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We present a generalization of the Korringa-Kohn-Rostoker cluster coherent-potential approximation
for systems with short-range order (SRO). For this purpose we have used the generalized augmented-
space formalism of Gray and Kaplan, in which one can deal with independent (corresponding to purely
random systems) as well as dependent (corresponding to systems with SRO) random variables. The ex-
pression for the configuration-averaged Green s function in this case is essentially an expansion about
the Green s function for a purely random system, and contains an infinite number of terms. For simpli-
city, we truncate the series after the second-order correction term. Using this approximation, we have
calculated the density of states {DOS) for a one-dimensional muffin-tin alloy with Markovian-type SRO
and find that the introduction of SRO can produce large changes in the DOS. We also find that the ap-
proximation yields non-negative DOS at all energies for a reasonably wide range of SRO parameter.

I. INTRODUCTION

Most disordered alloys in nature exhibit some degree of
short-range order (SRO), some common and well-known
examples being CuAu, ' CuA1, AuPd, NiPt, CuPt,
CuPd, ' A1Zn and A1Ag, etc. By SRO we mean the ten-
dency of atoms of a given kind to surround atoms of the
same kind (clustering) or of a different kind (ordering). In
the presence of SRO, the probability of a particular kind
of atom occupying a given site on the lattice can no
longer be determined by the concentrations of the con-
stituents alone, but the surrounding environment of the
site also plays a role. Therefore, the theories which are
developed for purely random alloys cannot be applied to
systems which exhibit SRO. In this paper we will focus
only on the electronic structure of such alloys, which
plays a central role in the calculation and understanding
of various physical properties of the alloys. The applica-
tion of existing theories of random alloys to the systems
with SRO can yield unsatisfactory results. An example
being the CuPd system in which the Korringa-Kohn-
Rostoker coherent-potential approximation' ' " (KKR-
CPA) gives different results from experiment. '

There have been several attempts at developing a
theory of electronic properties of disordered alloys with
SRO. ' ' Gonis and Freeman' have used the embed-
ded cluster Inethod, ' which is a non-self-consistent ap-
proach. The work of Gray and Kaplan' ' is a self-
consistent approach. However, this approach is within
the tight-binding framework, and therefore, not
parameter-free. In order to perform a first-principles

parameter-free calculation of the electronic properties of
such alloys, one has to develop a theory either in the
KKR Green's-function formulation' ' " or within the
linear-muftin-tin-orbital method. ' Banhart et al. have
used the embedded cluster method' within the KKR-
CPA framework to study the effects of SRO in CuPt, but
this method is not cluster self-consistent.

It is clear that the problem of SRO cannot be treated
within the single-site approximations and a cluster or
multisite theory should be used. Recently, ' we have
developed the KKR cluster coherent-potential approxi-
mation (KKR-CCPA) for purely random alloys by com-
bining the augmented space formalism (ASF) and the
conventional KKR Green's-function formulation. ' ' "
This formalism is a first-principles parameter-free theory
within the local density-functional theory and it takes
into account the correlated scattering from more than
one site. Our aim in this paper is to extend this theory so
as to include the effects of SRO. The ASF of Mooker-
jee, which was used to develop the KKR-CCPA formu-
lation, has the restriction that the probability of a partic-
ular kind of atom occupying a given site is completely in-
dependent of the surrounding environment. This as-
sumption is not valid for systems with SRO. Disordered
systems with SRO can only be described in terms of
dependent random variables. Gray and Kaplan' have
shown that ASF can be generalized so as to deal with
dependent random variables as well. This generalized
ASF has already been applied to disordered alloys in the
tight-binding framework. In the present work, we have
used this technique in the KKR framework.
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Using generalized ASF we have derived an expression
for the configuration-averaged Green's function for sys-
tems with SRO. We find that this expression is essential-
ly an expansion of the configuration-averaged Green's
function in the presence of SRO about that for a purely
random system. This Green's function is herglotz and
guarantees a non-negative density of states (DOS) at all
energies (as shown in the Appendix). However, for nu-
merical computations, we have truncated the series after
the second-order correction term in the expansion. It
turns out that the first-order correction term vanishes
identically, and within the CCPA with a two-atom clus-
ter, the second-order term gives us only one nonvanishing
term. Thus, our formalism allows us to calculate the
properties of a system with SRO in terms of the random
average of the Green's function and without any substan-
tial amount of additional computational effort.

