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Nonlinear local dynamics of the melt/crystal interface of a binary alloy
in directional solidification
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Numerical simulations of large-amplitude cellular dynamics during thin-film, directional solidification
of a succinonitrile-acetone alloy demonstrate strongly nonlinear local dynamics that involve oscillations
of the deep grooves between the cells. The oscillations begin as breathing modes of the grooves and be-

come more complex, showing period doubling, when the simultaneous dynamics of more than one
groove is considered. These oscillations are not predicted by amplitude equations derived for cells near
the planar interface. Simulations of the onset of cellular sohdification demonstrate the importance of
this mechanism to explain the scattered finite-amplitude cells that are observed in experiments near the
onset of cellular solidification.

I. INTRODUCTION

Theoretical studies of the cellular patterns that form
during the thin-film, directional solidification of a binary
alloy continue to yield an increasing variety of nonlinear
dynamics in the search for understanding of these struc-
tures. Previous studies' have explored the predictions
of weakly nonlinear analyses of solidification models
which are constructed by expanding in the amplitude of
the cellular shape about the planar state that exists for
growth rates below the critical value for the onset of mor-
phological instability. By exploiting spatial resonance
created by the lateral invariance of the cellular structure
and the appearance of 2:1 resonant interactions at neutral
stability, these calculations have demonstrated the oc-
currence of secondary bifurcations that lead to wave-
length halving, traveling wave states, long time-scale os-
cillations, and spatiotemporal chaos. Each of these phe-
nomena have been observed qualitatively in experiments
performed with organic alloys, such as succinonitrile-
acetone, ' and on liquid-crystal systems, " although
many times the depth of the experimentally observed
cells is outside the range of validity of the amplitude ex-
pansions on which the analysis is based.

The purpose of this paper is to demonstrate that other,
strongly nonlinear mechanisms exist for creating tern-
poral dynamics along cellular solidification fronts and
that these mechanisms play important roles in the experi-
mental observation of cells for conditions near the neutral
stability curve' ' and of long time-scale, chaotic dynam-
ics. ' The calculations reported here demonstrate the oc-
currence of periodic oscillations of the deep grooves be-
tween cells on a slow time scale. The oscillations cause
the elongation of the grooves and are highly localized, so
that the coupling between the dynamics of neighboring
grooves in weak. This dynamics is strongly nonlinear,
and is not captured by present amplitude analyses con-
structed about the planar state.

The breakup of the grooves between deep solidification
cells was documented in thin-film-solidification experi-

ments by Jackson and Hunt. ' Brattkus' performed
linear stability analysis on the asymptotic form for a
slender groove between two cells for both two-
dimensional and axisymmetric shapes to explain the
break up of the groove into drops. This analysis is simi-

lar to the calculation of the linear instability of a liquid
thread that is driven by surface tension and analogous re-
sults were predicted for the solidification groove: A two-
dimensional groove was predicted to be always stable to
small-amplitude perturbations, but the axisymmetric
groove was predicted to break up with a distinct spatial
wavelength along the sidewall. The wavelength corre-
sponded well with the frequency of droplet formation
seen in CBr4 - Br2 experiments by Kurowski et al. ,

' who
observed droplet formation over a period of several
seconds. We demonstrate below that this analysis does
not capture the oscillations found in our simulations;
most notably we see oscillations in two-dimensional
solidification cells with periods of several hours.

The localized dynamics of grooves between cells com-
puted here helps explain observations of Lee and co-
workers' ' on the evolution from a planar-to-cellular in-

terface morphology very near the onset of morphological
instability. Lee and Brown observed that cellular struc-
tures are first initiated at imperfections along the inter-
face where deep grooves form locally, followed by a much
slower development of cells along the remainder of the
interface. Lee and co-workers reported that the ampli-
tude of the cells on either side of this grooves overshoots
before returning to an almost steady state value at long
time. We show that both of these features of the inter-
face dynamics can be explain, at least qualitatively, in
terms of the localized dynamics described here.

