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We study the temperature dependence of the low-frequency dielectric properties of the ferroelec-
tric LiTaO3 by generating phonon polaritons with frequencies in the terahertz regime. The phonon
polaritons are impulsively excited and phase-sensitively detected with 60-fs laser pulses. The prop-
agation and damping of the polaritons are investigated as a function of frequency and temperature.
The experimental results are compared with a quantum-mechanical model for the low-frequency
dielectric response of LiTaO3. In this model the lowest-energy A; mode is described with a one-
dimensional anharmonic potential in a single unit cell. We find that at 300 K the polariton dispersion
and damping are determined by a strong resonance at 6 THz and a weak resonance at 1 THz. The
latter resonance is due to a tunneling transition and leads to the observation of phonon-polariton
beats. The model predicts that with increasing temperature the strength of the resonance at 6
THz decreases and that a new broad resonance at 3 THz and a central mode arise. The measured
polariton dispersion and damping are in quantitative agreement with these theoretical predictions.
Thereby we obtain evidence that the ferroelectric phase transition in LiTaOj; takes place without
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mode softening.

I. INTRODUCTION

When light propagates through a medium with reso-
nances, the coupling between light and polarization leads
to the formation of new mixed light-polarization states.
These new states are called polaritons. Clearly, polari-
tons form a very general type of excitation. The study of
polaritons gives information on the nature of the light-
matter interaction and on the properties of the mate-
rial resonances to which the light is coupled. The effects
of the coupling between light and material resonances is
most clearly observed in the dispersion. When the light
frequency approaches the frequency of a resonance, the
coupling leads to an avoided crossing in the dispersion
of the polaritons. As a result, a lower and an upper
polariton-dispersion branch appear.! Far away from the
avoided crossing, one of the two polaritons at a given
wave vector will be strongly lightlike and propagates with
the velocity of light while the other will be strongly po-
larizationlike and hardly propagates. Near the avoided
crossing, the polaritons are strongly dispersive, leading to
strong spreading and damping of polariton wave packets
upon propagation.

Low-frequency phonon polaritons can be excited with
visible light by cw Raman scattering? * or nonlinear
optical techniques such as impulsive stimulated Raman
scattering (ISRS),* 8 difference-frequency mixing,?° co-
herent anti-Stokes Raman scattering (CARS),'%'? and
the optical Cerenkov effect.!® Visible light can only be
used for the excitation of phonon polaritons in noncen-
trosymmetric materials. Only in these materials can the
phonons be simultaneously Raman and infrared active.
The Raman activity is required to excite the phonon
polariton via the Raman effect. The infrared activity
is required to get a strong electric-dipole coupling of
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the phonon to light. This coupling is a prerequisite for
the formation of polaritons. If the phonon polaritons
are excited by difference-frequency mixing or the opti-
cal Cerenkov effect, the material also has to be noncen-
trosymmetric because these second-order nonlinear opti-
cal processes can only take place in materials that have
no center of inversion.

The availability of ultrashort laser pulses allows the
time-resolved study of the dynamics of polaritons. In
addition, due to their large bandwidth, short pulses al-
low the simultaneous excitation of polaritons of the lower
and upper branches of the dispersion so that polariton
beats can be observed.®!4 Previous time-resolved stud-
ies on KNbO3, BaTiO3, and LiNbO3%71% showed that
valuable information on the nature of the ferroelectric
phase transition can be obtained from the measurement
of the polariton dispersion at different temperatures.

A previous cw Raman study on phonon polaritons in
ferroelectric LiTaO3 showed that the polariton dispersion
is strongly influenced by the lowest-energy TO phonon of
A; symmetry with a resonance frequency of 6 THz at 300
K. This study also revealed an anomaly in the dispersion
at low frequencies.? It was observed that the dispersion
flattens out for small wave vectors so that the polariton
frequency seems to saturate. It was suggested that bulk
polaritons with frequencies below 1.4 THz cannot exist
due to crystal-domain variations. However, in a recent
time-resolved study it was found that this anomaly was
due to the presence of a weak resonance at 1 THz and
bulk polaritons with frequencies down to 0.5 THz were
observed in LiTaO3.°

The phonon with a frequency of 6 THz at 300 K is the
so-called ferroelectric mode, because it plays an impor-
tant role in the ferroelectric phase transition. This mode
is mainly formed by the oscillation of the Li* ion along
the optical axis. The frequency and strength of this mode
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are found to be strongly temperature dependent.'®17
LiTaO3 undergoes a phase transition from the ferroelec-
tric to the paraelectric phase at T, = 890 K (Curie tem-
perature). For temperatures close to T, a strong reso-
nance near frequency zero is observed (central mode).3
The presence of this central mode complicates the ex-
perimental determination whether the frequency of the
TO phonon shifts to zero (mode softening) on approach-
ing the Curie temperature or not. In some experi-
mental studies on LiTaO3 the phonon was found to be
soft,’%17 whereas in other studies no mode softening was
observed.318

In this paper we investigate the temperature depen-
dence of the dispersion and damping of phonon polari-
tons in LiTaO3. The experimental results will be inter-
preted with a quantum-mechanical model for the low-
frequency dielectric response in LiTaO3. This model also
provides an accurate description of the ferroelectric phase
transition.!®

This paper is organized as follows. In Sec. II we de-
scribe the experimental setup and we give a theoreti-
cal description for the impulsive excitation and phase-
sensitive detection of phonon polaritons. In Sec. III
we describe the quantum-mechanical model for the low-
frequency dielectric response of LiTaO3 and we show how
this model can be used to calculate the polariton re-
sponse. The experimental and calculated results are pre-
sented and discussed in Sec. IV. Finally, Sec. V presents
the conclusions.

