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The problem of scattering of high-energy electrons by solids is formulated on the basis of a kinetic
equation (KE) for the one-particle density matrix. This equation provides a general treatment of
spatial and temporal coherence of electrons and takes account of both elastic and inelastic scattering
for arbitrary geometry of diffraction. Formulating the KE, we prove that if the energy of an electron
is sufEciently high (E 100 keV), the problem of multiple elastic and inelastic scattering by a solid
is entirely determined by two universal functions, namely, the Coulomb potential averaged over the
motion of the crystal particles and the mixed dynamic form factor of inelastic excitations, which is
related to the time-dependent correlation function of the positions of electrons and nuclei in a solid.
We show that in all the difFraction experiments the scattering cross section contains information
about both these functions and discuss the possibility of their separate determination. The KE
method generalizes previous theoretical approaches to the description of multiple inelastic scattering
of high-energy electrons, and in the case of single inelastic interactions the solution of the KE reduces
to the distorted-wave approximation. As an illustration, we consider an application of the KE to
the problem of multiple scattering of high-energy electrons by collective electronic excitations of a
crystal. Numerical solution of the KE is shown to be consistent with experimental observations, and
evidence is found for the existence of a mechanism of damping of coherence by small-angle inelastic
scattering of high-energy electrons by a crystal.

I. INTRODUCTION

High-energy electron diffraction (HEED) and electron
microscopy are commonly accepted now as one of the
main analytical tools for materials science and its tech-
nological applications. This is primarily because HEED
methods are based upon a clear physical understanding of
the interaction of the electron with matter via Coulomb
forces acting between the electron and the particles of
a solid. However, the problem of the unambiguous in-
terpretation of experimental observations is in many re-
spects far &om complete. The basic difFiculty comes from
the multiplicity of interactions of high-energy electrons
with nuclei and electrons in a solid. Even for a crystal
with a periodic distribution of atoms the observed difFrac-
tion pattern seldom has the form of a set of discrete spots
following Bragg's law, but rather the scattering exhibits
a continuous background over the whole solid angle of 4'.
This background comes primarily from inelastic scatter-
ing of the high-energy electron arising from excitations
of the vibrational and electronic subsystems of the crys-
tal. The intensity of sharp Bragg diffraction spots results
from elastic scattering of the electron, thereby providing
information about the geometrical arrangement of atoms
in the solid, while the analysis of angular and energy
spectra of inelastically scattered electrons forms a basis
for many analytical techniques and makes it possible to
study the transitions between difFerent eigenstates of the
crystal, in particular, to locate impurities in the lattice
as well as to determine the local chemical state of partic-
ular atoms. Generally, the recording of the double diÃer-

ential cross section of scattering of high-energy electrons
d2o/dodE (where do is the element of solid angle and E
is the energy) makes it possible to investigate two basic
properties of a substance, namely, its static equilibrium
characteristics, i.e. , the parameters which are relevant to
the time-averaged distribution of particles, and its dy-
namic properties, i.e. , the parameters characterizing the
motion of electrons and nuclei.

In spite of the clear signi6cance of a theoretical method
which would enable the evaluation of the cross section,
taking account of both elastic and inelastic scattering,
the basic equations of the theory are yet to be for-
mulated. A treatment of the problem was given by
Yoshioka, who considered a system of coupled differ-
ential equations for the amplitudes of elastically and in-
elastically scattered electrons. Howie showed how to
solve these equations and discussed the problem of mul-
tiple bulk plasmon excitations in transmission difFrac-
tion geometry. Howie's result was extended by Cundy,
Howie, and Valdre, Humphreys and Whelan, Rez,
Humphreys, and Whelan, Rossouw and Whelan, and
Allen and Rossouw to the cases of phonon and electron-
hole excitation.

An alternative approach was proposed by H@ier who
showed how to combine the method of treating the ef-
fects of disuse scattering developed by Gjpnnes with
Moliere's multiple scattering theory. Furthermore, a
kinetic equation governing the time evolution of the
one-particle density matrix has been derived by Kagan
and Kononets. They developed a consistent quantum-
mechanical theory of channeling of nonrelativistic pro-
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tons in single crystals. Similar equations were considered
later by Rez and Dudarev and Ryazanov " in the the-
ory of multiple inelastic scattering of high-energy elec-
trons propagating through thin crystals. A multislice
method which takes inelastic interactions into account
has been proposed recently by Wang. ' In summary,
all the theoretical approaches quoted above were de-
veloped for the transmission diffraction geometry.

A theory which treats the high-angle backscattering
of incident electrons from bulk single crystals was for-
mulated by Hirsch and. Humphreys. Further progress
was made by Spencer and Humphreys who applied the
methods of transport theory to the problem of the eval-
uation of the contrast of electron channeling patterns.
However, the transport equation in Ref. 21 was pos-
tulated rather than derived, and the question remains
of how to incorporate consistently the diffraction effects
into the theory based on the time-independent Boltz-
mann equation. As a recent illustration, here we may
quote the problem of the quantitative interpretation of
electron channeling images of dislocations ' obtained
by scanning transmission electron microscopy (STEM)
with an inclined incident beam using a detector without
energy filtering.

All of the known theoretical approaches to the prob-
lem of diffraction and inelastic scattering of high-energy
electrons by solids have been developed in forms which
are suitable for various diffraction geometries, but a uni-
fied principle concerning all geometrical situations has
not yet been discussed. The importance of a unified
approach arises from the following question, which at-
tracted much attention in recent years (see, e.g. , Refs.
24—27 and references therein). If we consider HEED as
an analytical tool for determination of the structure of
a solid, then how many independent functions charac-
terizing the substance can be obtained from diffraction
measurements and what is the origin of these functions?
Within the framework of kinematic (i.e. , single scatter-
ing) theory the answer to this question was given by Van
Hove who demonstrated that it is the so-called dynamic
form factor S(q, u) which contains all the information
about the time-averaged [S(q, w = 0)] and the dynamic
[S(q, w g 0)] properties of the system. Cowley has
recently discussed this point in connection with the in-
Huence of time-dependent perturbations on electron mi-
crographs, but the ultimate solution to the problem was
not given. The present study aims to generalize the Van
Hove theory to the case of multiple scattering of the
high-energy electrons by a solid.

We develop a unified theory which accounts both for
elastic diffraction by the time-averaged distribution of
atoms and inelastic scattering by excitations of the solid
using a method which is similar to the approach pre-
viously developed for evaluation of the conductivity of
alloys and for the study of wave scattering and propa-
gation in a randomly inhomogeneous medium. An ap-
plication of this method to the problem of multiple in-
coherent scattering of waves in a crystal was made by
Dudarev who found an exact solution to the problem
of Kikuchi pattern formation in the geometry of backscat-
tering from a lattice of pointlike scatterers. Gorodnichev

and Dudarev used the same model and considered qual-
itatively the effect of multiple energy losses on the angu-
lar distribution of backscattered electrons.

