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Quasidiffusive propagation of phonons in silicon: Monte Carlo calculations
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The time-of-Aight spectrum of high-frequency phonons with both anharmonic decay and mass-defect
(isotope) scattering is studied numerically for silicon. For the quantitative description of the spectrum in
the whole time domain (from t =tb to t ))tb, where tb is the ballistic time of fIight), we make the follow-

ing substantial improvements beyond previous simulations: (1) For the anharmonic decay we consider,
the multibranch decay where the energies and propagation directions of the decayed phonons are deter-
mined from the energy-momentum conservation of the process. (2) For the isotope scattering
polarization-dependent anisotropic scattering is used when we discuss the phonon intensity at a time t
close to tb, otherwise an approximate isotropic scattering is employed. (3) The elastic anisotropy is ex-

plicitly incorporated through the group velocity of phonons to locate the positions where the scattering
events occur. The simulated phonon intensity versus time of Right compares favorably with recent ex-

periments. Specifically, the exponential decay for late arrival times observed experimentally is well

reproduced. We also find the phonon focusing due to elastic anisotropy is crucial to explain the shape of
the phonon intensity at t =tb. The size of the source for the ballistic phonons is also studied.

I. INTRODUCTION

The time-of-Right spectrum of nonequilibrium phonons
injected into nonmetallic crystals at low temperatures
generally consists of both ballistic and scattered com-
ponents. It is well established that the phonon focusing
effect' due to elastic anisotropy of crystals governs the
ballistic phonon propagation. On the other hand, elastic
scatterings from mass defects and anharmonic decays (in-
elastic scatterings) characterize the phonon transport at a
time t much later than the ballistic time of Aight tb. The
phonon propagation with both elastic and inelastic
scatterings is quasidiffusive. The quantitative under-
standing of quasidiffusive phonon propagation is very im-
portant for analyzing the spectrum of photoexcited pho-
nons and also for a design of a phonon-based detector of
high-energy particles. ' So far, Levinson and his co-
workers have developed an extensive theoretical analysis
and have obtained several qualitative results characteris-
tic of the phonon propagation in the presence of both the
elastic and inelastic scatterings. However, it is not so
evident whether their results based on a simple model are
applicable to direct comparison with the experiments,
though both elastic and inelastic processes are experi-
mentally found to be important.

A promising way of understanding quantitatively what
happens when high-energy phonons are excited in a crys-
tal would be by the Monte Carlo simulation. Recently,
several groups ' ' ' have made such simulations for
studying the time-of-Right spectrum of phonons and also
for checking the scaling theory proposed by Kazakovtsev
and Levinson. In their studies, however, a simplified
one-branch model where three phonon polarizations are
approximated to have the same isotropic spectrum with
Debye velocity vD is employed. In addition, anharmonic
decay processes are assumed to be collinear. Although
we believe that those simulations are useful for under-
standing qualitatively the characteristic features of

quasidiffusive phonon propagation, more quantitative
studies, including three distinctive phonon polarizations
as well as elastic anisotropy, should be conducted.

In the present study we make more realistic simula-
tions than previous ones by distinguishing between pho-
non modes. Specifically, for the anharmonic three-
phonon decays, we explicitly take account of the
difference between the longitudinal (L) and transverse
(T) phonons and employ the results predicted by the
anharmonic elasticity theory. ' We also include the an-
isotropy through the group velocity of phonons to locate
the positions where the scattering events occur. This is
very important to explain the phonon intensity arriving
at the detector at t =tb. The lattice dispersion is, howev-
er, not taken into account.

