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Static magnetic properties of the many-sublattice antiferromagnet Ca2Fe2O&
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We have studied the magnetization of the antiferromagnet dicalcium ferrite Ca&Fe205 in magnetic
fields up to 5.5 T and in the temperature range 5—330 K. Temperature dependences of the weak fer-

romagnetic moment mo and susceptibilities along the main crystallographic axes have been measured.

Effective intrinsic parameters, such as an exchange field and the Dzyaloshinskiy-Moriya field have been

obtained as a function of temperature. Possible magnetic structures have been analyzed by means of
comprehensive group-theoretical consideration and a phenomenological free energy has been derived.

Problems involving hedgehog structure, parallel susceptibility, field-induced spin reorientation, magni-

tude of the Dzyaloshinskiy-Moriya interaction, and the origin of the weak ferromagnetism are also dis-

cussed. It is shown that Ca2Fe&O& can be described as two canted antiferromagnets putting one into
another with an antiferromagnetic interaction between the weak ferromagnetic components.

I. INTRODUCTION

Interest in antiferromagnets has shifted in recent years
from simple two-sublattice structures to more complicat-
ed many-sublattice systems. Such systems display a
variety of effects and also offer the possibility to verify
models for simple antiferromagnets within an investiga-
tion of many-sublattice antiferromagnets. From this
point of view, dicalcium ferrite, Ca2Fe20& (Ref. 1), is a
very suitable object for investigation. Since it has eight
Fe ions per unit cell, a general description must involve
eight sublattices. The magnetic structure of Ca2Fe20~
was studied by means of the Mossbauer effect and
neutron diffraction. ' It has been shown that dicalcium
ferrite is an antiferromagnet with a sufficiently high Neel
temperature, T&=725 K, ' and a complicated magnetic
structure. The presence of a weak ferromagnetic mo-
ment ' makes this substance even more interesting.

In spite of many previous experimental studies of the
magnetic structure, there has been no detailed theoretical
analysis of the spin arrangement in CazFe205. It is obvi-
ous that eight sublattices can form many different mag-
netic configurations. This would be useful for the predic-
tion and interpretation of experimental results. We shall

try to determine possible magnetic structures in
CazFe2O5, using group-theoretical considerations which
involve symmetry arguments only. Following Turov and
Najsh' we shall analyze the spin arrangement of dicalci-
um ferrite. The advantage of this method is that it yields
all conceivable magnetic structures allowed by symmetry.

In addition, the corresponding free energy can be con-
structed in a very general form which includes all possi-
ble interactions, such that we do not neglect any term re-
gardless of its actual value in nature. The experimental
aspect of this work was motivated, in part, by the absence
of detailed magnetization measurements on Ca2Fe205
and, in particular, the absence of reliable measurements
of the weak ferromagnetic component in this substance.
Note that between the early suggestion of weak fer-
romagnetism in Ca2Fe205 by Hirone" and the recent
measurements of that by Nagata and Ohta, ' almost two
decades have elapsed. However, in the latter investiga-
tion the spontaneous ferromagnetic component mo was
obtained only at room temperature. Neither the temper-
ature dependence of mo nor that of the susceptibilities
along the crystallographic axes nor the Dzyaloshinskiy-
Moriya field' (responsible for the ferromagnetic moment
in the antiferromagnets) have been measured until now.

In Sec. III of the paper we interpret the experimental
results by means of the phenomenological free energy ob-
tained from group-theoretical considerations. Some at-
tendant problems such as hedgehog structure, parallel
susceptibility, field-induced spin reorientation, value of
the Dzyaloshinskiy-Moriya interaction, and origin of the
weak ferromagnetism are also discussed.

II. GROUP- THEORETICAL ANALYSIS

The crystal structure of dicalcium ferrite was deter-
mined by Bertaut, Blum, and Sagnieres' and belongs to
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the orthorhombic space group Pcmn (Dzh) [the lattice
parameters, a=5.598, 6= 14.769, and c=5.425 A (Ref.
15)]. There are four molecules and consequently, eight
Fe ions per unit cell that are equally distributed between
two different symmetry sites (I and m) in two correspond-
ing sets of layers parallel to the ac plane which alternate
along the b axis. Fe(l) ions (octahedral coordination) are
on the fourfold symmetry positions (4a ), (000,
—,'0—,', 0—,'0, —,

'
—,
'

—,') and will be numbered 1,2,3,4. These sites
are centers of inversion. Fe(2) ions (tetrahedral coordina-
tion) are on the 4c positions, +(x,—',z; —,

' —x, 4, —,'+z) and
will be numbered 5,6,7,8 (Fig. 1). The parameters x and z
are quite small (x = —0.066a, z = —0.054c) and their
values are magnified appreciably in Fig. 1 for clarity.