The solutal model for solidification and the finite-
element method used for its solution are described briefly
in Sec. II. Calculations reported in Section III describe
time-periodic states that bifurcate from families of
steady-state cells. Transient simulations of the dynamics
of the transition from planar-to-cellular growth are de-
scribed in Sec. IV and are compared to the observations
of Lee and co-workers. ' '
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II. SOLUTAL MODEL AND SIMULATION METHODS

The simulations reported here were carried out using
the two-dimensional, two-sided solutal model for
solidification, as described in other references. ' ' This
model includes the diffusion and convection {by the crys-
tal translation rate) of solute through the melt and solid,
segregation at the melt/crystal interface with a equilibri-
um partition coefficient k, and the dependence of the
melting temperature on solute concentration, as modeled
by a constant liquidus slope for the binary phase diagram.
The effect of interfacial curvature on the melting temper-
ature is accounted for in the Gibbs-Thompson condition
for the interface. The dimensionless Gibbs- Thomson
equation is reproduced here because of its importance in
the dynamics described below:

6 I
Clef+ J =C~ + 2H

at the melt/crystal interface, where c is the dimension-
less concentration of the melt, H is the mean curvature of
the two-dimensional interface, m is the dimensionless
slope of the liquidus curve of the phase diagram, 6 is the
dimensionless capillary length, and c„z is a reference con-
centration that is fixed at the concentration in the melt
for a planar interface; i.e., c„&=1/k. The temperature
field is assumed to have a constant gradient in the direc-
tion (y) of growth and to be uniform in the direction (x)
lateral to the interface; this approximation is consistent
with a material with equal thermal conductivities in the
melt and solid and negligible latent heat release; convec-
tive heat transport also must be insignificant. The model
equations are written in dimensionless form using the
wavelength of the most dangerous disturbance A,, from
linear theory as the length scale, the far-field composition
co as the concentration scale, the melting point of the
pure material for temperature, and the time scale A, /D
where D is the diffusivity of the solute in the melt and A,

is defined below.
Calculations are reported for samples with specified

width 0 x + A, and that have reAectively symmetric
boundary conditions on the sides. This restriction re-
moves the possibility of traveling-wave states from the
analysis. We use the values of the dimensionless groups
in the model that correspond to an alloy of 0.2 wt. %
acetone in succinonitrile and a temperature gradient of
30, or 6=4.5X10 in dimensionless form, which are
selected to be the same as the conditions used in the ex-
periments of Lee and co-workers ' these parameters
are listed in Refs. 7 and 13 and are not repeated com-
pletely here. However, four parameters are of particular
importance, the segregation coefficient k =0.1, the ratio
of solute diffusivity in the solid and melt,
R =D, /D =0.05, the dimensionless liquidus slope
m = —1.34 X 10, and the capillary constant
F=1.9X10, which scales the importance of the sur-
face free energy in setting the melting temperature. The
small value of the ratio (I /m ) implies that the phase dia-
gram is the dominant effect on the interface shape unless
the curvature of the melt/crystal interface becomes ex-

III. LOCALIZED INTERFACE DYNAMICS

Calculations were carried out for a sample size of
A, =A,, /2; the bifurcation diagram determined from
steady-state calculations is shown as Fig. 1. The secon-
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FIG. 1. Bifurcation diagram showing steady (solid curves)

and time-periodic (symbols) states. Results of time dependent
simulations using different sample sizes are shown as (0, )
A, =A,, /2, (0) A, =A,, /3, and (E) A, =A,, /4.

tremely large. This effect, coupled with the poor
diffusivity of the solute in the solid phase, is responsible
for the creation of deep grooves between finite-amplitude
cells.

The calculations use the dimensionless growth rate P
as the control parameter. For the conditions used in the
simulations, the critical growth rate is P=0.0761 at
which point, sinusoidal perturbations to the planar inter-
face with wavelength k, =545.6 pm are unstable; these
parameters correspond to a dimensional critical velocity
of V, =0.177 pm/s. For these values, one unit of dimen-
sionless time corresponds to 7.87 s.