II. EXPERIMENT
A. Experimental setup

The experimental setup used for the generation and de-
tection of phonon polaritons is presented in Fig. 1. The
experiments are performed using the pulses from a col-
liding pulse mode-locked (CPM) laser that are amplified
in a six-pass dye amplifier pumped by the 510.5 nm line
of a Cu-vapor laser.2? The generated pulses have an en-
ergy of 5 pJ, a pulse duration of 60 fs, a central wave-
length of 625 nm, and a repetition rate of 6.8 kHz. The
amplified pulses are split into two strong pump pulses
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FIG. 1. Experimental setup for the generation and detec-
tion of phonon polaritons. The polaritons are generated via
difference-frequency mixing of two intense pulses with a pulse
duration of 60 fs, an energy of 2 pJ, and a central wavelength
of 625 nm. The polaritons are probed via diffraction of a third
delayed probe pulse.
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of approximately equal power and a weak probe pulse.
All three pulses are focused by the same lens (f=30 cm)
to a focus of about 200 pm into a 2 mm thick LiTaOg
crystal. The spatial intensity distribution of the beams
is near-Gaussian and the focus diameter of each beam
is determined from the fraction of light that is trans-
mitted through a calibrated pinhole centered at the fo-
cus. The pump pulses have a common focus and enter
the crystal simultaneously. Temporal and spatial over-
lap of these pulses is easily determined from the self-
diffraction of these pulses that is visible to the naked
eye. The pump pulses generate low-frequency polaritons
via a nonlinear interaction that generates a polarization
at the difference frequency of the two pump pulses. This
nonlinear interaction can be difference-frequency mixing
which is a second-order nonlinear optical process or stim-
ulated Raman scattering which is a third-order nonlinear
optical process. The nonlinear polarization that results
from difference-frequency mixing leads to the excitation
of phonon polaritons over their light character. Hence
this excitation will be most efficient for polaritons that
have strong light character. If the polaritons are excited
by stimulated Raman scattering, the generated nonlinear
polarization is formed by the excitation of the phonon
part of the polariton so that this excitation process will
be most efficient when the polaritons have strong phonon
character. In the case of LiTaO3; the second-order sus-
ceptibility is very large so that at almost all frequen-
cies the phonon polaritons are predominantly excited by
difference-frequency mixing. The nonlinear interaction
leads to the generation of a nonlinear polarization with
a wave vector that is given by the difference of the wave
vectors of the two pump beams. Hence, the angle be-
tween the two pump beams determines the wave vector
for which the nonlinear optical process is phase matched.
The polariton frequencies that correspond with this wave
vector are generated with the highest efficiency out of the
broad bandwidth (10 THz) of the pump pulses. The wave
vector can be varied by adjusting the distance between
the two pump beams at the lens.

The optical axis of the LiTaO3 crystal is oriented per-
pendicular to the plane of incidence. The pump pulses
are polarized along the optical axis in order to obtain the
highest effective second-order susceptibility. This gen-
eration can be characterized as impulsive because the
pump-pulse duration is much shorter than the polariton
oscillation period. This excitation produces counterprop-
agating phonon polaritons with well-defined wave vector
and phase. The wave vector and the direction of propa-
gation of the polaritons are practically perpendicular to
the wave vectors of the two pump beams, because the
two pump pulses have equal central wavelengths.

The polaritons are probed with the third pulse using
the linear electro-optic effect. Time-delay zero between
probe and the two pumps can be recognized from the
strong four-wave mixing signal of electronic origin that
arises when the probe and the two pumps have tempo-
ral and spatial overlap. The electric field associated with
the polaritons strongly modulates the refractive index.
The resulting index grating diffracts the probe that is
polarized along the optical axis. We measure the first-
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order diffracted light intensity as a function of the delay
between the probe and the two pump pulses. This mea-
surement provides information on the frequency, propa-
gation, and damping of the generated polaritons. The
diffracted signal is detected using a lock-in technique in
which the diffracted signal is modulated with 3.4 kHz
by chopping either the probe or the pump beams with a
chopper that is synchronized to the copper-vapor laser.

B. Generation of phonon polaritons via
difference-frequency mixing

Polaritons are mixed light-polarization states that
arise as a result of the coupling of light with material
resonances. The dynamics of the polaritons can be de-
scribed with the coupled Maxwell-Bloch equations. The
light is described with the wave equation derived from
Maxwell’s equations, the material resonances with the
optical Bloch equations for the polarization, and the pop-
ulation of a multilevel system. The coupling arises due to
]
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with the electric field of the polariton £,(z,t) defined by
E,(z,t) cos(kpz — wt), the polarization of the polariton
Pp(z,t) defined by Py(z,t)cos(kpz — wt), kp (= k1 — k2)
the wave vector of the polariton, w the light frequency
(w = ckp/Noo), Noo the refractive index, v, the group
velocity, ¢ the velocity of light in vacuum, and x® the
second-order susceptibility. The polarization P, enter-
ing these equations is the polarization that is associated
with the resonances with frequencies near the light fre-
quency. The parameters N, vg, and w represent the
refractive index, the group velocity, and the angular fre-
quency without taking into account the interaction with
the resonances leading to polarization P,. The actual
refractive index, group velocity, and frequency of the po-
laritons are strongly affected by this polarization. In
principle polaritons at all frequencies within the band-
width of the ultrashort laser pulses can be generated.
However, the polariton frequencies that correspond to
the wave vector k, according to the polariton dispersion
will be generated with the highest efficiency. Hence by
varying w (= ckp/ne) in Eq. (2.2), the polariton fre-
quencies that result from the coupling of Eq. (2.2) to the
Bloch equations are changed.

Equation (2.2) describes the generation of polaritons
with wave vector k,. In our experiment also an equally
intense counterpropagating polariton is generated with
wave vector —kp(= k2 — k1), due to the fact that the
central wavelengths of the two laser pulses are equal.
The electric field of this second polariton is given by
E, cos(—kpz —wt) and the polarization by P, cos(—kpz —
wt). The wave equation for this polariton is similar to
Eq. (2.2), but with —9/9z instead of 8/9z and E{E,
instead of E,E3.
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the fact that a polarization generates an electromagnetic
field and an electromagnetic field can generate a polar-
ization if the transition-dipole moments are nonzero.

In our experiment the polaritons are excited via a non-
linear interaction of two ultrashort laser pulses with the
same central frequency. In the case of LiTaOj3 this nonlin-
ear interaction is mainly formed by a difference-frequency
mixing process. The resulting nonlinear polarization acts
as a source of electromagnetic radiation in the wave equa-
tion. The nonlinear polarization at the difference fre-
quency is given by

P = xPE1E5. (2.1)
The electric field £; of laser pulse j can be written as
Ej cos(kjz — w;t) with the amplitude function E; given
by the square root of the pulse envelope function.

When this nonlinear source term is introduced in the
wave equation and the slowly-varying-amplitude and the
rotating-wave approximations are used, the wave equa-
tion takes the following form:

(2.2)

ot ot?