II. ELASTIC AND INELASTIC SCATTERINGS

We assume a high-purity silicon sample and consider
the isotope scattering for an elastic scattering. If the lat-
tice dispersion is neglected, the isotope scattering is iso-
tropic, i.e., the total scattering rate I I of a phonon is in-
dependent of both phonon mode and propagation direc-
tion, and given by I I=B [E/h (THz) j with
B =2.43X10 s for Si, where E is the energy of a pho-
non and h is the Planck constant. However, an individu-
al scattering process specified by the initial, and
scattered-phonon states (A, ~A.') is anisotropic, i.e., it de-
pends on the inner product of the polarization vectors (e)
of the initial and final phonons, i.e., I l=gz yzi. and

yii cc ~et, ez ~
/v i., where A, =(k,j) denotes the wave vec-

tor k and mode j of a phonon, and v is the phase velocity.
Extensive simulations of phonon propagation, including
the isotope scattering, have recently been made. " An im-
portant observation is that the polarization dependence
in an individual scattering is essential for explaining the
experimentally observed channeling of a few times scat-
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tered phonons in Si and GaAs. A simple approximation,
assuming an isotropic distribution for the scattered-
phonon direction, should be a good approximation only
for phonons detected at t much later than tb.

At low temperatures, the spontaneous splitting of a
phonon into two lower energy phonons is the dominant
anharmonic decay process of phonons. For these pro-
cesses, we assume the isotropic approximation where
only L phonons can decay via L ~L + T and L ~T + T
processes. The three-phonon processes in anisotropic
solids have recently been calculated for several crys-
tals' ' but the incorporation of the results into the
Monte Carlo simulations is very complicated and we do
not consider the anisotropy for the decay processes.

The calculation of the decay rate I ~ of L phonons in
the anharmonic elasticity model has been given in Ref.

3.0

(a)

10. Explicitly, I „=A [E/h (THz)] with A =7.41
X 10 s is obtained for Si with third-order elastic con-
stants measured at room temperature. ' We plot in Fig.
1 the energy distribution function P (E,Eo ) of a daughter
phonon in Si produced from the parent of energy EQ. VVe
see that there are low-energy thresholds for T phonons
produced by the decay process L~T+T and also for
the L phonon produced by the decay process L ~L + T,
but no such low-energy threshold exists for the T phonon
produced in the latter process. The presence of these
thresholds originates from the energy-momentum conser-
vation for the decay processes and has important effects
on the time evolution of phonons in the quasidiffusive re-
gime, as we shall see below. Here we note that the rela-
tive magnitudes of the areas surrounded by P(E,Eo) and
the energy axis correspond to the relative probabilities
for the indicated decay processes to occur. For Si, the
decay rate for L —+T+ T is about four times larger than
that for L —+L + T. '
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FIG. 1. (a) Energy distribution of daughter phonons pro-
duced by the spontaneous decay of an L phonon of energy Eo
(isotropic approximation). The area surrounded by the solid
line (two dashed lines) and the horizontal axis is proportional to
the decay rate I I, z-+ & ( I"I I.+ z. ), where
I ~ =I I. ~+~+I I. I.+~. (b) Comparison of P(E,E, ) used by
Maris (Ref. 9) (thin solid line), by Happek et ai. (Ref. 22)
{dashed line) and in the present model {bold solid line). The
areas surrounded by these curves and the horizontal line is nor-
malized to unity, or P(E,EO)dE =1. N2 =Eo/30 and
N, =E,"r 218 790.

In a simulation, a large number of phonons are gen-
erated at a point (the origin) in the bulk of Si with wave
vector k in a random direction. The initial energy E;„;,
assigned for each phonon is the same and the relative
population of the initial phonons of each mode is
specified to be proportional to the density of states
[O.S5:0.35:0.1 for show transverse (ST), fast transverse
(FT), and l. phonons, respectively]. The primary high-
energy acoustic phonons generated by the decay of opti-
cal phonons would be L mode but very quick randomiza-
tion of modes should occur due to strong elastic scatter-
ings. Here, we note that if E;„;, is suKciently large
(E;„;,/h )4 THz, for example), the result is independent
of this value as pointed out by Maris. This is because the
mean free path limited by the elastic scattering is highly
frequency dependent. The phonons can escape from the
excitation region and propagate a macroscopic distance
(e.g., 1 mm) only after being down converted to an energy
close to 1.0 THz. It should be noted that the elastic
mean free path of 1-THz T phonons in Si is 2.4 mm.