The Pemn group has eight symmetry operations
identity E, inversion I, three screw axes: C2„
=(C2

~
—,'00), C2~ =(C2~~0—,'0), C2, =(C2 00—,'), and three

mirror-screw planes: o „=(o ~00—,
' ), cr ~000), a,

=(cr,
~

—,
'

—,'0). The first symbol in each parentheses origi-
nates from the point-group symmetry operator (where C2
is a twofold axis and o is a mirror plane) and the second
one corresponds to the translation vector inherent in a
given space group. Figure 2 shows how the Fe ions
transform under these symmetry operations. For in-
stance, Cz sends 1 to 2, 3 to 4, 5 to 8, and 6 to 7. Inver-
sion does not change the Fe(1) ions but does transform
the Fe(2) ions, i.e., sends 5 to 7, 6 to 8, and so on.

The spins vectors S;(i =1.. . 8) are transformed in a
complicated way under these symmetry operations. One
can say, that the spins form the basis of a reducible repre-
sentation. It is more reasonable (Dzyaloshinskiy' ) to use
linear combinations of the spins (so-called base vectors)
which form the basis of an irreducible representation. It

C„, ~,

C2x C2x

&x

1 C2„8-,

C&„, 8,

Caz Caz

Ox

C2x) &z

FIG. 2. Transformation properties of the Fe ions under the
symmetry operations.

is clear that for the two nonequivalent sites there exist
two independent sets of base vectors. It is also obvious
that the simple vector sums of the spins,

m, =S,+S2+S3+S4 Fe(l),
m2= S~+S6+S7+Ss Fe(2),

are two of these base vectors. Other combinations which
are easily found by inspection are as follows:

I] =S] S2+S3 S4

a, =S,—S2 —S3+S4 . Fe(1),
c& =S&+S2 S3 S4

C2z 7 12 =Sq —S6+S7—Ss

a2=S~ —S6—S7+Ss . Fe(2) .
c2=S5+S6—S7—S8

~~I~

b/2 '

C»a

Q —Fe(1)

There are eight irreducible representations for the
Pcmn group. ' We have listed in Table I the transforma-
tion properties of the base vector components, i.e., we
show to which irreducible representation of the paramag-
netic space group Pcmn they belong.

Each of the representations in Table I may become to-
tally symmetric in the magnetically ordered state below

~ —Fe(2) TABLE I. Irreducible representations of the group D,z.

r, (c',.c'„I) m1 I1 a1 c1 m2 lq a2 c2 Magn. Gr.

b = -1/4 b = 1/4

FIG. 1. Orthorhombic structure of Ca2Fe205, showing only
the magnetic nonequivalent Fe(1) and Fe(2) ions with octahedral
(~ ) and tehedral (~ ) coordination, respectively. Insets below
represent relative location of the Fe(2) ions 5 . 8 in the planes
(x, 4,z) and (x, ——',z). From the symmetry elements only screw
axes C»(j =x,y, z) are shown.
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the transition temperature, with the corresponding non-
vanishing components of the base vectors. The resulting
magnetic structures (magnetic space groups) are listed in
the last column of Table I, where the apostrophe indi-
cates that the corresponding symmetry operation has to
be combined with time reversal. Thus, possible magnetic
structures can be described by the symbols I,+—and are
determined by nonzero components of the base vectors
belonging to a given representation.

For further analysis of the magnetic configurations we
must refer to the available experimental results. As was
mentioned above, Ca2Fe2O5 has a layer structure. There
are only two possibilities for dicalcium ferrite to be an an-
tiferromagnet. For the first, each layer has a ferromag-
netic order with a maximum value for the m; (i =1,2)
vectors (so-called m structure, since vector m is responsi-
ble for the ferromagnetic order) and an antiferromagnetic
interaction between layers, i.e., I& is antiparallel to m2.
For the second, the two layers are both antiferromagnet-
1C.