C. Probing of polaritons via the linear electro-optic
effect

In our experiment the generated counterpropagating
polariton wave packets are probed via diffraction of a
probe beam from the index grating formed by the polari-
tons as a result of the linear electro-optic effect. The pe-
riodicity of this index grating is given by the wave vector
of the polariton. The linear electro-optic effect induces
a change of the refractive index that is linearly propor-
tional to the electric fields of the polaritons. Hence, the
resulting index grating has the same dependence on 2
and t as the polaritons. The spatial profile of the polari-
tons is given by the product of the (Gaussian) profiles
of the two pump beams. The two counterpropagating
polaritons can be described as follows:

_ (=Fvgp )2

Ep(2,t)(£) = Epge  “%w  cos(kpz F wpt)e_ﬁ;, (2.3)

with (£) denoting the two counterpropagating polari-
tons, E,o the electric-field amplitude, vy, the group ve-
locity, wp the angular frequency, and T3, the exponen-
tial damping-time constant of the polaritons. The spa-

tial intensity distribution of the pump pulses is given
2

by e 2%« . The angular distribution of the diffracted
probe field is given by the Fourier transform of the grat-
ing formed by the polaritons multiplied with the spatial
intensity distribution of the probe. Hence, the diffracted
electric field of the probe in the direction k& can be de-

scribed by the following Fourier integral:
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the spatial intensity distribution of the probe. The probe is shifted z,, with respect to the excitation

spot. In this equation it is assumed that the probe pulse propagates parallel to the two pump beams so that its
position with respect to the excited spot is time independent. If we only consider diffracted electric fields with k
vectors near kp, the complex conjugate in Eq. (2.4) can be omitted. Evaluation of the integral in Eq. (2.4) gives
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When Az, = %ﬂAzpu, Eq. (2.5) simplifies to
. (vgp tFzpr)? (k—kp)2az2, A 1
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This expression shows that the intensity of the diffracted
signal has a Gaussian time dependence. This time de-
pendence follows from the propagation of the polaritons
through the spatial region of the probe. The maximum
of the signal is attained at ¢t = zp./vg, for the + po-
lariton and at t = —zp,/vg, for the — polariton. In ad-
dition, this expression shows that the phase evolution
of £,(k,t) depends on k via w(k) = wp + Fvgp(k — kp).
This implies that care should be taken that the polariton
frequency is always determined at k = k,, which corre-
sponds with the maximum of the diffraction. This ex-
pression also shows that the diffracted intensity depends

2 2
on k via e s **_ It follows that the width of the
diffraction angle is inversely proportional to the spatial
width of the polariton.

Equations (2.5) and (2.6) show that for each separate
polariton wave packet only the phase of £,(k,t) evolves
with the polariton frequency and that the intensity of
the diffracted field, given by |€,(k,t)|?, does not depend
on frequency. As a consequence, the polariton frequency
cannot be observed in our time-resolved pump-probe ex-
periments, unless there are certain interference effects.
One of these effects is the interference of the diffracted
electric field with background scattered probe light that
has a delay-independent phase. There will always be
some background scattered probe light as a result of in-
homogeneities. In the presence of background scattered
light the total intensity I;(k,t) in the direction of diffrac-
tion is given by

(k1) = |Ep(k,t)[* + |E(K)|* + Ep (K, t)* En(K)

+gp(k1t)£b(k)*’ (2'7)
with &, the electric field of the background scattered
light. Only the last two terms in Eq. (2.7) will oscil-
late with the polariton frequency. Equation (2.7) shows
that when &, (k) > &,(k,t), the time-dependent part of
the total intensity in the diffracted direction will be lin-
early proportional to £,(k,t) and that this intensity will

[

be modulated with the single-polariton frequency. As
a result, the polariton frequency can be obtained from
the Fourier transform of the time-resolved measurements.
The interference with a strong background scattered elec-
tric field also makes that the time-dependent part of the
intensity in the diffracted direction decays with a time
constant T, instead of T5,/2.

Another interference effect is the interference of the
two counterpropagating polaritons with each other. For
zpr = 0, meaning that the probe is focused at the same
spot as the two pump beams, the diffracted signals of the
polaritons have equal intensity and the observed signal
is strongly influenced by their interference. The total
diffracted electric field that follows from the sum of the
diffraction of the two counterpropagating polaritons is
given by

02 42 .
T2p

Ep(k,t) x e *A%Hu

X cos { (wp + %vg,,(k - k,,))t} .

The diffracted intensity is equal to

(k—kp)2az2,
8

(2.8)
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1 1 1
X (5 + 5 cos {2(wp + Evgp(k — kp))t}) .

(2.9)

It follows from this equation that the diffracted intensity
of two counterpropagating polaritons is modulated with
twice the polariton frequency.

Equation (2.9) is valid when the polaritons are well
described by Eq. (2.3), which means that the polari-
ton frequency should be well defined. However, the im-
pulsive generation with large bandwidth and fixed wave
vector can lead to the excitation of phonon polaritons
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of two or more polariton-dispersion branches. Far away
from the avoided crossing in the dispersion, the two ex-
cited polariton-dispersion branches have strongly differ-
ent electric-field amplitudes and group velocities so that
their interference will only lead to a small additional
modulation of the total diffracted signal. In this limit
the lightlike polariton-dispersion branch will be predom-
inantly observed. However, for wave vectors near the
avoided crossing, the electric fields and the group veloc-
ities of the polariton-dispersion branches become similar
so that their interference will lead to a strong modulation
of the diffracted signal.

In the following we will denote the excited polariton
frequencies as the polariton response. If the polariton
response contains many frequency components, the sum
of the diffracted electric fields of two counterpropagating
polaritons can be written as a sum of many cosines:

gp

vZ t2  (k—kp)Zaz?,
— _ P T "pu

2 4
I(k,t) xe “%pu

m,n

This expression shows that the diffracted intensity con-
tains the sum and difference frequencies of all excited
polariton frequencies, weighted with the product of the
corresponding coefficients. The maximum frequency of
the diffracted intensity can differ from twice the maxi-
mum frequency of the polariton response. When the po-
lariton response has two narrow maxima at w; and ws,
the Fourier transform of the signal as given by Eq. (2.11)
will peak at frequencies 0, wy —wy, 2wy, wy +ws, and 2w,.
In that case w; and w3 can be derived from the Fourier
transform of the time-resolved measurement. However,
when the peaks in the polariton response at w; and w, are
very broad and overlap, the peaks in the Fourier trans-
form of the signal as given by Eq. (2.11) can no longer be
resolved. In the low-frequency regime, the Fourier trans-
form of the signal will have a maximum at frequency zero
and will slowly decrease with increasing frequency. This
implies that when the polariton response contains several
broad and overlapping peaks, it is not possible to deter-
mine the frequencies of these maxima in an experiment in
which the probe is diffracted from two counterpropagat-
ing polaritons. In the high-frequency regime, the Fourier
transform of the signal still peaks at about w; +ws. This
maximum will shift to somewhat higher frequencies when
the polariton response is stronger at w, than at w; and to
lower frequencies when the polariton response is stronger
at wy than at wy. Therefore this peak corresponds rather
well to twice the average polariton frequency.