We have used this approximated averaged Green's
function to calculate the DOS for a one-dimensional
mufBn-tin alloy with Markovian-type SRO. ' We have
calculated the DOS for the alloy with different SRO pa-
rameters. We observe large changes in the DOS due to
introduction of SRO. Also, we find that the DOS
remains non-negative throughout the whole energy re-
gion for a fairly wide range of the SRO parameter. How-
ever, in the strong SRO regime the DOS becomes nega-
tive in certain energy regions. This unphysical behavior
is due to the approximation in which the higher-order
correction terms in the expansion of the configuration-
averaged Green's function are neglected. It thus turns
out that the approximation which we have used fails only
in the strong SRO regime. The breakdown of the ap-
proximation in this regime may be due to the fact that
the higher-order terms in the expansion of the Green's
function become important in the strong SRO regime.
We have compared our results with those obtained by the
embedded cluster method of Gonis and Freeman. ' In
this method, a two-atom cluster is embedded in the
KKR-CPA medium, with the probabilities of different
pairs depending upon the choice of the SRO parameter.
We find that there is a general agreement between the
two results.

The outline of the paper is as follows. In Sec. II we
present our formulation. We have derived the expression
for the configuration-averaged Green's function using the
generalized augmented space theorem and we give an ex-
pression for the configuration-averaged Green's function
within the CCPA, which is used in the computation. In
Sec. III, we describe the Markovian-type SRO and in Sec.
IV, we present the results of our calculation. Finally, in
Sec. V we give our conclusions.

probability densities of all the sites, i.e.,

However, when ( n, j are not statistically independent, as
is the case with systems with SRO, such a decomposition
is not possible. Nevertheless, it is possible to decompose
Psao( [ n; } ), the probability distribution function in the
presence of SRO, into two parts such that the SRO part
is separated. Gray and Kaplan' have shown from a
"measure theoretical" argument that one can write

PRO( [ ni } ) 0( ( ni })~ do

=P((n, j)+p, (n, ), (2)

where P([n;}) is the Radon-Nikodym derivative of
Psao( [ n, } ) with respect to P„„~, ( [ n, } ).

The advantage of Eq. (2) is that it allows one to calcu-
late configuration-averaged properties of a system with
SRO in terms of averages which are computed with
respect to independent random variables. The price one
pays for this simplification is the introduction of an un-
known function P((n; j ). However, we will see later that
it can be eliminated from the final expression if the SRO
parameters are known.

Now, the configuration-averaged Green's function in
the presence of SRO can be written as the integral

& 6 )sao =I 6( [ n; } )Psao( [ n; } )gdn; . (3)

With the help of Eq. (2), we can rewrite Eq. (3) as

& 6 )sao = f G( [ n; } )P( ( n, j)Qp, .(n; )dn; .

Now we are in a position to apply the augmented space
theorem to Eq. (4), which gives us

&6)s„o=&FlG((M'})y([M'})lF),
where G((M'}) and P([M'} ) are, respectively, obtained
by replacing (n; j in 6((n; })and (t((n; j) by [M'}. The
state lF) is the "ground state" and M' is an operator in
the configuration space.

In order to use Eq. (5), we need to know P( [M'} )lF ).
We note that P((M'j ) is a function of (M'} only and,
therefore, is an operator functional in the configuration
space alone (i.e., it is independent of the real Hilbert
space). Thus, we can expand P((M'} ) lF ) in terms of the
complete set of basis vectors in the configuration space,
i.e.,

II. FORMULATION

A particular configuration of a disordered alloy can be
described in terms of a set of occupation variables ( n; } in
a particular sequence, and a certain probability density
P( [n; } ) are associated with each of these configurations.
The simplest case that represents a disordered alloy is one
in which [n; j are independent random variables. This
represents a purely random alloy. In this case, it is possi-
ble to decompose P([ }n) into a product of individual

where

Substituting Eq. (6) in Eq. (5) we get

&G) =pa &FlG([M'j)lF ) .

The coefficients a can be easily determined from known
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joint distribution functions, and Gray and Kaplan' have
found that these coefficients are as

a@=1

where Tr stands for trace over the angular momentum in-
dex I., TLI is the path-operator matrix, and

a, =0 for all i,
(9)

ULL' =ZL(r;)ZL. (r,') .

aij [FAJA

aij'k [FAAA x(FAA +NCAA +NCAA ) 2+ ]~(xy)

and so on, where P'~~ 'z represents the probability of
having A-type atoms on (i,j, . . . , I) sites and 0 denotes
the null set.