In the former configuration the spins S&,S2, S3,S4 have
a general direction opposite to that of the spins
SS,S6,S7 S8 In the latter configuration the antiferromag-
netic structure for the Fe(2) ions can be described only by
I components (I structure, S5~~S7, and S6~~S8), while the an-
tiferromagnetic order for the Fe(1) ions could be realized
either with the I structure (S„S3 are opposite to Sz, S4,
such that the I, vector has a maximum value) or with an
a structure (Si, S4 opposite to S2, S3, with a maximum
value for the a, vector). The simplest estimation on the
basis of an exchange approximation shows, that l struc-
ture for Fe(1) ions is more energetically favorable than
the a structure. In addition, it would be very unlikely
that two alternating layers have the magnetic structures
which are described by the different base vectors. So, the
Fe(1) ions have also the I structure with the I, parallel to
the 12 for the ferromagnetic interaction between the lay-
ers, or l, antiparallel to the l2 for the antiferromagnetic
one.

In experiments with substituted diamagnetic Ga + and
Sc + ions, it was found, ' that both nonequivalent lay-
ers are antiferromagnetic and interaction between them is
also antiferromagnetic. In the Ca2Fe205 structure, Sc +

ions prefer octahedral Fe(1) sites while Ga + ions prefer
tetrahedral Fe(2) sites. ' This substitution does not pro-
duce ferrimagnetism and it implies that both layer must
be antiferromagnetic. Following these experimental re-
sults we conclude from our group-theoretical considera-
tions that each layer in Ca2Fe205 should be described by l
structure with the spins S&,S3,S6,S8 trended in one direc-
tion opposite to the spins S2, S4, S~, S7 ( I, antiparallel to
the lz).

We would like to emphasize, that the magnetic
configurations derived from the group analysis are just
possible spin arrangements. The values of the vectors
m, a, c, which are mixed to the main l structure are
de6ned by natural constants and can be very small in
reality. The weak ferromagnetic component observed by
Nagata and Ohta' at room temperature can be estimated
as 10 of the antiferromagnetic vector I value. To the

best of our knowledge, nothing has been reported about
the a and c components i.n dicalcium ferrite. So we sup-
pose these vectors are of the same order of magnitude as
ferromagnetic vector m.

Possible spin configurations allowed by the symmetry
in Ca2Fe205 and compatible with the available experi-
mental results are shown in Fig. 3. It is interesting to
note that the Fe(l) ions with nonequivalent spins
Si, S2, S3 S4 form a hedgehog structure which is described
by three different components of the base vectors, while
the Fe(2) ions have an ordinary structure described by no
more than two components of the base vectors, m2 and

l2, with two pairs of equivalent spins, i.e., SS=S7 and
S6=S8. From this point of view we can consider the
magnetic configuration of the Fe(l) ions as a four-
sublattice structure and that of the Fe(2) ions as a two-
sublattice one.

Thus, the group-theoretical analysis yields a magnetic
structure with six sublattices for dicalcium ferrite. When
speaking about six sublattices we mean nonequivalent
ones only. It is clear that Ca2Fe205 with eight magnetic
ions per unit cell must be described in a very general way
with eight magnetic sublattices. However, nonzero com-
ponents of the base vectors a2 and c2 can be revealed in
dynamic experiments only, so for a description of the
static properties the number of the sublattices reduces to
six.

The magnetic structure described by the Pcmn(I,+)
group [S, is parallel to the b axis of the orthorhombic
crystal, see Fig. 3(a)] is purely antiferromagnetic and the
existence of a weak ferromagnetic moment is strictly
prohibited by symmetry. The other two antiferromagnet-
ic spin configurations, Pc'm'n(I 3+) and Pcm'n'(I 4+) [S;
along the a and c axis, respectively, see Figs. 3(c) and
3(d)] are, in principal, equivalent. The Pc'mn'(I 2+) struc-
ture with ferromagnetic ordered layers is shown in Fig.
3(b).

It is easily seen that direction of the spins in dicalcium
ferrite uniquely determines the magnetic configuration.
In accordance with the experimental data, the spins in
Ca2Fe205 lie along the c axis and consequently, the spin
configuration corresponds to the Pcm'n' [I 4+, Fig. 3(d)].
The antiferromagnetic configuration Pc'm'n [I 3+, Fig.
3(c)] can be induced in Ca2Fe205 by applying a magnetic
field along the c axis. Finally, the ferromagnetic
Pc'mn '

[I 2+, Fig. 3(b)] and purely antiferromagnetic
Pcmn [I i+, Fig. 3(a)] structures are not realized in nature
and have only theoretical interest.