A phonon emitted from the origin begins the process.
The total scattering rate I „,=I I+I ~ (I „,=I I) is used
to generate the time for the first scattering for L phonons
( T phonons). This scattering for I. phonons is either elas-
tic (isotope scattering) or inelastic (anharmonic decay),
which is determined according to the relative magnitudes
of I I and I z. For the elastic scattering, the direction of
the phonon wave vector after the scattering is given ran-
domly when we study the phonon propagation at t much
later than tb, but it is given according to the exact formu-
la describing the anisotropic scattering when the
behavior of phonons at t = tb is discussed. Note that T
phonons are scattered only elastically and do not decay at
all.

For the inelastic scattering, the directions and energies
of daughter phonons are determined from the energy-
momentum conservation of the process. (In contrast to
the case of the one-branch model, the collinear decays
never happen. ) The group velocity is used to find the po-
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sition at which a scattering event occurs. After repeating
these scattering processes, phonons are assumed to be
detected if they first reach the spherical surface of radius
D from the origin. So, no surface effect is considered ex-
plicitly but this simulation is equivalent to the one where
phonons are excited at a point on a Oat surface of a hemi-
spherical sample and the phonon reflection at the excita-
tion surface is specular without mode conversion (phonon
detection is still on the hemispherical surface). The fre-
quency up conversion which should be important only at
the high-excitation levels of phonons is neglected in the
present work.

IV. RESULTS OF THE SIMULATIONS

For comparison, we first present the simulation with
the one-branch model proposed by Maris with
Vii=5. 91X10 cm/s for Si. Here we note that he used
the same I I for the elastic-scattering rate but the down-
conversion rate assumed is not the simple L phonon de-
cay rate. The FT phonon decay in anisotropic Si calcu-
lated by Berke, Mayer, and Wehner' is also taken into
account. More explicitly, the decay rate used is
I „""=4.1X10 [E/h(THz)] s ', which is an average
of the L pho non decay rate
=1.8X10 [E/h(THz)] s ' and the FT phonon decay
rate I ~„T=6.6X10 [E/h(THz)] s ' over the whole
spectrum of phonons obtained by weighting the density
of states. ' In addition, Maris assumed
P(E,EO) ~E (Eo E) . This—form of P(E,EO) [see Fig.
l(b)] results from the assumption of collinear decay with
a single band (valid for the L phonons in liquid helium)
and does not have the low-energy cutoff for daughter
phonons.

Figure 2(a) shows the phonon intensity (I) versus ar-
rival time t we have obtained for D=2.75 mm with the
one-branch model (E;„;,/h =4 THz; which is close to the
zone-boundary frequency of T phonons in the [100] direc-
tion and also about —,

' of the zone-center optical-phonon
frequency in Si). This time trace looks similar to the
original one by Maris for D =1 cm and also for the one
simulated by Shields et al. for D=5.5 mm. (Ref. 3) The
inset displays the same time trace but in a semilogarithm-
ic scale. Interestingly, the slope for t &4tt, is almost
linear in t indicating that the phonon intensity decreases
exponentially with respect to t in this time region. This
exponential time dependence has not been predicted ex-
plicitly by the scaling argument of Kazakovtsev and
Levinson, but recently has been observed in the experi-
mental studies of nonequilibrium phonons in Si produced
by low-power excitation at a vacuum interface. 3's (The
quasidiffusion of phonons is observed under the vacuum
excitation condition but not observed when liquid helium
is in contact with the excitation surface of phonons. ) '
If we fit the time trace of Fig. 2(a) for t )4ti, to an ex-
ponential function, the magnitude of the slope, or decay
constant a [defined by I ~exp( atlt&)] is found to be—
0.5S. This value is, however, much larger than 0.30 ob-
tained experimentally for the 2.75-mm. -thick Si sample. '
We have checked that the magnitude of a does not
change even if we increase the frequency of initial pho-
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FIG. 2. Time traces of phonon intensity obtained by (a) one-
branch model with P(E,EO) ~E (Eo —E) and (b) isotropie
two-branch model. Insets show the same time traces but the in-
tensities are in the semilogarithmic scale. E;„;,/h=4 THz and
D=2.75 mm.