Calculations were performed using the finite-element
method with a nonorthogonal mapping that transforms
the moving-boundary problem to a domain with a fixed
boundary. The partial differential equations for the
solute field in the melt and solid and the difFerential equa-
tions that describe the coordinate transformation, and
hence the melt/solid interface shape, are discretized by
Galerkin finite-element methods to yield a large, sparse
set of differential-algebraic equations, which are integrat-
ed in time using second-order accurate backward
difference approximations, with variable time steps to
control solution accuracy. The finite-element meshes are
created using local refinement which allows for fine reso-
lution in regions where the interface becomes highly de-
formed; see Refs. 18—20 for details.
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dary bifurcation between cells with wavelengths k, and
A,, /2 is apparent. Transient simulations started with the
steady states in the X, family detected the onset of oscil-
latory states at I' =0.0763, as shown by the symbols (0 )

in Fig. l; this point corresponds to a Hopf bifurcation
from the steady-state forms. Stable time periodic states
were computed for the range 0.0763~PRO. 0773. An
example of the time-periodic dynamics is shown in Fig. 2
by plots of the interface deflection and the interface shape
as a function of time for P =0.0767. The oscillations are
spatially localized at the grooves between the cells, which
move up and down in time. This dynamics is in sharp
contrast to other calculations of interfacial dynam-

h e the amplitude of the interface
lti ledeflection is shallow and the dynamics involves mu tip e

cells along the front. The localized oscillations shown in
Fig. 2 hardly perturb the interface shape at the middle o
the cell (x =' l ).

The distortion in the concentration field caused by the
oscillation of the groove is shown in Fig. 3 for the same
value of growth rate; the concentration field is plotted in
the mapped variable defined as

c(x,y, t)=c (x,y, t), in the melt,

c(x,y, t)=c, (x,y, t)/k, in the solid,

which is continuous across the interface. During the os-
cillation, solute accumulates because the almost vertical
walls of the groove do not facilitate segregation into t e
solid. The higher concentration causes the groove to
deepen as the concentration increases, following the
Gibbs-Thomson relationship between the melting tem-
perature and the concentration, adjusted by the curvature
of the interface. The curvature of the bottom of the
groove increases as the groove leng1 thens in order to
compensate for the higher constitutional undercooling

t=o t=737 t=1224 t=1672 t=lBBO &=2326

FIG. 3. Solute concentration profiles duringin the oscillation
that develops for P =0.0767 and 1,=A,, /2, as plotted in the con-
centration variable given in Eq. (2).

caused by the larger concentration at the bottom of the
groove. For the deepest groove, a bulbous shape results
at the groove bottom which is separated from the main
body of the groove by a narrow neck; this shape is
characteristic of all the deep grooves seen in the localized
oscillations reported here. Finally, the concentration
reaches the magnitude where diffusion into the solid be-
comes appreciable and solute disperses into the solid ad-
jacent to the groove. As a result, the concentration in the
melt drops and the groove recoils.

Accurate approximation of the interface dynamics of
the deep grooves is extremely difficult. Local refinement
of the finite-element mesh in this region of the melt and
solid is essential for approximating the rapid variations in

d concentration. The deformation of t e
finite-element grid during the oscillation for P =
and A, =A,, /2 is shown in Fig. 4 to emphasize the need for
th d f rmation of the grid into the groove as it deepense eo

e. Theand for fine, local resolution of the interface shape. e
grid shown in this figure has 40 biquadratic finite ele-
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~ ~FIG. 2. Interface deflection and shape for the time-penodic
oscillations computed for P =0.0767 and X=A,, /2. The inter-
face shapes correspond to the points marked with () on the
upper plot.

t= 1672 t.=2092

FIG. 4. Deformation of the finite-element mesh dunng the
period of oscillation for the calculations with P =0.0767 and
A, =A,, /2.
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ments distributed along the interface, representing a local
refinement of a factor of 4 over the grid in the bulk melt
and solid.