Now we can proceed to construct the free energy, re-
stricted here to second-order terms. Table I contains all
the information necessary for this. Indeed, it is well
known that invariants of order 2 are obtained simply by
the multiplication of two base vector components which
belong to the same representation. For example, repre-
sentation I,+ gives ten invariants:

72 72 2 2
iy 2y c 1 a 1 liycI liya $ I/yl2y cI a I cI l2y a I l2y

There are, all together, 58 invariants of order 2 and the
free energy is a linear combination of all the invariants
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with coefficients which are phenomenological parameters.
It is clear, however, that the interpretation of any experi-
mental result by means of 58 difFerent parameters is prac-
tically impossible. To reduce the number of these phe-
nomenological constants we must confine our free energy
to the most physically important interactions: (i) isotro-
pic symmetric exchange interactions of the Heisenberg-
type J(S; S ) between nearest neighbors only. There are
three exchange constants: B& and B2 for the two layers
and 83 for the interaction between them; (ii) antisym-
metric exchange interaction of the Dzyaloshinskiy-
Moriya-type D(S, XS ) between nearest neighbors only.

Here there are seven parameters (D&, . . . ,D7) .However,
for the sake of simplicity and because of the small value
of the ferromagnetic component in Ca2Fe205, we neglect
the interlayer interaction and deal only with four parame-
ters (D„.. . ,D4); (iii) single-ion anisotropy of the type
+S;Q;&=(i =1 4, 5 . 8, a,P=x,y, z) for nearest
neighbors, with all together, eight (K„.. . ,Ks) parame-
ters.

Thus, the free energy, including all principal second-
order terms which are allowed by symmetry and reason-
ably restricted to nearest-neighbor interactions, has the
following form:

Fe (1) Fe (1)

3 a1
I

2
3~i y

C1

~1( ly~alz~ 1x~ 2y) ~2( mly lx lz 2y)

Fe (2) Fe (2)

5,7

6,8 y

Fe (1) Fe (1)

3x/

r', ( m», 1»,cly, m2z, l2x) I'4( ml„, ll„aly, m2„,12,)
Z

Fe (2) 6,8 Fe (2)

(c) (d)

FIG. 3. Possible spin configurations in Ca2Fe205. Components of the base vectors I&, I&, a&, and cl, are intentionally exaggerat-
ed. Preliminary estimation shows these vectors are 2—3 orders smaller in magnitude than antiferromagnetic vector l. Ferromagnetic
structure Pc'mn'(I 2+ ) (b) is shown in contrast to the experimental finding.
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4 =
—,'B, (mi —I i

—a, +cl)+—,B2(mz —12 —a,'+c,')+B,(m, .m, +I, I, )

+D, (m,ycl, +c,ym „—I,ya „—a lyl „}+D2(m„I,„+cl,a „—I „m,„—a „c,„)
3 l ly l ly ly l ly lx 4 2z 2x 2z 2x 2z 2x 2z 2

+ —,'K, (ml„+I, +a,„+ci )+—,'E2(m, y+Il +aly+c, y)

+
2
E3 ( m 2 + I 2 +a 2 +c 2x ) + —,

' K4 ( m 2 + I 2 +a 2 +c 2y )

+K&(mlycl, +clyml, +liyal, +alyll, )
—X6(ml, ll„+cl,al„+Il,ml„+al, cl„)

+K7(I] Cly+Ql mly+IlyCl +Cllypt lx } K8(I2zm2x +a2zC2x +m2zl2x +C2 &2x ) (mi+m2). H

We also employ spin-wave-theory restrictions, i.e., S; ~

=
const, which in the base vector designation transform to

I, +I; +a;+c;= const,

(m, I, }+(a, c, )=0,
(m; c;)+(I; a;)=0,
(m, .a, )+(I, c, )=0,

(2)

where i=1,2 and in the calculations we must apply
Lagrange factor formalism.

The restrictions (2) imposed by the spin-wave-theory
approximation are equivalent to the condition of zero
parallel susceptibility y~~

which is valid only at rather low
temperatures (much less than T~). The free-energy term
responsible for the parallel susceptibility is of fourth or-
der and consequently, its absence in Eq. (1) is not in con-
tradiction with our approach, which takes into considera-
tion second-order terms only. However, effects resulting
from finite

g~~
can be appreciable in certain situations,

e.g. , at magnetic phase transitions of order-order type or
when a magnetic field is applied along the antiferromag-
netic axis. The last case will be discussed below in the in-
terpretation of the experimental results.