D. Simulation of experiment

The time-resolved measurements at different wave vec-
tors give information on the frequency and the damping
of the phonon polaritons. The polariton frequency can
be obtained from a Fourier transform of the time-resolved
measurements. In most experiments both the polariton
frequency is observed as a result of the interference with

_ 2t 1
Ta2p Z C;Cni {cos(wm,, — wnp)t + cos [wmp + Wnp + vgp(k — kp)]t} .
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m

(2.10)

with C,, a coefficient indicating the contribution of fre-
quency component wp,,. In this equation it is assumed
that the group velocity is the same at all frequencies. If
the polariton response contains frequencies belonging to
two different dispersion branches, this will in general not
be a good assumption. On the other hand, the two dis-
persion branches will only both be important if they are
excited with approximately the same amplitude and are
about equally lightlike. In that case the group velocities
will also be rather similar. The diffracted intensity is
given by

(2.11)

I

background scattered probe light and the double polari-
ton frequency as a result of the interference of the coun-
terpropagating polaritons. The derivation of the damp-
ing from the time-resolved measurements is more compli-
cated because the measured decay of the signal is caused
both by propagation and damping of the polaritons. To
derive a time constant for the damping, we perform a
simulation of the time-resolved measurements. In this
simulation both the effects of propagation and damping
are accounted for. The two counterpropagating polari-
tons are described with Eq. (2.3). The group velocity vy,
that enters this equation is obtained from the measured
polariton dispersion using vg, = %:i. We calculate the
Fourier transform of the index grating that is induced
by the polaritons [Eq. (2.5)] as a function of the delay
between pump and probe. In the simulation also the in-
terference with background scattered probe light is taken
into account.

III. QUANTUM-MECHANICAL CALCULATION
OF THE LOW-FREQUENCY DIELECTRIC
RESPONSE OF LiTaOs

A. Quantum-mechanical model for LiTaOg

In this subsection we describe a quantum-mechanical
model for the ferroelectric mode of LiTaO3z. This model
can be used to describe the ferroelectric phase transi-
tion in LiTa03.1° In this paper we will use this model
to describe the temperature dependence of the dielec-
tric function and the polariton response. In this model
the vibrational states of the lowest-energy TO phonon of
A, symmetry (ferroelectric mode) are calculated using a
one-dimensional potential that describes the energy in a
single unit cell.?! We assume that the frequencies of the
transitions between the vibrational levels are not influ-
enced by the wave vector. This means that the effects of
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dispersion of the phonon are neglected. This should be a
good assumption in the wave vector regime in which we
investigate the polaritons. The polaritons that arise from
the coupling of the phonon with the electromagnetic field
are still strongly dispersive.!

The one-dimensional potential that we use for the de-
scription of the vibrational states is a function of the vi-
brational normal coordinate r along the optical axis. The
expectation value (r) of this coordinate is proportional to
the displacement of the ions from their centrosymmetric
positions and defines the mean polarization of the unit
cell. The normal vibration is mainly formed by the os-
cillation of the Li* ion along the optical axis. We use
a mean-field approach and take the spontaneous polar-
ization of the whole crystal equal to the polarization of
this single unit cell. This spontaneous polarization forms
the local electric field and leads to a contribution to the
potential that is proportional to (r)r.

We will describe the lowest-energy A; phonon in

LiTaO3; with a potential that contains three minima.®
J

v 4.75 X 102 % (6—3.39x10_3(r—169.4) _ 1)2
(r) = { 4.15 x 1077 x 2 + 3.395 x 10_2(7')7' if

The three different parts of this potential are intercon-
nected by a cubic spline. For (r) = 0, the frequencies of
the harmonic parts are 200 cm ™! for the middle well and
229 cm ™! for the two outer wells. This potential does not
depend explicitly on temperature. However, it depends
indirectly on temperature through the value of (r).

The value for (r) at a particular temperature is calcu-
lated in a self-consistent way. Assuming a certain value
for (r), the potential (3.1) is used in the one-dimensional
vibrational Schrédinger equation

ﬁz 62
(——*- + V(T)) bvib(r) = Evibdvin(T), (3.2)
2 Or2

with Ey;, the vibrational energy and ¢yip(r) the vibra-
tional wave function. This equation is solved numeri-
cally with the Numerov method.2* At each temperature
we calculate the lowest 50 vibrational levels. For each
of these levels the expectation value of r is given by
{@vib|T|Pvib)- Using a normalized Boltzman distribution
for the occupation of the levels, a new value for (r) is cal-
culated taking all levels into account. With this new (r)
the calculation of the potential and the levels is repeated
until convergence is reached. With increasing tempera-
ture the value of (r) decreases until at the Curie temper-
ature this value becomes equal to zero. The calculation
of (r) at different temperatures gives the temperature
dependence of the spontaneous polarization.

The static dielectric response is also calculated in a
self-consistent way by calculating the change of the value
of (r) upon adding a small term Er to the potential where
E represents a small static electric field.

In Fig. 2 the potential energy curves at 300 K and 733
K and the 19 lowest-energy vibrational wave functions in
these potentials are presented as a function of the dis-
placement of the Li* ion. The displacement of the Lit
ion is linearly proportional to the coordinate r of the
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This agrees with the experimental observation that above
T, the Lit ion is not only found at the centrosymmet-
ric position but also at positions +0.037 nm displaced
along the optical axis.?? It also agrees with a previous
classical calculation in which the dielectric parameters of
LiTaO3 are described with an extremely anharmonic po-
tential that contains three minima.?® The used potential
is adjusted to a few experimental data. The positions
of the three minima of the potential are adjusted to the
positions of the Li* ion in the unit cell above T,. The cur-
vature of the potential is chosen such that it reproduces
the measured absorption spectrum at 300 K, containing
a strong resonance at 6 THz. The two outer wells of the
potential are described with a Morse potential and the
central well with a harmonic potential. The potential en-
ergy is given in atomic units (1 a.u. = 219483.9 cm~1)
as a function of the normal mode coordinate r in atomic
units. The dimension of r is length times square root of
mass. The potential including the local electric field has
the following form:

Ir| > 101 a.u.,
|r| < 56 a.u.

