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Classical wave propagation in periodic structures: Cermet versus network topology

E. N. Economou* and M. M. Sigalast
Research Center of Crete FO—RTH, P.O. Box 1527, 71110Heraklion, Crete, Greece

(Received 3 May 1993; revised manuscript received 2 August 1993)

We have investigated classical waves propagating in periodic binary composites. For electromagnetic
waves the network topology, in which the low-velocity material forms a continuous network, is more
favorable for the appearance of gaps. In contrast, for scalar and elastic waves the cermet topology, in

which the low-velocity material consists of isolated inclusions surrounded by the high-velocity host ma-

terial, is more favorable.

I. INTRODUCTION

In the last few years the problem of classical wave
(CW) propagation in composite random or periodic
media has received increased interest, ' initially because
of its connection to the problem of localization. It soon
became apparent that future useful devices may be based
on some aspects of CW propagation, ' in particular on the
possible existence of frequency gaps. Subsequently, a lot
of theoretical and experimental work concerning this
question has been done. " The theoretical methods
have been proved very accurate and they can actually be
used to design materials with the desired properties. '

The composite materials in question consist of two
components of different propagation velocities. It should
be pointed out that in the case of a single inclusion em-
bedded in an infinite host material, stronger scattering is
produced if the inclusion is a low-velocity material than
vice versa. Thus, in all cases we shall refer to the low-
velocity component of the composite as the scattering
material (or component), while the high-velocity com-
ponent shall be referred to as the host material. One can
distinguish two cases regarding the topology of the
scattering component: the cermet topology, ' where the
scattering material consists of isolated inclusions, each of
which is completely surrounded by the host material, and
the network topology, where the scattering material is
connected and forms a continuous network running
throughout the whole composite.

Previous theoretical studies have indicated that for
elastic (EL), acoustic (AC), or scalar (SC) waves, the cer-
met topology is, in general, more favorable for the devel-
opment of gaps. In contrast, for electromagnetic (EM)
waves, the network topology seems to be the more favor-
able. In the present paper we analyze some results from
previous studies, we present some new results for two-
dimensional (2D) cases and we briefly discuss possible ex-
planations of these observations. In 2l3, the components
of the vector waves, such as EM and EL waves, could be
decoupled, so we can more easily study the effect of each
wave component in the appearance of the gaps.

There are two criteria for deciding which topology is
more favorable for the appearance of gaps. The first one
is to check the ratio of the size of the gap over the
midgap frequency (5co/cos) vs the filling ratio f, of the

scattering material or the ratio r, of the velocity of the
host to the velocity of the scattering component. The
most favorable structures are those with the greater
values of 5co/co; the latter is usually computed for high-r
values (where saturation is taking place) and at the op-
timum value of f. The second way is to consider the crit-
ical velocity ratio r„ for which the first gap just opens up
vs the filling ratio f, of the scattering component; in gen-
eral, these curves have a minimum for f=f, at which
r, =r, ; the structures with the smallest r, are the most
favorable.

II. CLASSICAL WAVE EQUATIONS
AND NUMERICAL METHODS FOR THEIR SOLUTION

In the present paper, as well as in the previous relevant
work, the following classical waves were studied.

(i) Acoustic (scalar) waves (in fluids):

V
co p —k7

p
(2.1)

where p is the pressure, p is the density, and A, is the
Lame coefficient (which, for an isotropic fiuid is the same
as the bulk modulus). In the case where p is everywhere,
the same Eq. (2.1) reduces to the ordinary scalar wave
equation,

2 A 2cop= Vp
p

(2.2)

(ii) Electromagnetic waves in an isotropic (but not homo-
geneous) medium:

2

VX(E 'VXH)= H,
c 2

(2.3)
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where u, (i =1,2, 3) are the Cartesian components of the

where H is the magnetic field, E=(ic/coE)VXH is the
electric field, c. is the dielectric function, and c is the ve-

locity of light in the vacuum.
(iii) Elastic waves in solids:
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displacement vector, p is the density, k and p, are the
Lame coefficients, x; (i =1,2, 3) are the Cartesian com-
ponents of the position vector, and summation over re-
peated indices is implied. In the elastic case, the bulk
modulus B equals k+

3 p.
The parameters p, A, , p, and c, in the scattering com-

ponent (low-velocity material) are indicated by a sub-
script s and that of a host (high-velocity material) by a
subscript h. The wave velocities in each component for
cases (i)—(iii) are given by &A, /p, c/&e, , and V(A, +2@,)/p
(longitudinal) or v'p/p (transverse), respectively.