In the present paper we derive the basic relationships
describing multiple scattering of high-energy electrons in
a solid and discuss the approximate methods of solving
these equations. The main entity in the theory is the
one-particle density matrix p(r, r, E) which describes the
mutual coherence of the wave field of the high-energy
electron at the points r and r' T.he kinetic equation (KE)
discussed below determines the evolution of p(r, r', E) in
the problem of multiple elastic and inelastic scattering.
We prove that if the energy of the electron is sufEciently
high, then there are two and only two separate functions
accounting for the static and dynamic properties of a sub-
stance relevant to the electron-crystal interaction. These
are the time-averaged Coulomb potential and the mixed
dynamic form factor of inelastic excitations, and they are
the only two quantities which affect the cross section of
scattering of the high-energy electron by a solid.

We show how previous theoretical approaches to inelas-
tic scattering in HEED can be deduced from our equa-
tions, and then consider an application of the KE method
to the problem of multiple small-angle inelastic scatter-
ing of the high-energy electrons by collective electronic
excitations in a crystal. We evaluate numerically of the
cross section of multiple inelastic scattering, and com-
pare the results with experimentally observed intensity
distributions. Reasonable agreement is obtained between
computed profiles and experimental data, and evidence
is found for the strong effect of the small-angle inelas-
tic scattering on the coherence of high-energy electrons
propagating through thin crystals.

II. KINETIC EQUATION

For brevity, in this section we formulate the basic equa-
tions of the theory in the form of a theorem, the proof of
which is given in Appendixes A and B. We then discuss
the approximations involved, avoiding long mathemati-
cal derivations. Our goal is to establish how the previous
approaches can be unified, and the advantages and limi-
tations of the new method.

In order to define the meaning of the basic entity of the
theory we first consider the following simple example. Let
4(r, t) be the wave function of an electron propagating in
the medium occupied by moving classical particles. This
wave function depends on the coordinates of the parti-
cles (Rq(tq), R2(t2), . . . RM(tM) }, taken at the preced-
ing moments of time ti ( t, t2 ( t, . . . t~ & t. Experi-
mentally, a bilinear combination of the wave functions
p(r, r', t, t') = @(r,t)4"(r', t') can be observed. Pro-
vided that the medium is in its thermodynamic equi-
librium, and assuming steady state conditions of illumi-
nation with fast electrons, we may express p(r, r', t, t')
as p(r, r', t —t'). We introduce the spectral one-particle
density matrix p(r, r', E) by the Fourier transformation

d(t —t,') exp i —(t —t'))

x p(r, r', t —t') .
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In the simplest case where the interaction potential does
not depend on time we write

@(r,t) = @ (r)exp( —i

where 4„(r)is a wave function of the continuous spec-
trum, and then we obtain

p(r, r', E) = @ (r)@'(r')b(E —E ).
The spectral one-particle density matrix p(r, r', E) de-
scribes the mutual coherence of the wave field of high-
energy electrons at the points r and r', and, as this ex-
ample shows, its diagonal elements p(r, r, E) are propor-
tional to the probability of finding the electron with en-
ergy E at the point r. The kinetic equation considered
below describes the evolution of p(r, r', E) due to pro-
cesses of multiple elastic and inelastic scattering. The
distribution of electrons over a solid angle and energy is
related to the Fourier transform of p(r, r', E) over the co-
ordinates r and r' [see Ref. 34 and equation (14) of the
present paper].

As is shown below, there are two functions which de-
termine the elastic and inelastic scattering of the high-
energy electron, namely, the time-averaged Coulomb po-
tential of the interaction between the incident electron
and the nuclei and electrons of the substance and the
mixed dynamic form factor of inelastic excitations. We
first define these two quantities.

Let H'(r, ri, r2, ..., rM) be the Coulomb interaction be-
tween the primary electron (coordinate r) and the crys-
tal particles (coordinates ri, r2, ..., rM in the generalized
sense). If we denote a particular state of the crystal by
~n) (the corresponding eigenvalue of the crystal Hamil-
tonian is e„),then we can define a transition matrix
element as H' (r) = (ni))H'(r, ri, r2, ..., rM)~n). The
time-averaged Coulomb interaction potential is defined
as

(H'(r)) = —) exp( —e„/k~T)H„'„(r),

where Z = P„exp( e„/k~T) is—the partition function,

T is the absolute temperature, and k~ is Boltzmann's
constant. (H'(r)) describes the averaged potential field
acting on the high-energy electron in the crystal provided
that polarization of the medium can be neglected.

The difference between the transition matrix element
H', (r) and the matrix element of the averaged poten-
tial (3) represents the 8uctuating part of the interaction,

bH„',„(r)= H„',„(r)—b„,„(H'(r)).
Notice that the matrix element defined by Eq. (4) van-
ishes after averaging over the equilibrium,

) exp( e„/—k~T)bH„' „(r)= 0.

The quantity which characterizes the inhuence of Quc-
tuations of the interaction potential on the state of the
high-energy electron is expressed in terms of a bilinear
combination of matrix elements (4), namely,

s(r, r', u) = —) exp( s /k~T—)bH' „,(r)bH„',„(r')

(6)

The double Fourier transform of (6),

2 '2

S(q, q', v) = d rd r'exp( —iq r + iq' r')
4me2 2

xs r, r', ~,

where e denotes the electron charge, is known as the
mixed dynamic form factor, and in what follows we
will use this term both for (7) as well as for (6). The
proof given by Van Hove s shows that the functions (6)
and (7) contain all the information about time-dependent
correlations in the positions of the crystal particles as
well as about spectrum of excitations of the substance.
The mixed dynamic form factor (7) is proportional to the
Fourier transform of the equilibrium correlation function
of charge density Quctuations,

1 dt
S(q, q', u) = —) exp( —e~/k~T) —exp(iwt) {n~bP&(t)bP z (0)~n),2' (8)

where Pz(t) denotes the Fourier component of the
Heisenberg operator of the total charge density, namely,

P(r, t) = ) Z h'(r —R (t))

and

Pz(t) = ) Z exp[—iq. R (t), .

As follows &om the above discussion, various eigen-

states of the medium contribute to the form factor (8)
independently, i.e., in the form of a simple summa-
tion over n, each term being weighted with a factor
of Z exp( —e /k~T). This means that the excitation
of various eigenstates takes place incoherently, and this
arises as a corollary of the assumption of the crystal being
in thermal equilibrium.