+ 3.395x 10~ 2(r)r if (3.1)

[

normal vibration. Due to the nonzero value of the mean
displacement, the potential is tilted so that the minima
of the three wells have different energies. The potential
is much less tilted at 733 K than at 300 K because (r)
decreases with increasing temperature. This decrease is
due to the increasing occupation of higher-energy delo-
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FIG. 2. Potential-energy curves and the 19 lowest-energy
vibrational wave functions for the lowest-energy A; mode in
one unit cell of LiTaO3 as a function of the displacement of
the LiT ion along the optical axis. (a) 300 K ((r) = 0.043
nm); (b) 733 K ({(r) = 0.025 nm).
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calized vibrational levels with small values for (r) with
increasing temperature. This effect is further amplified
by the fact that due to the smaller tilt of the potential
less vibrational energy is required to make a vibrational
wave function delocalized.

B. Calculation of the dielectric function and the
polariton response

In the previous subsection it was shown how the
quantum-mechanical model can be used to calculate the
static dielectric response. This static dielectric response
of the crystal can be seen as the sum of two contributions.

The first contribution is the direct change in the po-
larization that follows from the change of the vibrational
wave functions when the potential is tilted by adding a
term Er. In this direct contribution it is assumed that
the term in the potential that is proportional to (r)r
does not change. It can be shown via perturbation the-
ory that for small electric fields this direct contribution to
the polarization is equal to the static dielectric response
that follows from the transitions between the vibrational
levels in the potential of the single unit cell. This contri-
bution to the static dielectric constant will be referred to
in the following as direct single-unit-cell response.

The change in the polarization of each single unit cell
implies that the value of (r) changes which leads to a
change of the term in the potential that is proportional
to (r). This change in the mean field induces a further tilt
of the potential and a further increase of the polarization.
This latter indirect effect forms the second contribution
to the static dielectric response. This effect becomes very
strong near 7. and causes the observed divergence of the
static dielectric constant at T,..'° A change in the value of
(r) implies that the probability distribution in the three
wells has to change. This means that the ions (mainly
the Li* ion) have to be transported through the barriers
that separate the wells of the potential. This transport
through the potential will take some time so that this in-
direct contribution to the response will be slow compared
to the direct single-unit-cell response. The indirect con-
tribution due to the change in (r) will be referred to in
the following as indirect mean-field response.

The frequency dependence of the direct single-unit-cell
response is described with the dielectric-response func-
tion that follows from the optical Bloch equations for a
multilevel system:

2Ni—N'62 i'zw,;' eﬁ
esu(@) =S ( w.z.]l wlzﬂ_zl wis/(coh)
,7 ] T2,ij

(33)

with the indices 7 and j indicating a vibrational level, N;
and NV; the populations of these levels, u;; the transition-
dipole moment between level ¢ and level j, Aw;; the
energy difference between levels ¢ and j, and T3 ;; the
damping-time constant associated with this transition.
At frequency zero this response is exactly equal to the
response that results from the calculation of the change
in the vibrational wave functions upon adding a small
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term Er to the potential and taking the term propor-
tional to (r)r constant.

The frequency dependence of the indirect mean-field
response is more complicated. At frequency zero this
response should exactly equal the indirect contribution
to the static dielectric constant that results from the
change in the mean field. It can be expected that the
mean-field response can only follow the oscillations of
an applied electromagnetic fields at low frequencies. At
high frequencies, the transport of probability through the
barriers of the potential will be too slow to follow the
oscillations of the electric field, so that the full mean-
field response to the electric field will not be attained.
Hence, the indirect mean-field response possesses a finite
linewidth meaning that at high frequencies this contri-
bution to the dielectric response becomes negligible. As
a result of the decrease in the mean-field response with
increasing frequency, the static dielectric constant that is
measured with capacitance measurements can be much
higher than the static dielectric constant that results
from the extrapolation of the relatively high-frequency
polariton measurements. We describe the indirect mean-
field response as a Debye relaxational mode:3

ol (3.4)

emr (w) = 1—iwt’
with o the indirect mean-field contribution to the static
dielectric constant and 7 a relaxation-time constant. The
value of « is obtained by subtracting the static dielectric
constant that results from the transitions in the unit cell
from the dielectric constant that results from the self-
consistent calculation of the value of (r) upon application
of a static electric field. In the following we will refer
to this response as central mode because the maximum
response is attained at frequency zero. The contribution
of the central mode to the dielectric constant is real at
frequency zero, which can be expected since there will
be no phase shift between a static electric field and the
induced static polarization.

The total dielectric function that is given by the sum
of Egs. (3.3) and (3.4) is used to calculate the polariton
response as defined by Barker and Loudon:2°

R(ky,wp) =Im { (3.5)

(czk%/wﬁl) - 6(wp)} ’

with €(wp) = €oo + €su(wp) + emr(wp). The maxima of
this response define the polariton dispersion. This defi-
nition leads to two different types of polariton-dispersion
curves, depending on whether the maximum of this func-
tion is searched by varying w, at constant k, or by vary-
ing k,, at constant w,. Especially for frequencies near the
transition frequency of a damped resonance this leads to
strongly different results. Which dispersion curve has to
be compared with the experiment depends on how the
experiment is performed. In our experiment the wave
vector k, is fixed and the frequency w, is obtained out
of the bandwidth of the laser pulses so that in searching
the maximum of the response, the value of w, should be
varied at constant k.
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The polariton response of Eq. (3.5) also defines the
width of the response in k, at a particular w, or the
width of the response in w, at a particular k,. The in-
verse of the width of the response in w, at a particular
kp defines the damping-time constant T3, of the polari-
ton. This damping-time constant should not be confused
with the damping-time constants T3 ;; of the vibrational
transitions. When many resonances contribute to the di-
electric function the polariton response becomes a com-
plicated function of w,. As a result the damping of the
polaritons can be strongly nonexponential.