III. EXPERIMENT

Single-crystal Ca2FezO& was grown by a crucibleless
zone melting technique which implies remelting and, sub-
sequently, crystallizing a ceramic (pressed and annealed)
compound on a seed crystal. Usually this technique is
very effective in producing good quality crystals of refrac-
tory oxide materials, but dicalcium ferrite turned out to
be a rather capricious substance. The procedure had to
be repeated several times and each time a small part of
the new remelted crystal was used as a seed crystal for
the next attempt. Finally, after four such cycles, a good
quality single-crystal boule of Ca2Fe205 was obtained
with a cylindrical shape of 40 mm length and 8 mm diarn-
eter. The sample used in this investigation was a cube
(3 X 3 X 3 mm3), whose edges were oriented by x-ray
diffraction and cut perpendicular to the a, b, and c axes.
We have measured the magnetization of this sample in a
magnetic field ( —5.5 T &H & 5. 5 T) using a supercon-
ducting quantum interference device (SQUID) magne-
tometer MPMS (Quantum Design magnetic property
measurement system) at temperatures between 5 and 330

Ca2Feg05

T=2O K

1.0—

0.5—
mo

m (emu/g)

-6
}

2 4 6
Magnetic fie1d (T)

FICx. 4. Magnetization curve of Ca&Fe20& in a magnetic field

applied along the a axis.

K. Figure 4 shows a plot of a magnetization curve with
the magnetic field applied along the a axis (H~~m) at 20
K. It has the regular form typical for an antiferromagnet
with a weak ferromagnetic moment. The region of the
remagnetization process near zero magnetic field is large
enough (

—0.9 T ~H ~ 0.9 T) due to a rather small value
of the ferromagnetic component (mo=0. 27 emu/g at
T=20 K) which has been obtained by extrapolation from
a large magnetic field (H~ 2 T). The slope of the curve
at H ~ 2 T is determined by the susceptibility along the a
axis (y, =1.43 X 10 cm /g at T=20 K). It is interest-
ing to note that the residual magnetization (H =0) of the
sample is practically zero regardless of the preceding
magnetization processes. This effect results from the for-
mation of a domain structure and could serve as a cri-
terion of the crystal quality. Indeed, the intermediate
crystals which were used as a seed in the procedure de-
scribed above have a residual magnetization of one-third
of mo. The strong dependence of the experimental re-
sults on crystal quality is perhaps one of the reasons why
resolution of the weak ferromagnetism problem in
Ca2Fe205 has dragged on so long.

We should also mention that our results indicating a
weak ferromagnetism of intermediate crystals at room
temperature ( m o

= 10—12 X 10 emu/g) agree well with
those obtained by Nagata and Ohta' (ma=7 —10X10
emu/g). However, a crystal of Ca2Fe205 under investiga-
tion has revealed the weak ferromagnetic component
value approximately two to three times larger
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FIG. 5. Temperature dependence of the weak ferromagnetic
component in Ca2Fe~O, .

0.0
I

2 3
I I

4
Magnetic fiel (~)

FIG. 7. Typical plot of the magnetization curves in the field

applied along the different crystallographic axes for T=200 K.

(mo=20X10 emu/g, T=300 K) than was observed in
Ref. 12.

Magnetization measurements for H~~a at other temper-
atures yield a general notion of the behavior of the fer-
romagnetic component mo and susceptibility y, . How-
ever, there is an easier way to obtain their temperature
dependences. It is seen in Fig. 4 that magnetization
versus magnetic field, m (H), is a straight line within ex-
perirnental accuracy for fields larger than 2 T. Therefore,
one merely has to measure the magnetization at, for ex-
ample, 2 and 4 T in order to calculate mo and y, . Using
the temperature dependence of the magnetization at 2
and 4 T, one can obtain mo(T) (Fig. 5) and g, (T) (Fig. 6).
Naturally, we have previously made certain, that the
magnetization curves at other temperatures (100, 200,
and 300 K) have the same form as at 20 K.

Figure 7 shows the magnetization at 200 K in a mag-
netic field applied along the a, b, and c axes. It is easily
seen that the susceptibilities g, and g& are practically
equal for H~~a and H~~b, i.e., when the magnetic field is
perpendicular to the easy axis. Susceptibility along the
easy axis y, is rather small and increases noticeably with

teinperature (Fig. 8). The origin of the easy-axis suscep-
tibility will be discussed below.