We proceed now to the formulation of the equations of
the theory of multiple scattering. There are three equa-
tions, the solutions of which need to be known in order to
evaluate the double differential cross section of scattering
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of the high-energy electron by a solid. The first equation

hE+ V' —(H'(r)) Go(r, r', E) = h(r —r') (9)2m

determines the wave amplitude Go(r, r', E) (Green's
function) at r due to a point source of electrons at r'
in the averaged potential field (H'(r)). The solution to
the second equation (see Appendix A for a derivation)

2

E+ '7 —(EI'(r)) G(r, r', E) —f d xf dk (rr, ,x)le (rk, xE —hk)G(x, r', E) = b(r —r')
2m (10)

is a similar Green s function, but unlike Eq. (9), Eq. (10) takes into account the inHuence of the Huctuating part of
the interaction on the motion of the electron from r to r. The effective non-local potential term in Eq. (10) coincides
with that derived by Dederichs based on a single inelastic scattering approximation. He proved that this form of
the efFective potential takes into account in a unified manner both the vibrational and electronic excitations of a
substance. He also showed that the appearance of the nonlocal potential term in Eq. (10) gives rise to the absorption
of the fast electrons.

The third equation is an integral equation, the derivation of which is given in Appendix B, viz. ,

p(r, r', E) = po(r, r', E) + d xd x'G(r, x, E)G*(r', x', E) der s(x', x, ~)p(x, x', E + her)

and is the basic relationship of the theory, and in what follows it will be referred to as the kinetic equation (KE).
This equation describes the evolution of the one-particle density matrix of the electron in the process of multiple
elastic and inelastic scattering in a solid. It shows simply that p(r, r', E) is a sum of the "coherent" wave po(r, r', E)
(which includes the incident wave and associated elastic scattering) and waves inelastically scattered at (x, x. ), the
propagation of which from (x, x') to (r, r') is described by the product of two Green's functions G(r, x, E)G*(r', x', E).
Equation (11) is similar to the integral form of the transport equation, so that we can term the second term on
the right-hand side of expression (11) as the integral of inelastic collisions. Notice that this quantity as well as the
nonlocal term in the efFective interaction potential in Eq. (10) depends on the mixed dynamic form factor (6).

One of the basic problems of diffraction physics is the problem of scattering of a well-collimated beam of the high-
energy electrons of energy Eo by the crystal. To consider this problem in more detail, we adapt Eqs. (9)—(11) to
this particular case which formally corresponds to the incidence of a plane wave. Let ko be the wave vector of the
incident electron, h ko/2m = Eo, then the wave function 4i,, (r) describing the elastic scattering obeys the equation
[for T = 0 this equation coincides with Eq. (11) of Yoshioka s paper j

6 h, kO2&'+ (H'(r)) @i„(r)+ d'~ d~ s(r, x, ~)GO(r, x, E —h~)@k, (x) = '@k,(r).2m 2m (12)

At infinity 4i,, (r) is a superposition of the incident plane wave exp(ikor) and waves elastically scattered by a
crystal. If the solution to (12), satisfying the appropriate boundary conditions, is found, then the KE (ll) takes the
form

h k2
p(r r @) @k (r)@k (r )~(@ ) + d xd x'G(r, x, E)G*(r', x', E) d~ s(x', x, ~)p(x, x', E + h~). (13)

Equation (13) provides a complete description to the quantum-mechanical multiple scattering problem and, in par-
ticular, by solving Eq. (13), one can find the density of high-energy electrons p(r, r, E) at any point r. Choosing an
arbitrary Cartesian system of coordinates and evaluating the current density at a distant point, we can express the
double differential scattering cross section as

d20- k k cos 0
lim

dodE ko 27t &~+~ d Rd R' exp( —iq~ R + iq& R') p(R, z, R', z, E),

where k = 2mE/h, 0 is the angle between the wave

vector k of the scattered electron and the z axis of the
chosen system of coordinates, R = (z, y), and qz = k
is a two-dimensional vector lying in a plane perpendicular

to the z axis, q~ = (k sin 0 cos P, k sin 0 sin P, 0). The
choice of a sign (plus or minus) in expression (14) depends
on whether the electron is scattered into the forward (+)
or the backward (—) hemisphere.
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The general equations (9)—(ll) as well as the more par-
ticular relationships (12) and (13) make it possible to
evaluate the angular and energy distributions in high-
energy electron diffraction. Our formulation, therefore,
shows that there are two and only two universal func-
tions which determine the double differential scattering
cross section (14), namely, the averaged Coulomb inter-
action potential (H'(r)) [Eq. (3)] and the mixed dynamic
form factor s(r, r', w) [Eq. (6)]. We can conclude, there-
fore, that only these two quantities can in principle be
retrieved from the diffraction data by solving the inverse
scattering problem. As follows from the above equations,
both (H'(r)) and s(r, r', w) always enter the diffraction
data simultaneously, and any formulation of the inverse
problem must include the procedure for the separation
of these two functions. In other words, inelastic vibra-
tional and electronic excitations affect the intensities of
Bragg reflections, while elastic scattering by the averaged
crystal potential influences the cross section of inelastic
scattering. We discuss this in more details in the next
section.

It is important to notice that Eqs. (9)—(13) do not
assume the structure of a solid to be periodic. This
makes it possible to use these equations to take account
of not only the well-known electron and phonon excita-
tions in a perfect crystal, ' ' but also surface, interface,
and other types of localized excitations which exist in
a non-periodic system. The above formulation demon-
strates that in any geometry of diffraction combinations
of the coordinates r~, r2, ..., rM of the particles of the sys-
tem, apart &om (H'(r)) and s(r, r', ~), do not affect the
results of an experimental observation.

In summary, in this section we have formulated the ki-
netic equation (11), the solution of which determines the
magnitude of the one-particle density matrix p(r, r', E)
everywhere in space and which makes it possible to eval-
uate the cross section of inelastic scattering for arbitrary
geometry of diffraction. Equation (11) is an integral
equation and in general the problem of solving it may
require substantial computational effort. However, it has
already been shown that in some cases the exact ana-
lytical solutions of Eq. (11) may be found ' ' and,
as demonstrated below, the KE approach appears to be
useful for analysis of such effects like evolution of the co-
herence of the wave field of high-energy electrons in their
multiple scattering by electronic excitations in a crystal.

In the following section we discuss the approximations
involved in the theory as well as its advantages and lim-
itations, and establish the correspondence between the
present formulation and the earlier approaches to the
problem of inelastic scattering in HEED.

III. CONDITIONS OF VALIDITY
AND APPROXIMATE RELATIONSHIPS

We start &om a brief description of the basic idea
involved in the KE method (for more details see Ap-
pendixes A and B). Basically, Eqs. (9)—(13) can be de-
rived if we represent the propagation amplitude of the
high-energy electron in the form of an infinite series in
the fluctuating part bH' of the interaction potential, the

matrix element of which is determined by the expression
(4), and then perform averaging of this amplitude over
the thermodynamic equilibrium, conserving only terms
quadratic in bH'. The same procedure of averaging is
applied to p(r, r', E).

