), respectively. The following terms contain the

unoccupied states described by the Green function G for
all states and G, for the spin polarization. Due to the
selection rules special angular momentum components
(p, d) contributions are listed in Table I. (III) is the di-
pole term and (IV) the quadrupole contribution of the
third term in (21). p and d states, respectively, appear in
these expressions. There is no contribution from the s
states due to e q=0. The next two lines of (21) are col-
lected in (V). In this term the p-like part of the spin den-
sity of the unoccupied states contributes. The lowest line
of (21) gives (VI) and (VII) using the last relation of (28).
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Prefactor

1

%co/2me c

p/m, c Total

1

(z~)'/4

III
IV
V
VI
VII

mec
m, c
'Rco/2

{fico) /4m, c
{i5co) /4m, c

(Ze)
(Za)

ZQ
(Za) /4
Za/2

(Zn) /4
(ZQ) /4

Z2

z (z~) /4
Z (Za) /8
Z (Zn) /64
z'(z~)'/64

TABLE II. Order of magnitude of the terms (I) to (VII) in
(30) coming from prefactor, factors p/m, c and qr. In the last
column a factor 1/a. u. =1/a m, c is added from G in (III) to
(VII).

terms containing the occupied states ( n, n, ) and the terms
containing the unoccupied states (G, G, ). In n and n, we
have contributions from all angular momenta in 6 and
G, only from a special angular momentum (p or d) as in-
dicated in the matrix element.

As mentioned we get magnetic resonance contributions
from the products (I) with (V) and (VII) and from the
products (II) with (III), (IV), and (VI). The order of mag-
nitude is roughly 10 or less. Which products contrib-
ute depends on the polarization. If it is possible to mea-
sure the resonance effect for different directions of e and
e' with respect to each other and with respect to the
direction of magnetization (e, ), then the different terms
can be separated.

(VII) again includes the spin density.
We get first-order magnetic resonance terms in the

square of the matrix element from the product of (I) with
(V) and (VII) and from the product of (II) with (III), (IV),
and (VI), respectively. In the special case of linear polar-
ized light we do not have a linear term from the magnetic
scattering term (II), because n (K) is real if there is a
center of inversion. The real part of the Green function
cancels in the mentioned products, thus the contributions
to the magnetic resonance scattering are proportional to
the partial density of states.

To estimate the order of magnitude we use the follow-
ing approximations. (i) the ratio of the spin density and
the total density is less than —„;(ii) if we approximate the

~
ls & state by a hydrogenlike wave function an expression

p/mc gives (besides a unit vector) a factor Za where Z is
the nuclear charge and a the fine-structure constant; (iii)
Ace can be approximated by Z Ry, or Z —1 instead of Z.
Thus A'co/m, c =(Za) /2 holds; (iv) an expression qr in
(30) can be replaced by (co/c)(ao/Z)XZr/ao=( —,')Za
XZr/ao, where ao is the Bohr radius; (v) the density of
states for d electrons is of the order of magnitude
100/a. u. /atom and a few percent of this value for p elec-
trons; (vi) at least we have to estimate the radial integrals
with the radial parts of the s, p, and d wave functions, in
some cases containing a factor Zr/ao

The estimation was done for nickel and the results are
listed in Tables II and III. We distinguish between the

TABLE III. Spin (index s or not), angular momentum (p, d),
and radial matrix element (including Zr/ao or not) in the can-
tributions of (30). Estimated relative numerical values for Ni in-
cluding the factors of Table II.

VIII. RESQNANCE SCATTERING AT THE L EDGE

We calculate the contributions for the L» and L»,
edge separately. Thus ~i & in (21) is a 2p, /2 state or a
2p3/2 state, respectively, and the sum over p contains the
two terms given in (Al) or the four terms of (A2). In con-
trast to the considerations for the K shell in Sec. VII
these states cannot be eigenstates of o., and all terms of
(28) appear. The evaluation of the terms containing I and
o, is straightforward, the result is given in (A3) and (A4).
To evaluate terms containing o. , oy or o+, o it seems
to be necessary to fix the direction of the x axis. But we
like to avoid this. We still have five directions
e„q,e, q', e' and the suitable choice of the x axis depends
on their relative positions and on the directions of the lat-
tice vectors. But, it is possible to derive an invariant ex-
pression of these matrix elements which only contains e,
and which is given in (A5).