IV. DISCUSSION

As has been mentioned above, we assume dicalcium
ferrite to be primarily a collinear antiferromagnet (I
structure, the spins lie along the easy axis) with compara-
tively small deviations from colinearity and coplanarity
due to nonzero components of the rn, a, and c vectors.
We shall see below that these assumptions are justified by
the experimental results. It implies that in the free-
energy equation (1), the antisymmetric exchange D; and
anisotropy X; parameters are essentially smaller than the

symmetric exchange interaction B; parameters. So, in
the calculations we shall consider the terms up to the first
extent of the ratios D;/BJ and K,. /B We as.sume also,
that the antiferromagnetic vectors I, and Iz have the
same equilibrium values

~ I, ~

= ~l2 ~
=4MO, in accordance

with Takeda et al. , where Mo is the atomic magnetic
moment. In Ref. 9 Mo(T) was measured by neutron
diffraction and turned out to be equal for the two non-

(10 s cms/g)
(10 6 cm~/g)
(10 cm'/g)

50
I l I

100 150 200
I

250 300
Temperature (K)

I

50
I

100
I

150 200 250
Temperature (K)

FIG. 6. Susceptibility vs temperature measured along the a
axis (orthogonal to the antiferromagnetic vector l).

FIG. 8. Easy-axis susceptibility g, (T) in comparison with the
parallel susceptibility y~~(T) calculated by Eq. (13).
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(28» +83 )H2, +83H i
m2x =—

»+2 3(»+»)
H3

(3)

where 8, =Bi+K, /2 82 =82+K3/2 H, =4Mp(D2
+K6) H2 =4Mp(D4+Ks ) aiid H3 =4Mp(D i K5 )'
The weak ferromagnetic moment is

B2„H(—B(„H2
mo=m &„+m2 28ix82X+83(8,„+82„) (4)

It is well known that there are two mechanisms' for
weak ferromagnetism in antiferromagnets: (i) antisym-
metric exchange interaction and (ii) single-ion anisotropy.
Both terms are considered explicitly in the free energy
equation (1), where D; (i=1,2,3,4) corresponds to the
former mechanism and KJ (j=5,6,7,8) to the latter. Ob-
viously, the fields H, and H2 in Eq. (4) include both
mechanisms. To elucidate the origin of the weak fer-
romagnetism by means of the magnetization measure-
ments, one needs to measure tensor components which
describe the quadratic dependence of the magnetization
on the applied field. ' Unfortunately, this is practically
impossible in our case because of the rather small magni-
tude of this effect. We intend to measure magnetic field
frequency dependences of Ca2Fe205 in the near future in
order to clarify the situation with the weak ferromagne-
tism origin. For the sake of simplicity we shall designate
in the following, the two mechanisms as the effective
Dzyaloshinskiy-Moriya interaction.

The layer structure of CazFe205 provides an interesting
possibility for the interpretation of the ferromagnetic
component. Indeed, it is reasonable to propose that the
canting in each layer has a common cause. Then, in the
framework of this assumption, the H, and H2 fields,
which are responsible for the spontaneous magnetization,
should have the same signs. The sign of H; determines
relative directions of the m and I vectors. Since the
I, (i=1,2) vectors are antiparallel because of the antifer-
romagnetic interaction between the nonequivalent layers,
then the ferromagnetic components of the layers m& and
m2, should be antiparallel as well. This fact is rejected in
Eq. (3) by the different signs for mi and mz [see also
Figs. 3(c) and 3(d)]. It is now clear, that the ferromag-
netic vectors m& and m2 in the layers could be com-
paratively large, whereas experimentally we observe a
rather small ferromagnetic component due to a compen-
sation effect.

This model could explain the anomalously small weak
ferromagnetism of Ca2Fe20, in comparison with similar
substances. For instance, well-studied rare-earth ortho-
ferrites, which have the same (although without layers)

equivalent positions (4a) and (4c). In the Pcmn (I 4 ) spin
configuration, the nonzero base vectors components are
1;„m;„(i=1,2) and ai~ (see Table I). Our model yields
(H' =0),

(28» +83 )Hi +83H2
m&„= 48 i~82~ +283 (8,„+82„)

magnetic structure and high Neel temperatures (600—700
K), demonstrate huge (10—20 T) Dzyaloshinskiy-Moriya
fields. Unfortunately, magnetization measurements
themselves do not permit the H, and H2 fields to be
determined separately. We anticipated that this would be
possible by means of an interpretation of the field fre-
quency dependences of magnetic excitations (antiferro-
magnetic resonance) in CaiFe20~.