The approximation just described was first developed
in the theory of wave scattering and propagation in a ran-
dom mediuin (see, e.g. , the review in Ref. 31). A similar
approach to the problem of inelastic scattering in crystals
was developed by Kagan and Kononets. Recent studies
have shown that the first nontrivial correction to this ap-
proximation coming from higher-order terms gives rise to
an effect which is similar to the coherent backscattering of
light. This phenomenon was studied in detail by Gorod-
nichev et aL. , and it was found that the magnitude of
this effect in the case of HEED is fairly small. The ap-
proximation which is quadratic in bH' means that in the
treatment of multiple inelastic scattering, each successive
inelastic interaction is described by the single inelastic
scattering approximation. We must emphasize, however,
that this approximation is not equivalent to the ordinary
Born formula for scattering of a high-energy electron by
an atom. It is only the fluctuating part of the Coulomb
interaction bH' which is considered as a perturbation and
is assumed to be suKciently weak. In other words, the
present treatment of inelastic scattering can be consid-
ered as a multi@/e scattering distorted nave approxima-
tion, insofar as we are interested in the propagation and
inelastic interactions of the high-energy electron in the
averaged potential field (H'(r)).

As is now well established, the process of inelastic scat-
tering cannot be attributed to a particular atom of a
solid. In most cases one has to deal with collective ex-
citations of the phonon and electron subsystems of the
solid. Therefore it is not very obvious how to formu-
late the precise conditions of validity of Eqs. (9)—(13).
In order to proceed to a more quantitative discussion,
we introduce the effective correlation radius of excita-
tions, which we denote by r . We define r as a char-
acteristic distance between two arguments r and r' of
the mixed dynamic form factor s(r, r', w) which deter-
mines the range over which this factor is appreciable. In
some cases this definition leads to difhculties, such as, for
example, the dynamic form factor of collective electronic
excitations in the bulk crystal behaving at large distances
like ~r —r'~ . In this case the formulation of the Born
condition may require some additional consideration sim-
ilar to that known in the quantum-mechanical problem
of scattering by the Coulomb field. However, the use
of r makes it convenient to estimate different terms en-
tering Eqs. (9)—(13).

Let the effective strength of the fluctuating part of the
interaction bH' be bH . Then the condition of validity of
the distorted-wave approximation for inelastic scattering
can be formulated as

where rn is the electron mass. In the case where the
energy of the electron is high, i.e., kr && 1, a weaker



48 CORRELATIONS IN SPACE AND TIME AND DYNAMICAL. . . 13 413

inequality can be used instead of (15),

(16)

The latter condition can be interpreted as follows. The
combination 5 k/m~hH

~

has dimensions of length. If we
denote this length by I and consider the electron mov-

ing in a uniform potential field bH, the wave function
acquires an additional phase of the order of vr over a path
length of the order of L. Therefore the inequality (16)
requires that the fluctuating part of the interaction must
be sufBciently weak for no dynamical di8'raction efFects
to develop over a path length of the order of the corre-
lation radius r . Employing an optical analogy, we may
say that every inelastic perturbation associated with bH'
must be transparent for the electron, although the entire
crystal may be turbid. For a further discussion of the
meaning of inequalities (15) and (16) see Ref. 41.

Having formulated the kinetic equation and defined the
conditions of its validity, we proceed to a discussion of
how the scattering cross section (14) can be evaluated in
practice. We demonstrate that the Fourier transform of
the density matrix in (14) can be evaluated analytically,
and that this result leads to a very simple and useful
expression for the scattering cross section, which is suit-
able both for making analytical estimates and numerical
computations.

First we notice that the right-hand side of Eq. (13) is
a sum of two terms. The first term is proportional to the
product of two wave functions, each of them is a solution
to the elastic scattering problem (12). The second term
on the right-hand side of (13) results from the processes
involving at least one inelastic collision. Therefore we
may represent the total cross section (14) in the form of
a sum of elastic scattering cross section and a term which
describes single, double, etc. , inelastic interactions in a
substance,

d R G(R, z, x, E) exp( —iq~. R)

xm
exp(ikz cos 0))II i, (x), (18)

h ki cos oi

where k = (qg, q~„,k cos 0) is the wave vector of the
scattered electron, and the Cartesian system of coordi-
nates coincides with that one chosen for evaluation of the
cross section (14). Substituting (18) into (14) we obtain

inc

dodE kp
d'xd'x'4 i, (x)C*„(x')

x du s(x', x, ~)

x)o(x, x', E+ her). (19)

If the contribution of double, triple, etc. , inelastic inter-
actions to the cross section (19) is small, we can put [see

5 k2
p(r, r', E) = II«, (r)@ (r«')S(E — ). (2O)

Substituting this into the right-hand side of (19), we ar-
rive at a simple result

The problem of evaluation of the elastic scattering cross
section reduces to solving the Schrodinger equation (12),
and this problem has been widely discussed in the liter-
ature (for a review see Ref. 1 and Ref. 36). In what
follows we concentrate on the second term in (17). Com-
paring (17) and (14) we see that in order to find the
inelastic scattering cross section one needs to calculate
the Fourier transform of the Green's function G(r, x, E).
For brevity, we quote here only the result (for details of
the derivation see Appendix C)

(, hk2o hk ld'*d'*'@ k( )@*k( ')
~

', ,
' —

l @i.( )@*.( ')' 2m 2m)
(21)

which provides a general form of a single inelastic scattering approximation. In (21) we used the notation E
h k /2m. A formula which is similar to (21) was used by Kainuma in his theory of Kikuchi patterns as early as in
1955. However, a single inelastic scattering approximation in its final form (21) has been formulated only recently.
Equation (21) shows that provided the contribution of multiple inelastic collisions is small, the double differential cross
section of inelastic scattering of high-energy electrons by a crystal can be easily computed analytically or numerically
by integrating the product of two wave functions of the incident electron and two "reciprocal" wave functions (in
the sense used by Kainuma42) of the scattered electron times the mixed dynamic form factor of inelastic excitations.
Formula (21) is particularly suitable for backscattering or reflection diffraction geometries, where the problem of
finding the wave function of an elastically scattered electron may require considerable numerical computation.