The matrix elements are listed in the Appendix. We
have divided them into three groups according to expres-
sions resulting from I,o., and o„,o, respectively. We
like to discuss the difference between the results for the
2p, /2 and 2p3/p state. In the first group (A6) we have to
add a factor 2 and in the second (A7) and third groups
(AS) we have to change the sign. Thus, adding the 2p, /2
and 2p3/p contributions (A6) remains with a factor 3,
which cancels a factor —,

' appearing in the formulas. We
get the result for a p state without spin-orbit splitting.
Thus the terms caused by the spin-orbit splitting are (A7)
and (A8). Separating the contributions for the two levels
we can get information on the spin polarization, because
the largest term, the first line in (A7), contains G,
whereas the corresponding term in (A6) contains G.

IX. CONCI. USIQNS

III
IV
V
VI
VII

n,

G
G
G,
G
G,

Integration

&sip&&pls&
(s[tZr/a [d ) (d~Zr/a ~s )

&s[p &&plZr/a, ls &

(s[Zr/ao[p ) (p[Zr/ao[s )
(s[Zr/ao[p ) (p[Zr/aors )

Value

1

3 x10-'

2x10-'
5x 10-'
3 x10-'
5x10
2x10-'

We have calculated the matrix element of the cross sec-
tion (20) for the elastic scattering of a photon (13) at a
spin-polarized system. The matrix element contains
three types of terms as can be seen from the K-edge reso-
nance scattering result (30). (i) The classical term (I) de-
scribes the Thomson scattering and contains the
Fourier-transformed electron density of all occupied
states. (ii) A relativistic correction of the order A'co/m, c
(II) is determined by the Fourier-transformed spin densi-
ty of the occupied states. (iii) Resonance corrections
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TABLE IV. The products containing linear resonant terms
of the spin-polarized contributions.

Product Part of G

IXV
I X VII
II X III
II X IV
II XVI

n XImG,
n XImG,
n, XImG
n, XImG
n, XImG

(III—VII) contain the Green function of the unoccupied
states with respect to all electrons G and the spin-
polarized part G„respectively. We avoid replacing the
operator p by r, otherwise we cannot introduce the Green
function. p can be expressed by p =e e.p —e X (e X p)
=e(fi/i)B/Br —reXL and this expression acts on the
core-state wave function changing the radial or angular
momentum part.

In the cross section (20) we have to square the matrix
element and usually we neglect the square of the correc-
tion. Thus, which terms appear also depends on the po-
larization, whether we have linearly polarized light with
real e or circular polarized light with complex e. In the
following we shall restrict the considerations to linearly
polarized light.

As mentioned we get magnetic resonance contributions
from the product of (I) with (V) and (VII) and from the
products of (II) with (III), (IV), and (VI), respectively.
We can split off the Green function into real and imagi-
nary parts. For linearly polarized light (I} is a real term
and (II) is an imaginary one. Thus in the products always
the imaginary part of the Green function, the density of
state matrix (18), contributes as listed in Table IV.

In these products the spin polarization of the unoccu-
pied states G, is involved, on the one hand, and the spin
polarization of the occupied states n, on the other hand.

Furthermore it is possible to select special contribu-
tions by a suitable choice of the characteristic directions,

magnetization e„wave vector q, and polarization e of
the incoming photon. The wave vector-q' of the scat-
tered photon is fixed by the Bragg condition to special
directions. If it is possible to measure the polarization of
the scattered photon then e' can be varied. There ap-
pears the same combination of these vectors in terms of
the IC edge (30) as in the terms for the I. edge (A3) —(A5).

e, is involved only in those terms that contain spin-
polarized components n„G, . Due to the symmetry (17)
of the Green function for a cubic-system term (III) in (30)
is proportional to e'~ e. From the quadrupole term (IV)
we get three invariants I

&

=e'* q'q e, I2 =e'* eq' q+e'* qe q' and I3 =g e;'*q F.;q;, where i means the
Cartesian components with respect to the lattice. The
first term I& vanishes due to the transversality of the
light. On the other hand this term results from the I

&

part of the Green function. Therefore in (IV) we do not
have a contribution G". The I &2 part is the linear com-
bination I3 —I& =I3, thus, only I3 remains. The I 25. is
the linear combination Iz —2I3.