The right-hand side of Eq. (8) is an infinite series. The
first term in the series, which is &F~G(IM ] )~F), is the
configuration-averaged Green's function for a purely ran-
dom system. Therefore, Eq. (8) can be regarded as a per-
turbation expansion of the configuration-averaged
Green's function in the presence of SRO, about its value
for a purely random system. Thus, Eq. (8) allows us to
calculate the configuration-averaged Green's function in
the presence of SRO, in terms of its random average. In
the Appendix, we show that Eq. (5) and equivalently, Eq.
(8), would yield non-negative DOS at all energies.

The site-diagonal (SD) form of the KKR-Green's func-
tion for a particular configuration of the alloy is given

21

In Eqs. (10) and (11), ZL (r; ) and Jl (r,. ) are, respectively,
the regular and irregular solutions of the Schrodinger
equation for a single muffin-tin potential centered on the
ith site. In terms of random variables [n; ], which take
the value 1 when the ith site is occupied by an 3-type
atom and 0 when occupied by a B-type atom, Eq. (10) can
be rewritten as

GsD(r, r')= Tr[T"( U +oUn; )]—g Zl (r;)Jl (r';),
L

where

GSD(r, r') =Tr[T"U'] —g ZL (r; )JL (r,'. ),
L

(10)
Using Eq. (8), we can write the configuration-averaged
Green's function as

&GSD)SRo=&GsD)+Tr g a [&OF [A([M'])] '~OF )U +&OF [A([M'])] 'M ~OF )5U] (14)

where & GsD ) is the average Green's function for a purely
random system and

A([M'])= C'g ~i &&i~ —g B'&~i &&j~
l ij(i%j)

~y IF. )&F.I+~Cy li &&il~M . (15) & GSD &SRO & GSD &

term in the expansion corresponds to the coefficient ao&.
This essentially means that we keep only the first correc-
tion term of Eq. (8). With this approximation, Eq. (14)
becomes

Here, B'~ is the real-space version of the KKR structure
constants' '" and

+ [FA'A —X'1
xy

XTr[&0;FJ A (0;Fo, ) U
sc=c' —c', (16)

+&0;F~A 'M'10;F»)»] . (»)
where C (a= A or B) is the inverse of the single
muffin-tin scattering matrix.

Since Eq. (14) involves an infinite sum, it cannot be
used for numerical computations. To make it computa-
tionally tractable, we will have to adopt some approxima-
tion. We use the approximation which was earlier sug-
gested by Gray and Kaplan. ' In this approximation, the
infinite series in Eq. (14) is truncated after only the
second-order correction. Note that this approximation is
in addition to CCPA. In this case, only a,. is nonzero
[because, according to Eq. (9), all a s are zero]. When we
invoke the KKR-CCPA to the present case, the number
of nonvanishing terms is further reduced. For a two-
atom cluster consisting of sites 0 and 1, the only nonzero

Using the relation in the augmented space

M'~Foi & =y ~Foi )+(xy)'"~F, &,

we rewrite Eq. (17) as

& GsD &sRO & GsD &

+ ' [F„",— ')
Xg

XTr[ &0'F
~
A ~0'Foi ) U

+&0;F~A '~0;F, &SU],

where

(18)

(19)
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U=yU +xU (20) and

The matrix elements of A ' appearing in Eq. (19) can
be calculated easily within the KKR-CCPA (for a two-
atom cluster). These are given by

(0 Z~A '~0 r ) =(xy)'"5C

(0;E~ A ~0;F, ) =xy(C, s.—P')5CR4 '5C

X(V 'R, 'V' —R~ ')
—(xy)' (V '+b ')5Cb', (22)

X [(C,s —P')Q

( Vol+bol)Q01] (21)
I

where C,s, b ', g, Q, Q ', V'J, and R; are given by
Eqs. (Alo) —(A15) of Ref. 21. The random average of the
site-diagonal Green's function ( Gso ) is given by

( Gso ) =Tr T,~[ U+(C, ir
—C)(5C) '5U] —g T'Jab J'(5C) '5U —g [xZL"(r)JL (r')+yZL (r)JL(r') ],

jEC L
(23)

where

and

C=xC +yC

U=xU +yU (24)

(25)

and this corresponds to a system in which A- and B-type
atoms are completely segregated. The minimum value of
a is that for which min(x +ay, y +ax ) =0 (otherwise,
one of the probabilities will become negative), which
gives us

The only unknown quantity in Eq. (19) is P„z, which
depends upon the SRO parameter and will be defined in
the next section.