For a magnetic field applied along the a axis (H~~x) we
obtain from Eq. (1):

m =mo+y, H,
Bi +B2x

Xg 28,„8~„+83(B)X+8~~)

(5)

with mp, Bi„,and Bz from Eq. (3).
Using Eq. (5) we can rewrite the spontaneous magneti-

zation (4) in the following form:

BzxH i
—Bi~H2

+81x 2x
(6)

my m ]y +m2y gbH

B) +B2
Xb 28 iy 82' +83(Biy +82' )

where 8 i =8, +K&/2 and 82~ =82 +K4/2

(7)
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FIG. 9. Temperature dependence of the effective
Dzyaloshinskiy-Moriya field for Ca,Fe20&.

Thus, the effective Dzyaloshinskiy-Moriya field is a
weighted average of the layer fields H, and H2. The tem-
perature dependence of the field Hd, which is responsible
for the weak ferromagnetic component and defined by
Eq. (6) is shown in Fig. 9.

If a magnetic field is applied along the b axis (H~~y) the
symmetry is changed and in addition to m &,a &, l &„m2„,
and lz, we also have m&, a&,c&„and mz components
(see Table I). However, two of these new components
(a, and c„) are proportional to combinations of
HD;/8 and HK;/8 , and .can be neglected in accor-
dance with our approach. Magnetization along the b axis
(H~~y) has the following form:
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X~ Xb XJ

This is possible if the system is su%ciently isotropic
(Ki =K2,K3=Kz) or if the anisotropy fields are small

compared to the exchange fields. An effective exchange
field can be calculated according to the formula,

HF =pi 'MO=SM0(y~V, ) (10)

where Mo is the specific magnetic moment (mass magne-
tization), Mo the magnetic moment per atom, V, the
volume of the elementary cell of Ca2Fe20~, and p the
density. The exchange field calculated by means of Eq.
(10) is about 1.3 X 10 T and is practically independent of
temperature up to 330 K.

To estimate the anisotropy fields we can use the results
of Brotzeller et aI. ' on the temperature dependences of
the magnon modes meausured by Fourier spectrometry.
In this work the observed modes were identified with so-
called quasiacoustic magnon modes with frequencies pro-
portional to the geometric average of the exchange and
anisotropy fields, v-(Hz H„' )'~ (Ref. 13). Thus, an
effective anisotropy field in the ac plane is about 0.1 T
and in the bc plane about 1 T. We realize that this is only
a rough estimate. Nevertheless, it is quite clear that in
dicalciurn ferrite the anisotropy can be neglected in corn-
parison with the exchange interaction and that the x and
y indices in equations for g, and yb can be omitted.

Let us now consider the susceptibility along the c axis.
It is well known' ' that applying a magnetic Geld along
the easy axis of an antiferrornagnet with weak fer-
romagnetism induces a reorientation of the spins. An in-
teraction of the field with the ferromagnetic component
causes the spins to rotate smoothly from the
S;~~H(Pem'n') state to the S;lH(Pe'mn') state. During
this rotation, in dicalcium ferrite there are 10 nonzero
base vector components (see Table I). Hence, a solution
of the equations of state for H, AO has an unacceptable
form, since too many parameters would be involved to in-
terpret the experimental results. Moreover, as is shown
below, a correct interpretation requires a reduction of the
restrictions (2) imposed by spin-wave theory. This obvi-
ously makes the calculations more complicated. On the
other hand, we have shown in the previous discussion
that a description of the experimental results by means of
the effective parameters, HE, Hd, H~, is su%ciently
fruitful. It is a direct consequence of the fact that the
magnetization measurements yield very few averaged pa-
rameters for the substance. Such an approach corre-
sponds to the consideration of the substance as a simple

The results in Eqs. (5) and (7) can be combined and
rewritten as follows:

2B)aB2a

la 2a

We see that the susceptibilities along the a and b axes,
(i.e., in a magnetic field applied orthogonal to the easy
axis) have the same form and differ only by their anisot-
ropy parameters. On the other hand, our experiments
demonstrate an equaility of the y, and yb susceptibilities:

H„= Hd/—2+QHd/4+HFH~ . (12)

Using Eq. (11) one can determine the value for HFH& to
be 30 T (y„yi, and Hd are known from our experi-
ments) and then estimate by means of Eq. (12) the transi-
tion field H„which turns out to be about 4.5 T. In ac-
cordance with the estimation we should observe a full
picture of the spin reorientation in the magnetic field ap-
plied along the easy axis (as for instance, in Ref. 23).
Nevertheless, it is quite clear from Fig. 7 that we are still
rather far from the spin reorientation completion.