IV. RESULTS AND DISCUSSION

We performed time-resolved measurements on phonon
polaritons at five different temperatures: 300 K, 433 K,

(@) 300 K
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vp=0.67 THz
§ Ty, =8ps
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[70]
-20 0.0 2.0 4.0 6.0 8.0 10.0 120 14.0
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©)
=
=
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w2
-1.0 0.0 1.0 2.0 3.0 4.0 5.0
Time (ps)
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k, =2011 cm’!
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'g Typ=12ps
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Time (ps)
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533 K, 633 K, and 733 K. At each temperature mea-
surements are carried out at many different wave vec-
tors in order to determine the polariton dispersion and
to measure the damping of the polaritons as a function
of frequency. In Fig. 3, six examples of time-resolved
measurements are shown. The dashed curves in Fig. 3
are the results of simulations in which the polaritons are
described as damped Gaussian wave packets that prop-
agate with the group velocity. For all measurements we
observe an excellent agreement between experiment and
simulation, indicating that all relevant phenomena are
incorporated in the simulation.

In Fig. 3(a), a measurement is shown in which the
probe is focused 250 pum next to the common focus of
the two pump beams. As a result, we observe that the
diffracted signal reaches its maximum after 5 ps, which is
the time the polariton needs to propagate into optimum

300 K
k, = 9455 cm’!
Vp= 5.3 THz

(b)

= Ty =05ps

=
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E h Typ=14ps
&b /
» H
/
;
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Time (ps)
(3] 533K
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w
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Time (ps)

FIG. 3. Time-resolved measurements of the diffracted signal as a function of the delay between the probe and the two pump
pulses. Six measurements are shown in which the wave vector, the temperature, and the position of the probe are varied. The
damping-time constant 7%, of the polariton is determined via a simulation of the signal. This simulation is represented by the

dashed curve.
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overlap with the probe beam. The Gaussian shape of the
signal results from the time dependence of the overlap
of the envelope function of the polariton and the spatial
profile of the probe. The signal is modulated at small de-
lays with the double-polariton frequency due to the fact
that the spatial profile of the probe overlaps with the
tails of both generated counterpropagating polaritons.
With increasing delay one of the polaritons propagates
into better overlap with the probed area while the other
propagates away from the probe spot so that at later
delay times the double-polariton frequency is no longer
observed. At later delay times we observe that the signal
is modulated with the single-polariton frequency, indi-
cating the presence of background scattered light that
interferes with the diffracted electric field of the polari-
tons. At this low wave vector, the polariton frequency is
far away from the phonon resonance at 6 THz. Therefore
the polaritons have very little phonon character and are
only weakly damped (T2,= 8 ps), so that it is possible
to observe one of the polaritons propagating through the
probed area. We find that polaritons with frequencies
below 2 THz can still be detected even after propagating
several milimeters through the crystal.

In Fig. 3(b), a time-resolved measurement is shown
obtained with a much larger wave vector. The polariton
frequency of 5.3 THz approaches the value of the strong
resonance at 6 THz so that the polaritons will have strong
phonon character. In this experiment the probe was fo-
cused at the same spot as the two pump beams, so that
the probe overlaps with both counterpropagating polari-
tons and mainly the double-polariton frequency is ob-
served for small delays. As in Fig. 3(a), we observe a tran-
sition from the double-polariton frequency to the polari-
ton frequency with increasing delay. This transition can
not be due to propagation of the polaritons because at
this frequency the decay of the signal as a result of prop-
agation is totally negligible compared to the decay due
to damping. However, as a result of the decay of the po-
lariton, the interference with background scattered light
becomes relatively more important at later delay times,
since it follows from Eq. (2.7) that this signal is linearly
proportional to the diffracted electric field whereas the
signal that results from the diffraction from two interfer-
ing counterpropagating polaritons depends quadratically
on the diffracted electric field. Figures 3(c,d) show that
low-frequency polaritons that are practically not damped
at 300 K become strongly damped at higher tempera-

TABLE I
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tures. In these experiments the probe is also focused at
the same spot as the two pump beams. Figures 3(e,f) also
show that the damping of the polariton increases with in-
creasing temperature. These figures again show the tran-
sition from the double-polariton frequency at small de-
lays to the polariton frequency at large delays as a result
of the increasing relative importance of the interference
with background scattered light.

We used the quantum-mechanical model of Sec. III to
calculate self-consistently the values for the mean dis-
placement of the ions and the static dielectric response
at different temperatures. In this calculation we assume
that only the dielectric response of the ferroelectric mode
is temperature dependent. The contribution of the other
phonons and electronic transitions is contained in €.
We assume that this €., does not depend on temperature
and that the temperature dependence of the dielectric
response only results from the ferroelectric mode. This
should be a good assumption, because Raman-scattering
experiments show that of the phonon modes that con-
tribute to the dielectric function only the ferroelectric
mode strongly depends on temperature.'® The results of
the calculations are presented in Table I. The mean value
of the normal vibrational coordinate is represented by the
displacement of the Li™ ion from the centrosymmetric po-
sition in the unit cell. The calculated results are in good
agreement with the displacements derived from the mea-
surement of the spontaneous polarization?®27 and values
of the static dielectric constant obtained with capacitance
measurements.2®

Equations (3.3) and (3.4) are used to calculate the di-
electric function at the five temperatures of the exper-
iment. The calculated real and imaginary parts of the
dielectric function are presented in Fig. 4. In this calcu-
lation we used the transition-dipole moments, vibrational
energies, and values for a that follow from the quantum-
mechanical model. We used a value for T3 ;; of 250 fs for
all transitions at all temperatures. For the time constant
7 of the central mode we also used a value of 250 fs. We
calculate that with increasing temperature the resonance
at 200 cm™! (6 THz) becomes weaker and a-new broad
resonance rises near 100 cm~! (3 THz). In addition, we
calculate that at temperatures above 500 K the influence
of the central mode becomes apparent at frequencies be-
low 2 THz. For all temperatures, we find that transitions
with frequencies of 6 THz correspond to transitions be-
tween low-energy vibrational levels that are localized in

Mean displacement and static dielectric response calculated with the quan-

tum-mechanical model of Sec. III. The contribution of the direct single-unit-cell response [given by
Eq. (3.3)] to the dielectric response is denoted with esy, the contribution of the indirect mean-field
response [given by Eq. (3.4)] with emr. The experimental values for (r) and €;0t(0) are obtained

from Refs. 26 and 27, respectively.