Because the oscillations are highly localized, increasing
the number of cells in the simulation leads to the possibil-
ity of complex dynamics along the interface. This is
demonstrated by calculations for growth rates P above
the value P=0.07678 for the secondary bifurcation be-
tween the A,, and A., /2 families of steady-state cells; as P
is increased above this limit, the steady-state forms devel-
op two cell grooves by splitting the cell tip at x =1.
Transient simulations of the dynamics caused by initially
increasing P from 0.0767 to 0.0767 78 lead to the oscilla-
tion of both grooves out of phase with each other in an
apparent doubling of the dimensionless time period for
the oscillation. The dimensionless period T was 3314 for
P=0.0767 and 5768 for P=0.0769. This interface dy-
namics is portrayed in Fig. 5 for P=0.0771. The in-
crease in the number of cells beyond the steady-state bi-
furcation point suggests that the cellular wavelength is
set by tip splitting and is not affected qualitatively by the
localized oscillations of the groove.

Unlike the time-periodic states that are caused by 2:1
spatial resonance, ' the localized oscillations are relative-
ly unaffected by the lateral size of the sample used in the
calculations. To emphasize this point, we performed cal-
culations based on sample sizes A, =A,, /3 and A, =A,, /4 to
compute cells with wavelengths of 2A, , /3 and A,, /4, re-
spectively. Very similar time-periodic oscillations were
computed with each of these sizes and are represented by
points on Fig. l. All the calculations involved maximum
interface deAections greater than 130 pm, or 0.48 in di-
mensionless units. The oscillations continued to higher
values of P, but the groove became too deep in the middle
of the oscillation to be adequately represented by the 6 x 103-

I ~ ~ ~ I I I I

(a)

mapping method.
Close examination of the period of the oscillation gives

the strongest evidence that the oscillations are correlated
with the formation of the grooves and not the cellular
wavelength. The periods of the oscillations computed for
all the simulations described above are plotted in Fig. 6(a)
as a function of the dimensionless growth rate P. In each
case, the period decreases with increasing P away from
the appropriate Hopf bifurcation point P =P, . Accord-
ing to asymptotic theory, ' this decrease should scale as
(P P, )'—~. The calculations in Fig. 6(a) are consistent
with this scaling. It is more interesting to replot the
period as a function of the average depth of the groove
during the oscillation, which corresponds to the average
interface defIection; this representation is shown as Fig.
6(b). The period of the oscillation scales linearly with the
groove depth. Moreover, the period of the oscillations
with a single groove are highly correlated, irrespective of
the sample size. The increased period for two interacting
grooves is also apparent, but does not upset the linear
scaling.

For the thermophysical properties of the
succinonitrile-acetone system, periods between 3000 and
6000 dimensionsless time units correspond to dimension-
al times of between 6 and 12 hours of growth. Experi-
mental observation of these oscillations is nearly impossi-
ble, especially if one considers the complex behavior that
is expected because of interactions of the grooves of
neighboring cells. It is easy to image chaotic oscillations
of the bottoms of a collection of grooves on very long
time scales.
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FIG. 5. Interface deflection and shape for the time-periodic
oscillations computed for I' =0.0771 and A, =k, /2 to show the
period doubling caused by the dynamics of two grooves. The
interface shapes correspond to the points marked with (0) on
the upper plot.

FIG. 6. Period of oscillation as a function of (a) the dimen-
sionless solidification rate and (b) the average interface
deflection over the period of the oscillation. The symbols corre-
spond to those used in Fig. 1.
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IV. DYNAMICS OF THE
PLANAR- TO-CELLULAR TRANSITION

2.0

1.5

'1.0

o.5-
C)

o.o

2.0
40000 50000 60000 70000

I

0.0

—0.5

—1.0

0.0 0.5 1.0 1.5

0 1.5
~ W

1.O-

0 5
d

0.0
20000

O 2.0

1.5

g 1.0

30000
I

40000
I

0.0

—0.5

0.0 0.5 1.0 1.5

0.0

-0.5

0.5

0.0
10000 20000 30000

—1.0

0.0 0.5 1.0 1.5

dimensionless time t X

FICx. 7. Dynamics of the solidification interface after a step
increase in the dimensionless growth rate from the subcritical
value of P;„;,=0.0760 to the final value Pf,„,& (a) 0.0765, (b)
0.0767, and (c) 0.0769. The interface shapes at the time of max-
imum deflection are shown for each case.