In Table V we consider which terms of (30} or of the
analogous terms in (A3) —(A5} contribute for special con-
ditions. e, lies in the surface and e„may be the normal
direction.

In cases 1 —8 the wave vector q lies in the xy plane and
in cases 9—16 in the xz plane. We consider a Bragg peak
in the scattering plane and a Bragg peak perpendicular to
the scattering plane, respectively. For these cases four
combinations of the polarization vectors are involved.
We restrict tPe consideration to linearly polarized light.

We find quite different situations. We can get contri-
butions from all terms. The contribution from the mag-
netic terms II, V, VII can vanish, but there are special
conditions where only the magnetic terms contribute.
Thus, it is a question of intensity of the source whether
by a suitable combination of different measurements the
terms can be analyzed separately.

Surnrnarizing we have shown that magnetic resonance
scattering is a suitable tool to investigate the spin polar-
ization of occupied and unoccupied states. We have eval-

TABLE V. Contributing terms of (30) for di6'erent directions of the wave vectors and the polarizations. xy means that the vector
lies in the xy plane and z means it has the z direction. 0 indicates that the term does not contribute.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

q
E

xy
Xy

Xy
xy

xy
xy
Xy
Z

Xy

xy
XZ

XZ

Xy

xy
XZ

xy
Z

xy
Z

Xy
Z

Xy
xy

Xy
Z

XZ

xy
Z

XZ

XZ

XZ

XZ

XZ

Xy
Z

Xz

Xy

xy
XZ

XZ

y
XZ

XZ

xy
Z

XZ

xy
xy

I
II
III
IV

V

VI
VII

(E"XE)z
E

qq'. E
E' .Eq'-q

ge;q q;e;
E' .qb,

b,'q'. E
b' bq'* q
(b'* Xb),q' q

+
+
+
+
+
+
+
+
+
0

+
+
+
+
+
+
+
0
0
0

+
+
+
+
+
0
+
+
+
0

+
0
+
0
+
0
0
0
+
+

+
0
+
+
+
0
0
0
+
+

0
0
0
+
0
0
0
+
+
+

+
0

+
+
+
0
0
+
0

0
+
0
0
0
0
0
+
0
+

+
0
+
+
+
0
0
0
+
+

+
+
+
+
+
+
0
+
0
0

0
+
0
0
0
0
+
0
0
+

0
+
0
+
0
0
0
+
0

0
0
0
+
0
0
+
0
+
+

+
+
+
+
+
0
+
+
+
0
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uated the cross section for the IC edge (30) and the L edge
(A3) —(A5). To evaluate the different contributions we
have to calculate the Green function (17) or the radial ex-
pressions A&I (18). They can be written as products of ra-
dial wave functions and weights which are integrals over
the Brillouin zone containing the coefBcients of the Bloch
functions. The Brillouin zone integration can be per-
formed using the tetrahedron method. '

', l—pl ~.b„+~,b, I
', I-p&

=
—,'i 3I & Y,ol

. . Ie„Yoo) i(e, Xb)

i—(e, Xb) & Yooe„l . IY,o) j . (A5)
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APPENDIX: MATRIX ELEMENTS AT THE L EDGE

In Sec. VII the matrix element (21) is given for the case
that the core state is a 1s state. Now we extend these
considerations for a 2p, /2 and a 2p3/2 state, respectively.
The states characterized by quantum numbers j, l, p are

z is the axis of quantization, but we did not like to fix the
x and y axis. This was done in (A5) by expressing the
spherical harmonics Y& by the unit vector e„=r/r.
Thus (A5) does not contain special components of the
vector b and only spherical harmonics with m =0 remain
which are independent on the position of the x axis. No-
tice that expressions like (A3) and (A4) which contain
two spherical harmonics with the same magnetic quan-
tum number m also do not depend on the choice of the x
axis.

We have similar results for the p3/2 state. We have to
add a factor 2 in (A3) and to change the sign in (A4) and
(A5).