We take account of multiple inelastic interactions by iterating Eq. (13) and obtain

d2o.;„I k m 2 1
d~dE kp 2~& h,

6 k2 5 k2'x 'x' '
r 'x', @ «(x)@'„(x') (, ', «„x'„' ( )S (x«', ),x«' 2m ' " 2m (22)

where the operator Z denotes the sum of the following series:
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Z x)3c )E x1)3c1)E+6(d

= s(x', x, ur)8(x —Kg)b(x' —x~)

+ d~Od~ls x )x)~0 G x)x1)E+ h~0 G x )3c1)E+h(d0 s x1)x1)~1 ~ ~0+~1

+ d~0d~1d~2s x')x)cd0 d x2d x2G x) x2) E+ h&0 G 3c ) 3c2) E+ k(d0 s x2)3c2) 4)1

X G(K2, Kl, E + Rld0 + h~l) G (K2, K], E + 5&0 + hid 1 )8(K&, Kl, ~2)8(~0 + Ml + ~2 —M)

+ ~ ~ ~

The meaning of expressions (22) and (23) becomes
clear if we represent the successive terms in the expansion
(23) in graphical form. Three terms corresponding to a
single, double, and triple inelastic interactions [the first,
the second, and the third terms on the right-hand side of
(23), respectively] are shown in Fig. 1. The straight lines
represent schematically the propagation in real space of
two amplitudes of the high-energy electron, and the size
of the circles is proportional to the correlation radius
of inelastic interactions r, (which may differ for various
types of inelastic excitations), the dashed lines represent-
ing the atomic planes of the crystal. The incoming and
outgoing lines in Fig. 1 describe the incident and emerg-
ing waves, respectively. The directions of these lines, ko
and k, are axed by the geometry of the experiment (i.e. ,

by the positions of the source of electrons and the de-
tector). The directions of intermediate lines connecting
two circles in case of double, triple, etc. , scattering are
determined by the scattering process itself, and they are
not influenced by the experimental arrangement. It is
important to emphasize that the definition of the propa-
gation amplitudes G(r, x, E) shown schematically by the
straight lines in Fig. 1 actually includes the effect of the
averaged crystal potential on the motion of the electron
between two points w and r. The elastic scattering cross
section in this notation would correspond to a single pair
of straight lines (not shown in Fig. 1).

Equations (21) and (22) demonstrate that the problem
of the determination of static and dynamic properties of
a solid by HEED is far more complicated than a sim-
ple inversion of the kinematical formula given by Van
Hove. Even in the case of single inelastic scattering in
(21) the transition takes place between exact solutions
of the elastic scattering problem (distorted wave approx--
imation) rather than between plane waves. In general,
we can say that the determination of static and dynamic
properties of a solid by HEED always includes two stages.
At the erst stage the elastic scattering cross section is an-
alyzed in order to retrieve the averaged crystal potential
(H'(r)). The effects of inelastic scattering [i.e. , the influ-
ence of the nonlocal term involved in Eq. (12)] can at this
stage be included by making use of a simple approximate
expression for s(r, r', u) or by introducing some effective
adjustable absorption parameters. After the averaged
potential (H'(r)) and the explicit form of the wave func-
tion 4g(r) are known, expressions (21) and (22) can bp
considered as integral equations for s(r, r', w), the left-

hand side of which is a quantity known &om experimen-
tal observations. Therefore, the determination of crystal
structure by HEED turns out to be a more complicated
problem than simple restoration of S(q, &u) from the kine-

FIG. 1. A schematic representation of the scattering pro-
cesses involved in the kinetic equation: (a) single inelastic
scattering, (b) double inelastic scattering; and (c) triple in-
elastic scattering.
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matic scattering cross section. However, the technique
of HEED, being nonkinematical, has the advantage of
making it possible to 6nd the mixed dynamic form fac-
tor of inelastic excitations S(q, q', ur) for q g q', which
contains information about excitations in a spatially in-
homogeneous system.

We now discuss approximate methods of solving Eqs.
(9)—(13). In these equations an explicit form of the aver-
aged potential (H'(r)) has not been defined so far. There-
fore Eqs. (9) and (10) are valid for an arbitrary distribu-
tion of atoms in a solid provided that the correlation ra-
dius of inelastic excitations r, satisfies the condition (15)
or (16). In practice, however, in order to find a solution

to (13) one must first solve Eqs. (9) and (10) and evaluate
the Green's functions Gp(r, r', E) and G(r, r', E), and it
is this point which turns out to be diKcult in most cases.

For some particular situations there exist useful ana-
lytical expressions which we quote below. When (H'(r))
is zero, the Green's function (9) has the form

m 1 2mE
Gp(r, r', E) = — 2, exp i 2 ~r —r'~

h

(24)

Another expression corresponds to the transmission ge-
ometry of diffraction,

G() (R, z, R', z', E) = G() (z —z', R, R', E)

8(z —z ) exp ik(z —z ) ) exp i —(z —z ) b (~R, q)b*(R, q),I g .mE, (q)
h k .z(2 )' ) ) (25)

V + (H' (R)) bz (R, q) = Ez (q) b~ (R, q) . (26)

In the expression (25) it is assumed that the electron
propagates along the positive direction of z axis, so that
0((,') = 1 for positive and 0(() = 0 for negative ar-
guments. In the limiting "empty lattice" case where
(H'(z, y)) + 0 formula (25) reduces to the well-known
propagator of the multislice method,

Gp(r, r', E) =—m
, O(z-z')

2~5' (» —z')

.k (R —R')'
x exp ik z —z' +i—

2 (z —z') (27)

Formula (27) also follows &om (24) provided that
k(R —R') « (z —z'). It is important to emphasize

where k = 2mE/h is the wave vector of the fast elec-

tron, the summation is performed over different branches

j of the dispersion surface, the z axis is along the in-
ward directed surface normal, and the integral is over q
vectors in the first two-dimensional Brillouin zone (BZ).
In Eq. (25), b~(R, q) = b~(z, y, q) denotes a transverse
Bloch wave function of an electron in the projected two-
dimensional periodic crystal potential (H (x, y)), which
satis6es a "transverse" Schrodinger equation with trans-
verse energy E~(q),

I

that expression (27) can also be used as a propagator
of the high-energy electron in the nonzero potential field
(H'(R)) if the angle between the wave vector of the elec-
tron and the zone axis is many times the Bragg angle.

Using expressions (24), (25), and (27), we can
classify previous approaches to the theory of mul-
tiple inelastic scattering of high-energy electrons by
crystals. ' ' ' Primarily, most of these formula-
tions differ in the choice of a form of the Green's func-
tion describing the propagation of an electron between
successive inelastic collisions inside the medium. For in-
stance, solutions found by Hpier and by Dudarev and
Ryazanov result from the choice of the Green's func-
tion in the form (27), provided that absorption effects
are taken into account. The treatments of backscattering
developed by Spencer and Humphreys, by Dudarev,
and by Gorodnichev and Dudarev are actually based
upon expression (24). The equations derived by Rezis
are equivalent to the choice of the Green's function in
the form (25). A multislice approach developed by
Wang, ' although being based upon a different for-
malism, is in accordance with expression (25) as well.