The dynamics that leads to slow oscillations of the cel-
lular grooves also may be responsible for the observations
of Lee and co-workers' ' ' of isolated, finite-amplitude
cells along the interface just at the beginning of morpho-
logical instability. This hypothesis was tested by calcula-
tions near the planar-to-cellular transition beginning with
the stable planar interface at P=P;„;,=0.0760 and a
sample size of A, =A,, /3. The solidification rate was sud-
denly increased at the beginning of the simulation to su-
percritical values of P =P„»&=0.0765, 0.0767, and
0.0769. In the first simulation the interface depth in-
creased quickly to high values before preceding through a
decaying oscillation to the final, steady-state deflection
predicted in Fig. 1. The time history of the interface
deflection and the shape of the interface at the maximum
deflection are shown in Fig. 7. For the larger two in-
creases in the growth rate, the interface decayed into the
time-periodic state involving the groove oscillation. At
the largest value, the groove became too deep to be fol-
lowed with the coordinate mapping technique used in
these calculations, hence no dynamics is shown in Fig.
7(c) between the maximum interface deflection computed
during the transient and the final time-periodic state.

An example of the overshoots in interface deflection
observed by Lee is shown as Fig. 8 for comparison; in
this experiment the growth rate was increased from 0.67
to 0.75 pm/s and the other operating conditions were the
same as those used in the calculations. As discussed in
Ref. 12, the critical value for the onset of cellular
so1idification does not agree between the experiments and
calculations, presumably because of experimental errors
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FIG. 8. Experimentally measured interface profiles for the
growth of succinonitrile-acetone alloy in the thin-film
solidification system described in Ref. 10, and for the same
operating parameters used in the simulation shown in Fig. 6.

in the measurement of the sample concentration. The
overshoot seen in the experiments associated with the lo-
calized, finite-amplitude features that develop along the
interface is approximately 150 pm; these grooves reach a
final depth of approximately 70 pm after 90 min. These
observations compare reasonable well with the calcula-
tions of the transients caused by increasing the pull rate
to P=P„„„values of 0.0765 (0.9716 pm/s) and 0.0767
(0.9741 pm/s), which exhibited overshoots of 34 and 62
pm for durations of 150 and 115 min, respectively. Here
the duration of the overshoot has been defined as the time
the groove spends with depths greater than the average
value. The calculation with Ps„,&=0.0769 (0.9760 pm)
had an overshoot greater than 75 pm, which is the value
of the deflection when the simulation was stopped. At
this point the neck in the groove above the bulbous bot-
tom had almost closed off; if it did, droplets of melt
would be shed into the solid.

The similarities of the dynamics seen in the experi-
ments and the simulations strongly suggest that the local-
ized structures are a result of the same mechanism that
leads to groove oscillations. The only remaining question
is how are these structures initiated along the interface.
It has long been postulated that imperfections, such
as grain boundaries, along the interface are responsible
for the local nucleation of morphological instability; this
hypothesis was supported by analysis using imperfect bi-
furcation theory to show that the onset value of the
growth rate for the formation of steady-state cells was
singularly decreased by such an imperfection; however,
the effect of imperfections on interface dynamics has not
been addressed.
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%'e have explored this coupling through a simple set of
calculations in which a small, Localized disturbance is in-
troduced along the interface with the sample size X=A,
This disturbance to the interface is expressed as y =h (x):

—5cos(2x/A, , ), O~x ~k, /2"' '='S, X, /2&x~a (3)

15

t= 1464
I I I I I

10 15

I I I t I I I t I

10

where 6 is a small parameter that measures the magni-
tude of the initial imperfection. It is important to note
that using this initial interface deflection is a much weak-
er perturbation to the planar state than introducing a
grain boundary in the interface, which causes an imper-
fection that persists for all time. Condition (3) simply
causes an initial perturbation that can be annealed by the
dynamics which follows.