Due to the periodicity of the coefficients p, k, p, and c.,
the solutions can always be chosen to satisfy the
Floquet-Bloch theorem,

(2.5)

where f is the solution (in the scalar case) or any com-
ponent of the solution (in the vector cases) of Eqs.
(2.1)—(2.4); pz(r) has the same periodicity as the
coefficients of the corresponding CW equation; and the
wavevector k is restricted to the first Brillouin zone. Ac-
cording to the so-called plane-wave method, the periodic
functions p, A, , p, c, and yk are expanded in a Fourier
series. Thus, the wave equation is transformed to an
(infinite) matrix equation for the coefficients of the
Fourier series of yi, (r). By keeping in the expansion a
finite number M of Fourier components, an approximate
M XM [case (i)], or 2M X 2M [case (ii)], or 3M X 3M [case
(iii)] matrix equation is obtained. M is increased until a
satisfactory convergence (or the order of 1% or less) is
obtained. Usually, a value of M around 350 is adequate
to achieve a 1% accuracy. In Secs. III and IV we present
results obtained through the plane-wave method just de-
scribed.

III. WAVES IN THREE-DIMENSIONAL SYSTEMS

A. Scalar and acoustic waves

We consider here the fcc structure which is the most
favorable for the appearance of gaps, although similar
concIusions are reached if we consider other structures
such as bcc, diamond, simple cubic (sc), simple hexagonal
(sh), and hexagonal-closed-packed (hcp). For r ~4 and
for the cermet topology (with spherical inclusions andf=0.10) the maximum 5'/co is 0.35. Again, for r &4
but for the network topology (where the scattering ma-
terial occupies the space left between overlapping
spheres) with f=0.05, the maximum 6co/co equals 0.30.
The corresponding figures for r, are: 1.73 for the cermet
topology (obtained when f =0.10) and 2.24 for the net-
work topology (obtained when f =0.05). The above
results strongly suggest that the cermet topology is more
favorable than the network topology for the appearance
of gaps in the propagation of scalar waves.

For acoustic waves there is an additional parameter,
the density ratio y =p, /ph (s refers to the scattering and
h to the host component); for the cermet topology, by de-
creasing y below unity, the gaps become wider and the
bands narrower. In any case, this extra parameter does

not seem to modify our conclusion regarding the su-
periority of the cermet topology.

B. Elastic waves

We consider here extreme solids (in the sense that the
ratio of the shear elastic constant p to the bulk modulus
8 has the maximum empirical value, p/8=1. 5, corre-
sponding to a minimum ratio of longitudinal to trans-
verse velocity equal to V'2), although similar conclusions
have been reached by considering more realistic values of
the ratio p/B. It is worthwhile to mention that in the
case of solids (with p/8 of the order of unity), in contrast
to what happens to Auids, by increasing the ratio
y =p, /ph above unity we favor the formation of spectral
gaps. ' We report here results based on the fcc struc-
ture; similar conclusions can be reached by considering
other structures including the diamond which seems to
produce slightly wider gaps. For the cermet topology
(with spherical inclusions, y = 1 and f =0.3) the
minimum threshold value of the velocity ratio is r, =4.2
(the corresponding value for the diamond lattice is about
4). For the network topology (consisting of the space left
between slightly overlapping spheres) and for y = 1,
r, =7.5 for f =0.25. Thus, for the elastic cases exam-
ined here, the cermet topology seems again to be more
favorable for the creation of spectral gaps.

C. Electromagnetic waves

In this case, in contrast to SC and EL waves, gaps do
not seem to appear but for a few lattice structures; in par-
ticular, the lowest lying "would be" gap for EM waves
propagating in fcc, bcc, sh, hcp structures ' does not
quite open up, although a region appears where the densi-
ty of states is almost zero, the so-called pseudogap, how-
ever, a rather wide gap appears in the diamond lattice.
It has been found that in the quasicermet topology (with
spherical inclusions just touching each other, i.e.,f =0.34), the maximum 5co/co is 0.21. In the opposite
case of the network topology (where the scattering ma-
terial occupies the space left between overlapping
spheres) the maximum 6co/co is 0.29 for f =0.19 and
r, as low as 3.6; 5co/co =0.46 at saturation for r ~8
and f =0. 19. Several other —easier to construct—
structures with an appreciable gap have been pro-
posed, ' aII these structures have the network topology.

The main conclusion from the previous discussion is
that for EM waves, in contrast to what happens with SC
and EL waves, the network topology seems to be more
favorable for gap creation than the cermet topology.