Temperature (rei+) (ryi+ ) expt. €co esu(0) emr(0) €tot(0) €0t (0) expt.
300 K 0.043 nm 0.043 nm 18 22 2 42 43
433 K 0.040 nm 0.040 nm 18 36 8 62 54
533 K 0.037 nm 0.037 nm 18 49 20 87 74
633 K 0.032 nm 0.032 nm 18 61 55 134 110
733 K 0.025 nm 0.025 nm 18 88 139 245 215
T 0.000 nm 0.000 nm 18 212 oo oo oo
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FIG. 4. Real (e1) and imaginary (ez) dielectric function
as a function of temperature, calculated with the quan-
tum-mechanical model of Sec. III for LiTaOs;. The relax-
ation-time constant of the central mode and the damping-time
constant of the transitions in the potential are taken equal to
250 fs at all temperatures.

the lowest-energy well of the potential and that transi-
tions with frequencies near 3 THz correspond to transi-
tions between higher-energy delocalized levels. The rise
of the latter resonance is caused by the increase of the
population of these higher-energy delocalized levels with
increasing temperature. The resonances near 3 THz and
6 THz are both very broad because they consist of many
transitions.

We find that the resonance near 3 THz is already
weakly present at 300 K. This resonance has been ob-
served in previous experimental studies,®13:16:29 but has
not been unambiguously assigned. It has been suggested
that this resonance may be due to coupling of the A,
phonon to the phonons of E symmetry at about the
same frequency.®!® However, a Raman-scattering study
showed that this resonance has pure A; character.??
From the quantum-mechanical model it follows that this
resonance is due to overtone absorption in the potential
of the lowest-energy A; phonon. This resonance is thus
a direct consequence of the anharmonic character of this
phonon. This explanation also agrees with the fact that
only four different fundamental A; modes exist in the
ferroelectric phase in LiTaOg that have already been as-
signed to strong resonances of A; symmetry.1®

The energy splitting of delocalized vibrational levels
can become very small for vibrational energies near the
maxima of the barriers that separate the three wells of
the potential. Hence, in addition to the broad resonances
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at 3 and 6 THz, low-frequency tunneling transitions can
arise that may have much smaller linewidths because
they originate from a single transition. At 300 K the
fifth and the sixth levels are delocalized over the middle
and the lowest wells and have an energy splitting of only
32 cm™! (1 THz). This energy difference depends on the
height and width of the barrier between the two wells.
Due to the small thermal population of these levels, only
a weak resonance at 1 THz will arise in the spectrum.
This resonance has recently been observed in a time-
resolved study on phonon polaritons in LiTa03.° It can
be interpreted as the oscillation of the Li* ion between
the two wells. This oscillation is classically forbidden,
since the energy of both delocalized vibrational states is
smaller than the top of the barrier. Therefore this reso-
nance is a tunneling resonance. At higher temperatures
it is more difficult to observe tunneling resonances be-
cause with increasing temperature these resonances will
become weaker due to the decrease of the population dif-
ference of the levels involved in the transition.

We use the calculated dielectric function to calculate
the polariton response with Eq. (3.5). This calculated
polariton response provides calculated values for the po-
lariton dispersion and damping which can be compared
with the experimental results. In Fig. 5 both the exper-
imentally determined and the calculated polariton dis-
persions are presented for the five different temperatures
of the experiment. The points represent the experimen-
tal data obtained from the Fourier transforms of the
time-resolved measurements. The dashed curves in Fig.
5 represent the calculated maxima of the polariton re-
sponse and the solid curve represents the simulated “ex-
perimental” dispersion. To be able to compare the cal-
culated polariton dispersion with the experimental re-
sults, the characteristic features of the experiment have
to be taken into account. There are two important ef-
fects that will influence the measured signal. The first
effect is that the laser pulses have a limited bandwidth.
This means that high-frequency polaritons are less effi-
ciently excited than low-frequency polaritons. This effect
is accounted for by multiplying the calculated polariton
response with a Gaussian that represents the spectrum
of the laser pulses. The second effect that has to be ac-
counted for is that in an experiment in which the probe
is focused close to the common focus of the two pump
beams, the measured signal results from the diffraction
from two interfering counterpropagating polaritons. To
compare the calculated polariton response with the ex-
periment, we used Eq. (2.11) to transform the calculated
polariton response to the diffracted intensity that will re-
sult from the diffraction of a probe pulse from two coun-
terpropagating polaritons. In the experiments in which
the probe is diffracted from two counterpropagating po-
laritons, we did not observe a clearly resolved peak at low
frequencies. This could mean that the polariton response
has only one well-defined maximum or that this response
consists of several broad and overlapping peaks. We in-
terpreted both the maximum of the Fourier transform
of the time-resolved measurement and the maximum of
the Fourier transform of the signal that is calculated us-
ing Eq. (2.11) as the double-polariton frequency. If the
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polariton response has only one maximum, the thus de-
termined polariton frequency is indeed the maximum of
the polariton response. If the polariton response contains
several maxima, the polariton frequency does not corre-
spond to one of these maxima but will still approximately
equal the average polariton frequency.

The simulated and experimentally observed disper-
sions are in good agreement at all temperatures. At 300
K the dispersion is influenced by the weak tunneling res-
onance at 1 THz and the strong resonance at 6 THz.
At higher temperatures we observe that for wave vectors
below 5000 cm ™! the polariton frequency appears to sat-
urate below 3 THz due to the rise of the broad resonance
at this frequency. However, at 433 K and 533 K a jump
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in the polariton frequency is observed in both experiment
and calculation and polaritons with frequencies above 3
THz are observed. The presence of the broad resonance
at 3 THz leads to an avoided crossing in the polariton dis-
persion and to the formation of two polariton-dispersion
branches, one below and one above 3 THz. The split-
ting between these branches increases with increasing
strength of the resonance. In Fig. 6 the calculated polari-
ton response at 533 K is presented as a function of wave
vector and frequency. This figure shows that below 5000
cm™! the lower dispersion branch has a much stronger re-
sponse than the upper dispersion branch. Hence in this
wave vector regime only the lower dispersion curve will be
observed in the experiment. At wave vectors near 5000
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FIG. 5. Measured and calculated polariton dispersions at five different temperatures. The measurements are represented
by points. The calculated maxima of the polariton response are represented by the dashed curves and the simulation of the
experiment including the limited bandwidth of the laser pulses and the interference of the two counterpropagating polaritons

is represented by the solid curve.
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FIG. 6. Polariton response at 533 K as a function of wave
vector and frequency calculated with the quantum-mechanical
model of Sec. III.

cm~!, the response of the lower dispersion branch de-
creases while the response of the upper polariton branch
increases. This change in the polariton response leads to
a shift of the maximum of the diffracted intensity of two
counterpropagating polaritons from the double frequency
of the lower dispersion branch to the sum frequency of the
maxima of the lower and the upper dispersion branch. As
a consequence, for wave vectors near 5000 cm ™!, the av-
erage polariton frequency rapidly shifts to higher values
with increasing wave vector.