It must be emphasized, however, that a more re-
cent version of the multislice formulation proposed by
Wang includes an additional approximation, which
restricts the range of validity of his method. The ap-
proximation made in Refs. 48—50 can be understood as
follows. If one neglects the derivatives of the Green's
function over ~, y in Eq. (9), provided that the electron
propagates along the positive direction of z axis, the so-
lution to (9) can be found analytically in the eikonal ap-
proximation

r z

Ge(R, z, R', z', Pl) = —
z 8(z —z')b(R —R')ezP(zk(z —z') —i z d((H'(Rk))). ,

zl
(28)
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As is well known (see, for example, Ref. 39, p. 162),
this form of the solution can be used only if ~z —z'~ &&

kb, where b characterizes the scale of variation of the
potential (H'(r)) in real space. For b 1 A and energy
E 100 keV the magnitude of kb does not exceed 100
A. The original approximation used in Refs. 48—50 is
somewhat more sophisticated than (28). However, it can
be shown that the metthod is subject to the same
restriction ~z —z'~ && kb and the thickness of the crystal
8 for the approach formulated in Refs. 48—50 to be valid
must not exceed the value of kb2 100 A. for E 100
keV.

In order to formulate the principle which determines
the choice of an approximate form of the Green's func-
tion in Eqs. (11) and (13), it is useful to consider quali-
tatively the process of motion of the electron from (x, x')
to (r, r') as a propagation of a set of plane waves with
slowly varying amplitudes. The amplitude of each wave
is afFected by the averaged potential (H'(r)), and the
choice between (24), (25), and (27) depends on the mag-
nitude of this effect within the range of phase space of fi-

nal states of a single inelastic collision. Given the value of
the correlation radius of inelastic excitations r is many
times the electron wavelength; then the mean angle of
scattering of the high-energy electron in a single inelastic
interaction equals Oo (kr, ) . In order to estimate the
influence of the averaged potential on the propagation of
the electron &om one inelastic collision to another, we
compare 0p with the angular width of the Kikuchi lines
which are visible in the diffraction pattern and which are
known to result &om diffraction of inelastically scattered
electrons. The angular width 0~ of Kikuchi lines can
be estimated &om two-beam dynamical diffraction the-

ory, as OIc m((H )[/h k)G), where G is a reciprocal
lattice vector. Comparing the magnitudes of 0p and 0~
we may say that if 0p )) 0~, then most of inelastically
scattered electrons propagate between (x, x') and (r, r')
with their momenta lying far &om the Bragg condition.
Therefore the inequality 0p )) 0~ makes it possible to
employ the approximate forms of the Green's function
(24) and (27), disregarding the influence of the averaged
potential (H'(r)) on the propagation of the electron be-
tween successive inelastic collisions. Equation (22) shows
that in this case one needs to take difFraction effects into
account only for the incident and emerging electrons, i.e. ,
before the first and after the last inelastic interaction. On
the other hand, when 0p « 0~, diffraction effects influ-
ence strongly the amplitude of propagation of the high-
energy electron between successive inelastic collisions in
a crystal. To our knowledge, however, no realistic model
of excitations results in the latter inequality 0p (& 0~.

The third case to be discussed here cannot be reduced
to either of the inequalities 0p « 0~ or 0p )) 0~. This
case concerns collective excitations of the electronic sub-
system of the crystal, the cross section of which is

dt's

1

do 02+ 02 '

and for which the mean scattering angle 0p depends on
the choice of the upper limit of integration 0, = q, /k,

where q is the plasmon cutoff vector. The lack of a
well-defined value of the mean angle of inelastic scatter-
ing by collective excitations of electronic subsystem of
a solid was one of the main reasons which gave rise to
intensive discussion of the role of electron-electron scat-
tering in the diffraction contrast preservation (for a
recent review see Reimer ). The problem of the mutual
influence of diffraction and multiple inelastic scattering
by collective electronic excitations is considered below.

In summary, in this section we have discussed the con-
ditions for the KE method to be applicable to the de-
scription of multiple elastic and inelastic scattering of
the high-energy electron by a solid and the relation be-
tween the present formulation and previous theoretical
approaches to the same problem. In what follows we dis-
cuss a particular application of the KE to the problem of
multiple inelastic scattering in the transmission geome-
try of diffraction. We show how in the case of small-angle
elastic and inelastic scattering, the equations previously
formulated by Kagan and Kononets and by Rez can
be derived from the general form of the KE (ll) or (13).
We find that scattering by collective electronic excita-
tions of a crystal results in a rapid damping of coherence
of the wave field of the high-energy electron propagat-
ing through a single crystal. We obtain numerical solu-
tions of the KE with emphasis on the influence of mul-
tiple small-angle inelastic scattering on the contrast of
convergent-beam electron diffraction (CBED) patterns,
and then compare simulated intensity profiles with exper-
imental data. The reasonable agreement between simula-
tions and observed intensity distributions shows that the
KE method provides a useful technique for quantitative
analysis of the efFects of inelastic scattering on electron
diffraction patterns.

IV. MULTIPLE INELASTIC SCATTERING
BY DELOCALIZED ELECTRONIC

EXCITATIONS

In the preceding sections we formulated the kinetic
equation approach to the problem of diffraction and mul-
tiple inelastic scattering of high-energy electrons by a
crystal, and established the conditions determining the
range of validity of this method. In the present section
we consider an application of the above developed for-
mulation to the problem of multiple scattering of fast
electrons by collective excitations of the electronic sub-
system of a solid.

The cross section of inelastic scattering by plasmon and
valence electron excitations (29) is strongly peaked in the
forward direction. This circumstance was explicitly em-
ployed in previous approaches to the problem (see, e.g. ,

Refs. 6 and 54), where the inelastic scattering was con-
sidered to be effectively at zero angle, leading to retention
of the diffraction contrast by the inelastically scattered
electrons. Qualitatively this approximation is in a good
agreement with experimental observations performed for
thin crystals. However, the contrast degrades rapidly
for second- and higher-order losses. We notice here that
although the effect of energy loss can in principle be elim-
inated &om the diffraction pattern by energy filtering,
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there are some cases where it is not desirable ' or even
possible, for example, the production of characteristic x-
ray or Auger electron emission. This complicates the
interpretation of experimental observations, because the
image contrast depends on the 6nite angular divergence
of the beam resulting &om multiple small-angle inelas-
tic scattering. For single inelastic scattering Metherell
showed that such a dependence existed.