III. MARKOV CHAIN

This is the simplest possible system for which the SRO
can be easily defined. In a Markov chain, the occupation
probability of a particular site is assumed to depend only
on the kind of atoms occupying its first nearest-neighbor
sites. Therefore, in a Markov chain, the SRO is restrict-
ed to nearest-neighbor pairs only. The Warren-Cowley
SRO parameter a for a nearest-neighbor pair is
defined as

a = —min
x

min y'x (30)

P~'„=xp(no= 1,n, =1)=x +axy,
P~'ii =xp(no = 1,n, =0)= (1 —a )xy,

Pii'„=xp(no =0,n, = 1)=(1—a)xy,

Pii~ =xp(no= l, n, =0)=y +axy .

(31)

In this case, AA- and BB-type pairs will not exist and for
a 50-50 alloy, this will correspond to a situation, when
the alloy is not random at all, but forms a superlattice of
A and B constituents. The difFerent pair probabilities can
now be written as

p(A, B)
y

(26) We will use this form of P~'„ in Eq. (19) for the calcula-
tion of the DOS of this system.

where p ( A, B) is the probability of finding a B-type atom
as a nearest neighbor of an A-type atom. The nearest-
neighbor pair probability distribution function can be
written in terms of a in the following way:

p(n; = l, nJ )=(x+.ay )5(nj —1)

+(1—a)y5(n ) (27)

and

p(n; =o, n )=(1 a)x5. (n ——1)

+(y+ax)5(n. ) . (28)

+max (29)

It is easily seen that the condition a =0 represents a pure-
ly random system, a(0 represents a system in which
AB- and BA-ty pe orderings are favored, and a & 0
represents a system in which AA- and BB-type clustering
would be dominant. The maximum value of u is that for
which x +ay =y +ux = 1, which gives us

IV. RESULTS AND DISCUSSION

Using the present formulation, we have calculated the
DOS for the one-dimensional mufBn-tin alloy with a
Markovian-type SRO. The expressions for various quan-
tities, such as wave functions, scattering matrices, and
the method of calculation of the path operators, are given
in Ref. 21. Also given are the KKR-CCPA equations for
a two-atom cluster. The lattice parameters (6.0 a.u. ) and
the muffin-tin radii (2.25 a.u. ) of the two constituents of
the alloy A B are taken to be identical. The depth of
the potentials for the two constituents are taken as
Vo =0.3 Ry and Vo =0.5 Ry, respectively.

In Figs. 1(a)—1(d), we present the results of our calcula-
tion for x =0. 1 for various values of the SRO parameter
a. Figure 1(a) shows the DOS for a=o.o, which corre-
sponds to the random alloy. In Fig. 1(b), we show the
DOS for a = —0. 11, which is the minimum allowed value
of o: for x =0.1. We observe that the impurity band has
become narrower and the structure around E=0.06 Ry
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FIG. 1. Averaged density of states for the alloy with short-
range order, for the concentration x =0.1. The panels on the
left-hand side (a)—(d) represent the results of the present method
and those on the right-hand side (e)—(h) represent the results of
the embedded cluster method (Ref. 15). Values of the SRO pa-
rameters are given in the legend.

has become sharper. In Figs. 1(c) and 1(d), we show the
DOS for a=0.25 (dashed line), a=0.50 (solid line), and
a=0.75. Here we see large changes in the DOS, particu-
larly in the impurity band. We note that for a =0.75, the
DOS becomes negative in the region between E= —0. 17
Ry and E=—0.09 Ry. The values of a, for which the
DOS is non-negative throughout the whole energy re-
gion, are from —0. 11 to 0.50, and cover a wide range.
We observe a general trend in these results. We note that
as a increases gradually, some states from the impurity
band are transferred to the first majority band. This is
because when a increases, the probabilities of the BB and
AA pairs increase, while those of the AB and BA pairs
decrease. For x=0. 1, the probability of a BB pair is
quite large compared to the other clusters. Hence, with
the increase in a, the system tends towards a pure B sys-
tem. Therefore, the DOS in the impurity band, which is
due to A-type atoms, decreases. In Figs. 1(e)—1(h), we
show the DOS obtained by the embedded cluster method
of Gonis and Freeman' for various values of a. Also, in
this case we observe that, with the increase in a, the im-
purity band loses some states, while the first majority
band gains. Thus, there is a general agreement between
the two results.