nons E;„;,/)'i up to 6 and 8 THz.
Figure 2(b) plots the phonon intensity versus t calculat-

ed by using an isotropic two-branch model, which is
essentially the same as our model but the anisotropy of
the lattice is not included at all. (The anharmonic decays
are still noncollinear. ) The isotropic scattering is as-
sumed for individual isotope-scattering processes. %'e
recognize that the profile of this time trace is quite
different from Fig. 2(a) with a one-branch model.
Specifically, the ballistic signal is reduced considerably
and the maximum of the phonon signal appears at t much
later than t& (t) 3t&). However, the exponential decay
can be still seen at t later than (5—6)t& and we find
a=0.30, which is identical to the experimental value. Al-
though the value of a is consistent with experiment, the
profile of the phonon intensity of Fig. 2(b) does not
resemble the experiment. The experimental time trace in
the [100] direction of Si looks rather like Fig. 2(a) (the
simulation with a one-branch model) having a sharp on-
set of a ballistic signal at t = tb, followed by the monoton-
ically decreasing tail. ' Nevertheless, the shape of the
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phonon pulses, especially for t=tb, should be strongly
affected by the phonon focusing effect, so a simulation in-
cluding the anisotropy is very important.

To this end we have plotted in Fig. 3 the simulated
time trace in the [100] direction of Si, based on our model
including anisotropy. The overall intensity profile of this
figure coincides well with the experimental time trace ob-
tained recently by Msall and Wolfe. ' The intensity
versus t is fitted to an exponential function over almost
the entire region of r plotted (t =t& to 10tb) and we find
a=0.27, which is consistent with the experimental value
a=0.30 for the 2.75-mm-thick sample. We also have re-
peated the same simulation for 5.5-mm-thick Si and
found a =0.24.

In the simulations we assume that very high-energy
phonons (E;„;,/h =4—8 THz) are excited at a point
source. The elastic mean free path of the 4 THz T pho-
non is 9.5 pm, which is very short compared to D(1—10
mm). However, we observe a large signal of ballistic pho-
nons. This result implies that anharmonic decays occur
in the vicinity of the point source and low-energy pho-
nons with an elastic mean free path of the order of D
emanate from this region. We also have studied the size
of the effective source of ballistic phonons, or "the decay
spot. " A simple argument assuming that the daughter
phonons have about half the energy of their parents leads
to the diffusion length ~ E for phonons with energy
E. This suggests that the phonons arriving at the detec-
tor originate from the diffusive cloud of their parents,
which should be 2 ~ (=22.6) times smaller than the size
of D.

In Fig. 4 we plot the distribution for the distance r
from the origin at which the last scattering event happens
for a phonon detected within the time interval t &1.5th.
We see the sharp peak at the origin and its width is close
to 2 D. We also plot the pseudo-three-dimensional
plot of phonon intensity near the [001] direction detected
within the same time interval. Anisotropic spatial distri-
bution due to the phonon focusing is clearly seen. In this
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FIG. 4. The distribution of positions at which the last
scattering events occur for phonons detected within the time in-
terval t ( 1.5th (bold solid line). The contributions of the anhar-
monic decay and elastic-scattering events are plotted by a thin
solid line and dotted line, respectively. The vertical arrow indi-
cates the position of r/D =2 . Inset shows the pseudo-
three-dimensional representation of the phonon intensity detect-
ed within the same time interva1. (The center is the [001] direc-
tion. ) D= 1 cm and E;„;,/h=6 THz.

simulation D = 1 cm and E;„;,/h =6 THz are chosen, and
the anisotropic individual scattering is assumed for the
isotope scattering. The energy distribution of detected
phonons has a peak at E =h X (0.7 THz). Here we note
that the elastic mean free path of 0.7 THz T phonon is 1

cm ( =D) in silicon.
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FIG. 3. Time trace of phonon intensity in the [100] direction
of Si {D=2.75 mm and E;„;,/A=4 THz) obtained by including
anisotropy through the group velocity of phonons. Three
branches of phonons are considered but isotropic approxima-
tion is used for the anharmonic decay.