We propose that this discrepancy is a result of an inter-
pretation of the experiments in the framework of classical
spin-wave theory which assumes that all spin values are
constant. As mentioned above, this restriction is justified
for low temperatures. However, for a noncontradictory
description of the experiments at higher temperatures we
must refuse this restriction. In such an approach, the
easy-axis susceptibility consists of two terms:

H„'
+c (13)

E

The first term in Eq. (13) is the actual parallel susceptibil-
ity, i.e., the response of the sublattice magnetizations to
the parallel applied magnetic field, and the second term is
the usual rotational part (11) resulting from the presence
of the weak ferromagnetic component. The magnetiza-
tion measurements themselves do not allow a separate
determination of these two terms, since the value of
HEH~ is unknown. However, as has been mentioned
above, the geometric average of the exchange and anisot-
ropy fields determines the frequency of one of the antifer-
romagnetic resonance modes which has been measured in
Ref. 21. Using these data we can calculate the parallel
susceptibility y~j separately. Figure 8 shows the tempera-
ture dependence of the

y~~ calculated by means of Eq. (13),
compared to the measured y, . It is easily seen from this
figure that for T~ 100 K the parallel susceptibility y~~

is
larger than the rotational term g~Hd /HEH z . For
T ~ 200 K the easy-axis susceptibility y, is mainly due to
the parallel susceptibility y~~. The other two susceptibili-
ties, y, and yb, in the weak-field approximation (i.e.,
H «H~), are not affected by y~~ and all the previous re-
sults are valid.

Employing all the experimental and calculated results

antiferromagnet and permits a preliminary analysis of the
experiment. Following this idea, we shall try qualitative-
ly to understand the origin of the easy-axis susceptibility.
All the parameters mentioned below are implied to be
effective parameters, so we omit "eff" everywhere.

The common form of the easy-axis susceptibility for an
antiferromagnet with a weak ferromagnetic component
is"

H„'
Xc XJ. HE

The formula (11) is valid for small fields compared to the
transition field H„, at which the spin reorientation corn-
pletes
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we can predict the temperature behavior of the transition
field H„(T) in a second-order term approximation using
Eq. (8) which is corrected by the parallel susceptibility
(Balbashov et al. ):

H„=q '( Hd—l2+ QHd l4+ 7)H~H„), (14)

where 71
= 1 —

g~~ /gi.
The transition field H„(T) calculated from Eq. (14) on

the base of the available experimental results is weakly
dependent on the temperature in the range 5 —330 K.
Preliminary experiments on field-induced spin reorienta-
tions in Ca2Fe205 have shown that the experimental
value of the H„(H„=14.5 T at T=4.2 K) is in excellent
agreement with the predicted value. Thus, in spite of the
qualitative character of our analysis, it is suitable for the
description of the experimental results.

V. CONCLUSION

We have studied the magnetization of the orthorhom-
bic antiferromagnet dicalcium ferrite in a magnetic field
up to 5.5 T applied along the a, b, and c axes of the crys-
tal in the temperature range of 5 —330 K. Temperature
dependence of the weak ferromagnetic component, the
susceptibility perpendicular and parallel to the antiferro-
magnetic axis, the effective Dzyaloshinskiy-Moriya field,
and the exchange field have been determined. The easy-
axis susceptibility for T ~ 100 K was found to be mainly
due to parallel susceptibility which is usually neglected in
a spin-wave-theory approximation. The temperature
behavior of the transition field (completion of the field-
induced spin reorientation) has been predicted.

It was shown on the base of a comprehensive group-

theoretical analysis, that the magnetic structure of
Ca2Fe20~ can be described by six nonequivalent sublat-
tices. Four of them originate from the Fe(l) ions and
form a hedgehog structure (noncoplanar and nonco-
linear), whereas the Fe(2) ions give rise to the usual anti-
ferromagnetic coplanar two-sublattice structure with
equivalent spin pairs. It was found, that the layer struc-
ture provides a very interesting possibility for Ca2Fe205
to be treated as two canted antiferromagnets putting one
into another with an antiferromagnetic interaction be-
tween weak ferromagnetic components. Here the net
magnetizations I, and m2 are antiparallel and in the ex-
periments we are only concerned with their difference
which is rather small. The phenomenological free energy
has been constructed, including all principal terms of
second order allowed by symmetry and confined to the
most important nearest-neighbor interactions.

The experimental results have been interpreted by
means of this free energy. It was shown that the magneti-
zation measurements yield only effective (e.g., similar to a
weighted average) parameters, since the number of the
corresponding phenomenological constants is more than
could be obtained from static experiments. We propose
that magnon excitation investigations in Ca2Fe205 could
solve this problem.
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