FIG. 2. Same as Fig. 1, but for x =0.5.

In Figs. 2(a) —2(d), we show the results of our calcula-
tion for x=0.5 for various values of a. Again we see
that the SRO introduces large changes in the DOS. We
find that as a increases, some states from the second band

D
are pushed into the first band. Also we observe that th7 a e

OS remains non-negative for a considerably wide range
of values of a (from —0.25 to 0.50) and becomes negative
only when a is far away from its random limit. In Figs.
2(e)—2(h), we show the corresponding results calculated
by the embedded cluster method. ' We note that there is
a general agreement between these results and the results
obtained by our formulation.

It is clear from the above discussion that the approxi-
mation in which we have neglected the higher-order
correction terms in the expansion of the configuration-
averaged Green's function gives a non-negative DOS for
a considerably wide range of the SRO parameter a. It
gives a negative DOS only when a is very far from its
value corresponding to the random system, in which case
the higher-order terms in the expansion of the Green's
function may become important. However, the values of
a for most realistic systems' fall in the range of —0.30
to 0.20, for which our formulation yields a non-negative
DOS at all energies. Moreover, it has been observed that
a one-dimensional system is more sensitive than a three-
dirnensional system to the approximation, such as the one

14we have used. Based on these considerations we feel
that the present formulation will yield better results when
applied to realistic alloys.
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V. CONCLUSION

In this paper, we presented the generalization of the
KKR-CCPA formalism to systems with SRO. We have
used the generalized ASF to determine the configuration
average of the site-diagonal form of the KKR Green's
function, which turns out to be an infinite series expan-
sion about its random average. We have shown that the
expression for the configuration-averaged Green's func-
tion would yield a non-negative DOS at all energies.
However, for numerical computations, we used an ap-
proximation in which the series was truncated after the
second-order correction. We calculated the DOS for a
one-dimensional mu5n-tin alloy with Markovian-type
SRO and found that the introduction of SRO can pro-
duce large changes in the DOS. We also found that this
approximation yields a non-negative DOS for a consider-
ably wide range of values of the SRO parameter.
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From Eq. (2) we note that P( [ n, j ) is a real and positive
semidefinite function of [n, j, and therefore, P( [M'j ) is a
real and positive semidefinite functional of [M'j. Thus,
Eq. (A3) can be rewritten as

Im(G)sRo=(F~G[ —Im(G ')]PG F) .

From the definition of the Green's function, we get

G([M'j )=[zI H(IM—'j )]

(A4)

(A5)

where I and H( [M'j ) are, respectively, the identity
operator and Hamiltonian in the augmented space, and z
is some complex number in the upper half-plane
(Imz )0). It can be shown that

Im[G( [M'j )] '=(Imz)I .

From Eqs. (A4) and (A6) we finally get

(A6)

convenience in writing. By simple algebraic manipula-
tion, we get

Im(G)sao= —(F~[G[P(G )
' —(6) 'P5]G j ~F)

= (F
~

G [ —Im(G 'P ) ]G ~F ) . (A3)

APPENDIX: PROOF OF HERGLOTZICITY OF ( 6 )sRo
Im ( G )sRo = —(F ~

6p 6
~
F ) ( Iiilz ) (A7)

1
Im( G ~sRo =—.[ ( G ~ sRo ( G )SRQ)2l

(A I)

where (G)sRo is the Hermitian adjoint of (G)sRQ Us-
ing Eq. (5) in Eq. (Al) we get

Im(6 ) =—(F [G( [M'j )P(IM'j )
2l

The imaginary part of the configuration-averaged
Green's function with SRO can be written as

Im ( G )sRo = —( F
~
( GB )( GB )t F ) ( Imz ),

which readily gives us

(A8)

When there is no SRO, / =I, Im( G ) is negative definite,
and Eq. (A7) gives the correct limit. Since P is positive
semidefinite, we can write P=BB, where B is some
operator in the augmented space. Thus, Eq. (A7) now be-
comes

Im(G)sRo(0 when Imz) 0 . (A9)

In the discussions that follow, we will suppress the obvi-
ous functional dependence of 6 and P on [M' j because of

Therefore, Eq. (5) and hence Eq. (8) will yield a non-
negative DOS at all energies.
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