IV. WAVES IN TWO-DIMENSIONAL SYSTEMS

In this section we report new results for systems con-
sisting of identical parallel (to the z axis) infinite cylinders
periodically placed within a material matrix, when the
propagation is perpendicular to the z axis the problem be-
comes a 2D one. The filling ratio of the cylinders is
denoted by x; when the cylinders are the low-velocity
(scattering) component, x =f, and we have the cermet to-
pology [as long as x is below a critical value x, (e.g. ,
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x, =0.785 for circular cylinders in a square lattice)]. If
the cylinders are the high-velocity material, the scatter-
ing component is the matrix, f= 1 —x, and we have the
network topology (as long as x (x„or, equivalently,

f )1—x, ).
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A. Scalar waves 10.0
In Fig. 1 we plot the threshold value r„ for the first

and second gap vs the filling ratio x, of the cylinders (in
the present case the cylinders have square cross section
and are placed in such a way that their axes of symmetry
coincide with the corresponding axes of the unit cell).
For cylinders of the low-velocity material (i.e., for the
cermet topology) the first (second) lowest gap appears for
r, about 1.73 (2.2) for cylinders with f =x -0.25
(0.30); in the opposite case where the cylinders are the
high-velocity material (i.e., for the network topology) the
threshold value r, is 1.92 or 2.8 at f =1—x =0.42 or
f =1—x =0.3 for the second and the first gap, respec-
tively. The results are nearly the same for cylinders with
circular cross section. %'e have also considered a 2D
hexagonal lattice, ' for cylinders of the low-velocity ma-
terial (i.e., for the cermet topology) the first gap appears
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for r, as low as 1.31, in contrast to the opposite case
(network topology) in which the first gap does not appear
at all, due to a degeneracy at the (—'„0) point.

B. Elastic waves

FIG. 2. r, vs x for EL waves in square lattice with cylinders
of circular cross section; the cylinders are the low-velocity
material (cermet topology case) (c

& /c, =&2 everywhere,
s =p, ~p~ =4).

6 ' 0

5 ~ 0

I I I
I

I l I

It is more difIicult to find EL wave gaps in 2D systems
rather than in 3D systems, in particular, for density ra-
tio y = 1 it is impossible to find gaps even for r as high as
25. Figure 2 shows the value of r, for the first gap of EL
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FICr. 1. The threshold value of the velocity ratio, r„vs the
filling ratio of the cylinders x, for the first (3) and second (8)
gap and for SC waves propagating in 2D square lattice consist-
ing of cylinders with square cross section and with axes of sym-
metry coinciding with the corresponding axes of the unit cell.
The cylinders are either the low- (panel a, cermet topology) or
the high- (panel b, network topology) velocity material; the
scattering material filling iatio f, equals x {case al or 1 —x {case
b).
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FIG. 3. r, vs x for p-polarized EM wave in square lattice
with cylinders of square cross section and with axes of symme-
try coinciding with the corresponding axes of the unit cell; the
cylinders are either the low- (panel a, cermet topology) or the
high- (panel b, network topology) velocity material; the scatter-
ing material filling ratio f equals x {case a) or 1 —x {case b).
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For waves propagating perpendicularly to the z axis
the s (E field parallel to the cylinder axis) and p (E field
perpendicular to the cylinder axis) polarized waves can be
described by two decoupled wave equations. The equa-
tion for the s-polarized wave is

CO
V E+ cE=O,

C
2

where E =Ez,'e=s—(r) is the dielectric constant, co is the
frequency, and c is the speed of light in the vacuum.
Equation (4.1) is identical with the SC wave equation
which we have already considered in a previous subsec-
tion. The equation for the p-polarized wave has the form

(4.1)

2

7 ' +" H=O,
C C

2 (4.2)

waves propagating in a square lattice consisting of
cylinders (with circular cross section) which are the low-
velocity material; (i.e. , the cermet topology case); the den-
sity ratio is y =4. There is a sharp minimum for
f =x -0.25 and r, =7 2. . When the cylinders are the
high-velocity materials (i.e., the network topology) it is
again impossible to find gaps even for r as high as 25.