V. DISCUSSION

At present we do not have a physical explanation for
the exponential decay of phonon intensity observed in
both experiments and simulations for the quasidiffusive
propagation regime. In the case of purely diffusive prop-
agation with only elastic scattering, the exponential time
dependence of the phonon intensity for t )&tb is obtained
by solving the diffusion equation with an appropriate
boundary condition, ' ' and we find that agreement of
the decay constants deduced from the diffusion equation
and the Monte Carlo simulation is excellent. However,
the situation is not so simple in the presence of anhar-
monic decay in addition to elastic scattering, although a
possible argument has been developed for the exponential
decay by solving the integro-differential equation obeyed
by the phonons on the basis of the diffusion approxima-
tion. ' More extensive studies are needed, both theoreti-
cally and experimentally, to resolve this issue.

If the exponential behavior holds for a broader range
of conditions, we expect the following results: The mag-
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nitude of the decay constant a should be larger (a) for a
shorter sample, (b) for a larger anharmonic decay rate,
and (c) for a smaller elastic-scattering rate. Also, the
magnitude of a should be larger if a daughter phonon
with energy close to the parent phonon (implying that the
energy of the other daughter phonon is close to zero) is
not produced frequency, i.e., high-energy phonons are re-
moved rapidly from the system. All of these features are
consistent with Monte Carlo simulations.

As an illustration we plot in Fig. 5 the time trace ob-
tained with a one-branch model, where the daughter pho-
nons are assumed to have the energies exactly half of
their parent phonons, i.e. , P(E,EO) ~5(E —Eo/2), and
other parameters are the same as in Fig. 2(a). This ener-

gy distribution is the extreme case of P(E,EO) which has
both the low-energy and high-energy cuto6's in E. In
comparison to Fig. 2(s), the ballistic signal is diminished
and the tail decays more rapidly. The reason is that with
this form of P(E,EO), the probability for the production
of very low-energy phonons (which can propagate ballist-
ically through the sample) in a single decay is suppressed
and at the same time the production of high-energy pho-
nons which should propagate more diffusively is also
suppressed. Consequently, a larger decay constant
(a =0.70) is obtained in this simulation.

In the study of transient frequency distributions of
anharmonically decaying phonons in CaF2, Happek
et al. found that in the context of the one-branch mode1
P(E,Eo)~E (Eo E) gives —good agreement with their
experiment. This form of P (E,EO) has effective cutoffs
at both low and high energies [see Fig. 1(b)]. So, we have
repeated the simulation with the one-branch model and
P(E,EO) given above. The profile of the time trace is
very similar to Fig. 5 and the decay constant a=0.67 is
deduced.

Finally, we should remark that if the one-branch model
with the mode-averaged decay probability estimated from
only the L phonon decay rate is employed, we obtain the
time trace similar to Fig. 1(b) for the two-branch model
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FIG. 5. Time trace obtained by a one-branch model the same
as Fig. 2(a) but with P(E,EO) ~ 5(E —Eo/2).
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with I"~, i.e., the sharp ballistic signal disappears and the
tail decays more slowly. Thus, the comparison of the
simulations with recent experiments at low-excitation lev-
el avoiding the localized phonon source, ' i.e., "phonon
hot spot, " suggests either the suppression of FT
phonon decay or a smaller L phonon decay rate than the
theoretical calculations based on the anharmonic elastici-
ty theory. The experimental determination of the
inelastic-scattering rates in real crystals remains as an im-
portant subject to be done in the near future.
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