In order to apply the KE method to study of the ef-
fect of inelastic scattering of the high-energy electrons by
collective electron excitations of the crystal we first need
to evaluate the relevant mixed dynamic form factor (7),
which can be expressed in terms of the matrix of inverse
dielectric constant as

/
ih —1S,&(q, q', ~) = [1 —exp( —h~/k&T)j

x(q s (q, q', ~) —q s (q', q, ~) ).
(30)

Collective electronic excitations in most crystals are usu-
ally considered not to be sensitive to the periodicity of
the lattice (for observations of weak anisotropy of the dis-
persion law of bulk plasmons see Refs. 59 and 60). This
makes it possible to simplify (30) as follows:

S,)(q, q', (u) = (2x) b(q —q')S, )(q, (u),

where

hq2 1 1S,&(q, (G) =- Im
4vr2e2 1 —exp( —h~/kgT) s(q, (G)

(32)
In accordance with (7), the kernel of the integral equa-
tions (11) and (13) can be obtained by making use of the
Fourier transform of (32),

s,) (r, r', (d) =—he2 1 1
vr ~r —r'~ 1 —exp( —her/k~T)

1

s ((u)
(34)

The above relationship (34) is valid for ~r —r'~ ) q,
and it determines the long-range behavior of the dynamic
form factor of electronic excitations in the crystal bulk.
There is no dimensional parameter in the expression (34)
which could be interpreted as an effective radius r, of col-
lective electronic excitations. This complicates the defi-
nition of the mean angle of single inelastic scattering, 00,
and a more careful consideration is required in order
to estimate the efFect of collective electronic excitations
on the propagation of high-energy electrons through a
crystal.

Using (34) and neglecting the exponential term in the
denominator, we can write Eq. (13) in the form

4he
8,~ r, r', u

1 —exp( —her/k~T)

x —exp iq . (r —r')] Im
27l q s q, (G

(33)

Neglecting the dependence of the dielectric function on
the wave vector q [this approximation is valid for small

~q~ ( q, in the frequency range where the value of h~
does not exceed several tens eV, this region of (q, (d))

corresponding primarily to collective excitations of the
electron subsystem of a solid) we arrive at an explicit
expression for s,~(r, r', ur),

6 k2
p(R, R.', z, z', E) =Ox, (R, z)qle, (R', z')d(E —

)
2

dtzIm d jd(' f d zd e'G(z —j,R, zz, E)G'(z' —j', R', ez', E)
7t s((G)

)()(u, u', (, (', E + h~) .
(& —(")'+ (u —u')'

As follows from (10), the Green's function G(z —z', R, R', E) is so defined as to take absorption efFects into account,
and an explicit expression for this function can be obtained from Eq. (25) by making use of a standard substitution

E, (q) w E, (q) —ip,, (q) —ip, ), (36)

where p~ (q) results &om localized (e.g. , phonon and core-electron) excitations, and p, ~ comes from inelastic scattering
by collective excitations of electronic subsystem of a solid, namely,

p ~
——— duIm ln (37)

Substituting (36) into (25) we arrive at

G(z —z, R, R, E) = —
2 8(z —z ) exp[ik(z —z )] ) exp i 2 (z —z')—/ / Zm

/ .mE,. (q)
5 k , - » (2~)2 n'k

x 6, ( Rq)h;( Rq) exp( — ' (z —z')) exp( — '(z —z')). (38)
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The density matrix of electrons scattered through small angles can be represented in the form of a linear combination
of Bloch waves with slowly varying amplitudes,

2

p(R, R', z, z', E) = ) p... (q, z, z', E)b, (R, q) b,*,(R, q) exp ik(z —z')
Bz 27r

2)2
Iz . z Z Z Pel Ixexp —i —E~ q +i—E~ q exp — p~ q ——p~ q — z+z

hv hv hv hv hv

where v = hk/m is the velocity of an electron, the summation is performed over different branches j, j of the
dispersion surface, the z axis is along the inward directed surface normal, and the integral is over q vectors in the
first two-dimensional Brillouin zone (BZ). In Eq. (39) the coefficients )M~ (q) and @~i (q) account for the attenuation of
the flux of electrons scattered through small angles as a result of large-angle scattering by localized excitations. The
inhomogeneous term in Eq. (35) has a standard form

(4O)

where qp = (kp) „and (Co~(qo) j are the coefficients of expansion of the Bloch wave in the plane wave basis,

b, (R, q. o) = ) Chj (qo) exp[i(qo + C),) Rj.
h

Using (39) and (38), we arrive at

6'k2
i,,'(~, ~, ', &) =(~~)'~(~ —~o)~(~ — ' &:,(~0)~oi (~D)2m

I

2he m, 1 ' ', d Q~
-s(~) - o o

&«xp( —14~II(:—("I)) M~~(q+ &~ q)MJ;(q+ &~ q))(zz (q+ &~ (,
'

(,
"' E+ &~)

JJ'

x exp i — — ' exp i —E~ q —EJ q+ g exp —~—E,. q —EJ q+. ld

x exp —
)M~. (q) —p~(q + Q~) exp —pi (q) —p~ (q+ Q~)hv- hv-

where the following notation is introduced:

(42)

Mz, (q+ Qi, q) = ) C) z(q+ 0~-)Ch'(q) (43)

The probability of ending the electron at a particular point r is proportional to the diagonal elements of the density
matrix p(R, R, z, z, E). Evaluation of this quantity may be greatly simplified if we rewrite (42) in the form of a closed
equation for p(q, z, E) = p(q, z, z', E),. Introducing two variables g = g —(' and ( = ((, + (')/2, performing the
integration over g, and neglecting the terms which do not increase with increasing z, we obtain

p, , (q, z, E) =(2vr) 8(q —qo)h E — Co. (qp)Cp, (qp)
2 6 k02

2 1 d2Q~
d~ Im d(~2hv2 -s(~) - o g.&,.&~+ (~/~)'

x ) Mq, (q+ Q~, q)M+, ., (q+ Q~, q)pzz, (q+ Q~, (,E+ h~)

x exp ~ [&, (q) —&z(q+ Qi) ~xv —~' —' —[&,'(a) —R (u+ Qi)])Av hv 2

x exp —p~ q —p,J q+ ~ exp —p~ q —pJ q+ J (44)

The kinetic equation (44) describes the evolution of the density matrix of the high-energy electron p ., (q, z, E) along
the path length followed by collective excitations of electronic subsystem of the crystal. The matrix element (43)
satisfies the condition
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lim Mg, (q+ Q~, q) = lif J=j
Q~ —+0 Oif J j, (45)

which means that for small transverse momentum transfers the probability of intrab) anch (1 = j) transitions is
many times the probability of interbranch (J g j) transitions. This was 6rst pointed out by Howie. The use of the
intrabranch scattering approximation Mz~(q+ Q~, q) hz~, simplifies Eq. (44) as follows:

p . , (q, z, E) = (2vr) h(q —qo)~ E — Co (qo)Co'(qo)2 h k2

2 1 2Q
d~lm d( 2 p (q+ Q~, (,E+ her)~2hv2 E(ld - O g && Q~ + (d V

~ ~x exp i E~(q)——E~(q+ Q~) exp i E~—(q—) —. E~ (q+ .Q~)