Figure 5 also shows that the polariton frequency at a
particular wave vector decreases with increasing temper-
ature. This indicates that the static dielectric constant
derived from the polariton dispersion increases with tem-
perature. This observation can easily be explained with
the quantum-mechanical model. At higher temperatures
higher vibrational levels in the potential become occupied
that have low transition frequencies and have larger tran-
sition dipole moments due to their delocalization. Both
effects lead to a large contribution of these transitions to
the static dielectric constant. Hence the increase in the
static dielectric constant as observed in the dispersion of
polaritons with frequencies above 0.5 THz can be fully
explained from the change in the direct single-unit-cell
response with increasing temperature. We observe both
in experiment and in calculation that the indirect mean-
field dielectric response formed by the central mode has
very little effect on the polariton dispersion, at least for
temperatures up to 733 K.

The calculated polariton response is also used to eval-
uate the frequency-dependent damping time of the po-
laritons. In Fig. 7 the experimental and calculated po-
lariton damping-time constants are presented as a func-
tion of frequency, assuming this damping to be expo-
nential. The points represent the measured results and
are obtained from a numerical simulation of the time-
resolved measurements including the effects of damping,
propagation, and interference. The dashed curve repre-
sents a quantum-mechanical calculation of T3, without
central mode and the solid curve represents a quantum-
mechanical calculation of T3, with central mode. At 300
K we observe that for frequencies below 2 THz the po-
laritons are practically undamped. For frequencies above
2 THz the damping becomes significant and slowly in-
creases on approaching the strong resonance frequency
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at 6 THz. This frequency dependence of the damping in-
dicates the presence of a weak and broad resonance near
3 THz at 300 K. If this resonance would be absent, the
polaritons would have been practically undamped up to
frequencies of about 4 THz.

At higher temperatures the damping increases as a re-
sult of the rise of the broad resonance near 3 THz and
the central mode. We only present measurements of the
damping time for frequencies below 2.5 THz. At higher
frequencies the damping becomes highly nonexponential
as a result of the complicated structure of the polariton
response. The difference between the solid curves and
the dashed curves in Fig. 7 shows the strong effect of the
central mode on the damping of polaritons with frequen-
cies below 3 THz. We find that for temperatures above
500 K the central mode is essential to obtain quantita-
tive agreement between experiment and calculation. The
value of the relaxation-time constant of the central mode
of 250 fs does not depend on temperature and agrees
very well with values measured in a cw Raman-scattering
study on the central mode of LiTaO3.3 It is also similar
to the relaxation-time constant of the central mode mea-
sured for the related ferroelectric KNbQ3.53% In these
studies on KNbOj it is observed that the relaxation-time
constant is almost temperature independent for temper-
atures far below 7. and decreases with increasing tem-
perature for temperatures close to 7.. The maximum
temperature of 733 K of our experiment is still rather far
away from the Curie temperature of 890 K. This explains
why our measurements can be fitted with a relaxation-
time constant for the central mode that does not depend
on temperature in the temperature interval studied in
our experiment.

Up to now it has been very hard to determine exper-
imentally whether the ferroelectric phase transition in
LiTaO3 takes place with or without the frequency of the
lowest-energy A; mode gradually shifting to zero (mode
softening).31678 In the quantum-mechanical model the
divergence of the static dielectric constant follows from
the divergence of the indirect mean-field response at the
Curie temperature. Instead of a gradual shift of the tran-
sition frequency to zero, this model predicts a change
in the resonance frequency from 6 THz to 3 THz and
a rise of a strong central mode for temperatures near
the Curie temperature. In Raman-scattering or infrared-
reflectivity experiments this change in the resonance fre-
quency and the rise of a central mode may give the im-
pression that the ferroelectric phase transition takes place
with mode softening.'®17 We find that the time-resolved
measurement of the polariton dispersion and damping
provides detailed information on the temperature depen-
dence of the ferroelectric mode and we conclude from
the good agreement between model and experiment that
the ferroelectric phase transition in LiTaOj3 takes place
without mode softening.

V. CONCLUSIONS

The low-frequency dielectric response of LiTaO3; has
been investigated in detail with time-resolved measure-
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ments of the phonon-polariton dynamics. Counterprop-
agating phonon polaritons with well-defined wave vector
and phase are effectively excited via nonlinear interac-
tion of two ultrashort laser pulses with equal central fre-
quency. The polaritons are probed by diffracting a probe
beam from the index grating that is formed by the po-
laritons via the linear electro-optic effect. The experi-
mentally measured signals are influenced by the inter-
ference of the diffracted electric field with background
scattered light, the interference of the two counterpropa-
gating polaritons, and the interference due to the excita-
tion of two or more polariton-dispersion branches. The
damping-time constant of the polaritons is determined
by a simulation of the experiment in which the polari-
tons are described as damped propagating Gaussian wave
packets.

T2p (PS)
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Frequency (THz)
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The low-frequency dielectric response of LiTaQO3 is the-
oretically described with a quantum-mechanical model
in which the vibrational levels of the lowest-energy A,
phonon are calculated. This model uses a potential that
is adjusted to the positions of the Lit ion in the unit
cell above T, and to the absorption spectrum at 300 K.
The model predicts a decrease of the strength of the res-
onance at 6 THz, a rise of a central mode and a rise
of a broad resonance near 3 THz with increasing tem-
perature. The latter resonance is due to overtone ab-
sorption in the one-dimensional anharmonic triple-well
potential that describes the lowest-energy A; mode in a
single unit cell. The model predicts that the static dielec-
tric response diverges at the Curie temperature without
the resonance frequency of the lowest-energy A; mode
of LiTaO3 gradually shifting to zero. We find that with
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Frequency (THz)

Frequency (THz)
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1
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FIG. 7. Measured and calculated polariton damping-time constants at five different temperatures. The measurements are
represented by points. The dashed curve represents the calculation of the damping-time constant from the width of the peak
in the calculated polariton response without the central mode. The solid curve represents the calculation of the damping-time

constant with the central mode.
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frequency- and temperature-independent time constants
of 250 fs for the central mode and the damping of each
transition in the potential, the model provides a quantita-
tive description of the polariton dispersion and damping
in LiTaO3 at all temperatures. Thereby we obtain strong
evidence that the ferroelectric phase transition in LiTaO3
takes place without mode softening. We also deduce from
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the comparison between the measured and the calculated
polariton damping that the central mode strongly affects
the damping of polaritons with frequencies below 3 THz.
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