A consistent initial condition is generated for the tran-
sient simulations by solving the steady-state versions of
the balance equations and mapping equations with the in-
terface shape, Eq. (3), and P =0.0760, which is below the
growth rate fro the onset of cell formation. The transient
simulation generated from this initial state is shown in
Fig. 9 for the supercritical growth rate P=0.0769 and
5=0.05. Note that the initial indentation in the interface
evolves very rapidly into a deep groove that separates
moderate amplitude cells and that the remainder of the
interface is barely perturbed. This simulation had to be
stopped after 2063 dimensionless time units because the
groove became too deep and narrow to be approximated
with the coordinate mapping.

Similar calculations with 5=0.02 and 8=0.0769 are
shown in Fig. 10. Again the simulations had to be ter-
minated when the groove sidewall became so deformed
that they almost touched just above the bulbous bottom;
see the interface shape in Fig. 10 for t =3413. Note that
the small-amplitude cells that are forming away from the
initial perturbation have only a fraction of the amplitude
of the primary indentation.

The observations in the calculations reported above are
in good qualitative agreement with the dynamics seen by
Lee for isolated ce11s along an otherwise planar inter-
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FIG. 10. Evolution of a small, localized perturbation to a
planar interface as the growth rate is increased from the subcrit-
ical value of P =0.0760 to the supercritical value of P =0.0769;
calculations are for A, =3k, . The amplitude of the initial distur-
bance is 5=0.02. The scales for the abscissa and the ordinate
are the same as shown in Fig. 9.
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FIG. 11. Experimentally measured interface profiles for the
growth of succinonitrile-acetone alloy in the thin-film
solidification system described in Ref. 10, and for the same
operating parameters used in the simulation shown in Figs. 7
and 8. Results are for the evolution of the interface after a step
change in growth rate from 0.67 to 0.75 pm/s. The abscissa is
measured in microns.
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face as the growth rate is increased slightly above the
critical condition. This is demonstrated by the experi-
mentally measured interface profiles shown in Fig. 11,
which is taken from the experiments of Lee for the same
conditions used in the simulations, but with the defects in
the interface arising from either defects in the sample
container or from small-angle grain boundaries along the
interface.

V. DISCUSSION

The calculations reported here described a mechanism
for interface dynamics in cellular solidification that in-
volves the localized oscillation of the grooves separating
finite-amplitude solidification cells. This dynamics is due
to interaction of the solute concentration field and the in-
terface shape through the Gibbs-Thomson condition in
the vicinity of the groove and is not predicted by analysis
of amplitude equations developed by expanding about the
planar interface shape. In the time-periodic states, the
groove length oscillates up and down; when the groove is
deepest, the cell bottom becomes bulbous with a narrow
neck that almost pinches off to form an isolated drop of
melt. This oscillation is not predicted by the linear stabil-
ity analysis of the slender sidewall of a deep groove by
Brattkus. ' We expect that the surface free energy acting
through the cell bottom plays an important role in the os-
cillation.

Weak correlation between the dynamics of multiple

grooves along the solidification front leads to period dou-
bling when two grooves are considered and, most prob-
ably, chaotic dynamics in larger collections of cells and
grooves. This dynamics is predicted to occur on a very
slow time scale and has not been observed yet in any
thin-film solidification experiment. However, localized
groove dynamics is observable in the evolution of cells
from the planar state, as studied by Lee and co-
workers ro, i2, 22 who observed the initial formation of iso-
lated cell pairs, separated by deep grooves and the
overshoot in the amplitude of these cells with time. Both
phenomena are explained by the simulations reported
here for a step change in the growth rate. The overshoot
in cell amplitude is a manifestation of the dynamics
caused by being close in parameter space to the onset of
the time-periodic groove oscillation. The initiation of
cellular growth at large-amplitude, localized cells along
an otherwise planar interface is explained as the transient
caused by an interface imperfection, as the growth rate is
increased from subcritical to supercritical values.
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