C. Electromagnetic waves

where H=Hz. In Fig. 3 we plot r, vs x for p-polarized
waves, square lattice, and cylinders with square cross sec-
tion placed with their axes of symmetry coinciding with
the corresponding axes of the unit cell; for cylinders of
the low-velocity material (i.e., the cermet topology case)
r, =3.9 at f =x =0.40; in the opposite case where the
cylinders are the high-velocity material (i.e., the network
topology case) r, =2. 1 (at f =1—x =0.45) which is
about half the previous value. For cylinders with circular
cross section, r, -3.6 (2.4) for the cermet (network) to-
pology at filling ratios nearly the same as for cylinders
with square cross section. We have also considered a 2D
hexagonal structure consisting of cylinders with circular
cross section; the corresponding r, is 2.9 and 1.4 for the
cermet and the network topology, respectively, at the
same filling ratios as in the square lattice.

In conclusion, the network topology, in which the
low-velocity material forms a continuous, connected net-
work is much more favorable for gap formation in all
cases we have examined; this seems to be a rather univer-
sal feature for EM waves independently of the geometric
shapes and lattice structures. The size of the gap de-
pends, of course, on these parameters with circular
cylinders arranged in a hexagonal lattice being the most
favorable configuration.

TABLE I. The minimum threshold velocity ratio r, , for some representative cases.

Type of wave Topology

SC
SC

EL
EL

Lattice
structure

fcc
fcc

fcc
fcc

Geometry of the
scattering
material

Isolated spheres
Between overlapping

spheres

Isolated spheres
Between overlapping

spheres

Filling ratio
of scattering

material

0.10
0.05

0.30
0.25

Minimum
threshold

velocity ratio
&m

C

1.7
2.2

4.2
7.5

EM

EM

SC

SC

EL

EL

EM
p-polarized

EM
p-polarized

quasi-C
or

quasi-N
Diamond

Diamond

2D square

2D square

2D square

2D square

2D square

2D square

Touching spheres

Between
overlapping

spheres

Isolated tetragonal
cylinders

Between isolated
tetragonal cylinders

Isolated circular
cylinder sr

Between isolated
circular cylinders

Isolated tetragonal
cylinders

Between isolated
tetragonal cylinders

0.34

0.19

0.25

0.30

0.25

No gap

0.50

0.50

1.7

2.8

7.2

No gap

3.9

2.1
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V. CONCLUSIONS

The minimum threshold values r, of the velocity ratio
for which the first gap just opens up are shown in Table I
for some representative cases. For scalar (SC) and elastic
(EL) waves propagating in both 3D and 2D structures, a
universal feature seems to emerge in spite of all the
differences: the cermet topology (where the low-velocity
component consists of isolated inclusions, each one sur-
rounded by the high-velocity host material) is more
favorable for spectral gap formation than the network to-
pology (where the low-velocity material is connected to
form a continuous network running throughout the ma-
terial).

In contrast, for the electromagnetic (EM) waves, the
network topology is clearly more favorable; this is more
obvious in the case of p-polarized EM waves propagating
in 2D structures (see Table I); for the 3D case, it appears
that there is no difference between a pure network case
and a quasinetwork (or quasicermet) case as far as the
value of r, is concerned. However, even in this not so
clear comparison, the pure network case produces max-
imum values of 5co/cog twice as big as the quasinetwork
case, thus providing further supporting evidence for our
conjecture. It is tempting to associate the different
behavior of the EM waves to the greater polarizability of
the network topology. Indeed, the polarizability is an in-
creasing function of the linear dimension of a connected
body. In the network topology, the linear dimension of
the scattering material is infinite and, consequently, the
polarizability and the scattering amplitude is maximized.
However, given the fact that gaps appear at wavelengths

comparable to the size of the unit cell and that the polari-
zability is not expected to continue to increase with the
linear dimension for sizes exceeding the wavelength, it
appears that the previous argument is not so convincing.
Another path towards an explanation of the observed
differences between the SC and EL waves on the one
hand and the EM waves on the other may possibly start
out from the scattering amplitude by a single sphere (or
circle in 2D). For SC and EL waves the lowest lying res-
onance is due to the isotropic scattering (s-wave scatter-
ing). In the periodic composite, this resonance is rein-
forced by multiple scattering from neighboring spheres
and may lead to the formation of the gap. Since the
scattering is mainly isotropic, the close packed arrange-
ment (associated with cermet topology) seems to be more
favorable for enhancing the multiple scattering than the
network topology which, by its very nature, is more
directional. On the other hand, for EM waves (due to
their pure transverse nature) there is no isotropic scatter-
ing from a sphere and the lowest lying resonances are ofp
character (corresponding to spherical harmonics of l = I).
The directionality of this single-scattering amplitude may
possibly be better exploited by a network topology lead-
ing to wider gaps.
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