Evaluating the matrix element for the 2p&/2 state we
can distinguish between three types of terms according to
matrix elements of (A3), (A4), and (A5), respectively. At
first we get terms which correspond to (III)—(VII) of (30)
for the K edge:

I —,'1+ —,
' &= —V' —,

' YioX++V -', Yi»—

I —,1 —,
' ) =++—,

' YtoX — Q—', Y, »+

for the 2p&/2 state and

(Al)

+ y & Y) l~'* p'G""p elY,
1

e m

+ g & Y) le' p'(q' r')G'f'(q r)p El Y) )
1

e m

g I & Y& le'* p'G,""'(q r)l Y, )b,

(A6)

I

31+—,
' ) = Y„x+,

~1+ ~ & =U —,
' YioX++V' —,

' YiiX—

I —,1 —
—,
' ) V —,

' Yi iX++V —', YioX — ~

(A2)

l(q' r')G,""'p.el Y, ) f,

+
2 g b'* b& Y& Iq' r'G" 'q rl Y& ),

12m

—,'1 ——', &= Yi —iX— &
pie, (b'*Xb)& Y& q' r'G,""~q r'I Y& ) .

12m, e

for the 2p3/2 state. The Y& are spherical harmonics.
We have to sum over the electrons in one level, thus over
p, and we evaluate the spin part. We can use the rela-
tions

(A3)

y & —,'lpl cT, I —,'Ip) = ——pm& Y, I IY, ), (A4)
2

p m

We wrote (qXe) =b and (q' Xe'*)=b'*. In comparison
with the result for the Is level (30) we have the sum over
the magnetic quantum number of a p state and a factor

3

appears. The radial part of the wave functions is not no-
ticed explicitly. Clearly we get contributions from the
unoccupied s and d states instead of from p states.

The second group of terms result from matrix elements
of o., (A4). They differ from (A6) in the sign and by a
factor m according to the difference between (A3) and
(A4) and by interchanging G and G, according to the two
different contributions in (29):
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gm(Y& ~e" p'G," 'pe Y, ),
3m

g m ( Y, le" p'(q'. r')6,'f'(q r)p el Y,
3me

+ g m t ( Y, ie" p'6" '(q r)~ Y& )b, b,—'*(
Y& i(q'. r')6""'p.e~ Y, )],

6m, c

(A7)

g mb'*. b( Y, q' r'G," 'q. ri Y, ),
12me~ m

ramie,

(b' Xb)( Y, iq' r'6" 'q. riY, ) .
12mec m

The third group of terms contains spherical harmonics with different m values. They are recalculated according to
(A5) using the unit vector e„ to avoid defining an x axis:

&3I —( Y 0
e'* p'G" '(q r)~e„YDO) i (e, Xb)+i(e, Xb) ( Yooe'„ie" p'6""'(q.r)i Y&0)

6m, c

—( Y,o e'" p'G," '(q r) e„Y00).b+b. ( Yooe'„ie'* p'G,""'(q r)~ Y,o)
—( Y,o (q' r')G" 'p E~e„Y00 ) i (e, Xb'*)+i (e, Xb" ) ( Yooe'„i(q' r')G""'p E~ Y,o )
—( Y,o~(q' r')G," 'p e~e„Y00) b'"+b'* ( Yooe'„~(q'. r')6,""'p ei Y,o)],

2

z &3I b,"i(—e, Xb) ( Yooe'„~(q' r')6," "q r)~ Yio) b, i(e—, Xb") ( Yooe„'i(q' r')G," '(q.r)i Y,o)
12m, c

(A8)

+( Y,o~(q' r')G,""'(q r)~e„Yoo) i(e, X. b)b,'*+(Y,oi(q' r')6,""'(q r)~e„Yoo) i(e, Xb. '*)b,

+ ( Yioi(q' r')G""'(q r) ~e„Yoo).[(b'* Xb) Xe, ]—[(b'* Xb) Xe, ] ( Yooe'„i(q' r')6""'(q r)i Y,o) ] .

The results for the 2p3iz core state are similar and we have to add a factor 2 in (A6), because all these terms result from
a matrix element of type (A3). We have to change the sign in (A7) and in (A8), because these terms result from matrix
elements of type (A4) and (A5), respectively.
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