~x exp —p~(q) —yz(q+ Q~) exp —py (q) —
p~ (q+ Q. J )hv hv-

DifFerentiating (46) with respect to z, we obtain a matrix relationship

(46)

(47)

p, , (q + Q~, z, E + hu))

Q~+ (~/~)'

In Eqs. (47) and (48) we have used the notation

2p. i p, (q) + p, (q)
~~' (q z E) = — I"'(q z ) — ' ' ~" (q»E)

2 1 2Q
d(elm 2 p~~ (q+ Q~, z, E+ her)

sr2hv2 s Ld g && Q~ + (d 6

x exp i —E~ q —E~ q+ ~ exp —i —E~I q —E,- q+hv-

which for intrab) anch inelastic scattering is equivalent to Eqs. (2.6) and (2.7) of Kagan and Kononets and to Eq.
(13) of Rez. The diagonal elements of (47) coincide with the Boltzmann transport equation

0 2p, i 2p, (q)
Bz ' ' hvp, ~(q, z,—E) = — p, , (q, z, E) — '

p, , (q, z, E)
hv

e 1
2 2

dc~™ (48)m2hv2 -s(~)-

p««(q' E) p,«(q «E)e«=p( «e«p «).l~'(q) + ~' (q)1
hv hv

(49)

Provided the solution to the kinetic equation (47) is known, we can find the localization probability P(r) small angle
for the electron, multiply scattered through small angles at a particular point r, as

P(r), =) f dE pz«(q, «, E)b (R )«h'(Rq, )e«p(q« ,—E«(q) —E«(q) ). —
BZ

2&2

(5o)

We see that this quantity decreases with increasing crys-
tal thickness. This results &om localized inelastic inter-
actions giving rise to large-angle scattering. The con-
tribution to the localization probability coming &om the
electrons scattered through large angles can be evaluated
as follows:

d2
P(r), , = 1 —) dE p, , (q, z, E).

BZ

(51)

The sum of (50) and (51) gives rise to the total local-
ization probability P(r), the quantity which at low tem-
peratures determines the rate of x-ray production and
high-angle backscattering from thin crystal films.

Therefore, for thin crystals the problem of calculating
the cross section of multiple inelastic scattering through

small angles or high-angle backscattering reduces to the
problem of solving the kinetic equation (44) or its sim-
plified form (47). This equation includes both the di-
agonal and off-diagonal elements of the density matrix
p~~r (q, z, E). The diagonal elements pzz (q, z, E) of this
matrix can be interpreted as the probabilities of finding
the electron in a particular Bloch state b~(R, q). The
oIF-diagonal elements of p~~e(q, z, E) for j g j' describe
the coherence between the states of the electron on differ-
ent branches of the dispersion surface, ' j and j'. As
was shown by Kagan and Kononets, the off-diagonal
elements of the density matrix p~~ attenuate along the
path length, and it was found that the distance char-
acterizing the damping of the off-diagonal elements of
the density matrix of nonrelativistic protons under con-
ditions of channeling is many times the inelastic mean
&ee path. Their result can be qualitatively understood
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as follows: After the first inelastic interaction the wave
function of the fast electron can be represented in the
form of a set of waves propagating along slightly differ-
ent directions and therefore having slightly different exci-
tation parameters. Although the difFerence between the
excitation errors of two particular waves may be small,
the phase difference between them increases linearly with
the path length. Successive inelastic rescattering of scat-
tered waves gives rise to a convolution of their ampli-
tudes with the differential cross section of inelastic col-
lisions as in Eq. (47). This results in averaging out the
phase factors which describe the interference between the
states of the high-energy electron propagating through a
thin crystal, and causes a loss of diffraction contrast in
a transmission electron microscope image. In the fol-
lowing section we consider this problem more quantita-
tively. We show that in light elements such as silicon, the
inelastic scattering by delocalized electronic excitations
provides the basic mechanism destroying the coherence
between difFerent Bloch states in the two-dimensional pe-
riodic projected potential. Since such excitations give rise
to a major part of the inelastic scattering cross section,
they are found to affect strongly the contrast of electron
diffraction patterns, and this statement is verified below
by a straightforward comparison of simulated intensity
profiles with experimentally observed distributions.

V. DAMPING OF COHERENCE
AND EFFECT OF SMALL-ANGLE SCATTERING

ON DIFFRACTION PATTERNS

In this section we develop methods of solving the ki-
netic equation for multiple small-angle inelastic scatter-

ing in a crystal. First, we consider an approximate ana-
lytical approach, and then study numerically the evolu-
tion of the density matrix with increasing crystal thick-
ness. Finally, we compare the results of theoretical sim-
ulations with experimental data on the intensity dis-
tribution in energy-unfiltered convergent-beam electron
difFraction (CBED) patterns.

In order to study analytically solutions of the kinetic
equation (47), we consider the case where the cross sec-
tion for small-angle inelastic scattering is many times the
cross section of localized excitations, so that the effect of
the latter may be neglected. As follows from the data
given by Radi, this condition holds well for light ele-
ments such as silicon. Integrating Eq. (48) for the diag-
onal elements of the density matrix over q and E, and
summing over the branches j of the dispersion surface,
we arrive at

g) dE p~~(q, z, E) = const.
Bz 27l

(52)

This equation represents the condition of conservation of
the total probability in the process of multiple scattering.
There is no similar condition for the off-diagonal elements
of the density matrix p~~o (q, z, E). The off-diagonal el-
ements describe the coherence between Bloch states of
the high-energy electron on different branches j and j' of
the dispersion surface. These elements attenuate when
the electron penetrates into the crystal since the coher-
ence between different Bloch states gradually disappears.
In order to evaluate the rate of attenuation of the off-
diagonal elements of the density matrix, we expand the
exponents in Eq. (47) in the power series in Q~,

t9—p, , (q, z, E) =— Q
2 1 d Qd~ Im

sr2hv2 -s(~)- g.«. &~+(~/~)'
Z 0

x pii' q+ ~ zE+he exp i —J Ej Q —Ej g —pjj g)z E
hv Bq- (53)

The last term in curly brackets on the right-hand side of (53), when taken with the integral over Q~ and w, is by (37)
the same as the first term on the right of (47). In the region of relatively small z the quantity p~~z (q, z, E), regarded as

a function of q, exhibits a pronounced peak near qo, so that we can approximate the derivative
& E~ (q) —E~ (q) by

its value at q = qo. Then the solution of (53) can be found by making use of the two-dimensional Fourier transform
over q, which results in

d2q
dK P, , (q, z, K} = I.;, (qo)I-oz (qo) ezP —52(0)z+ d(I2( (Ko (q) —&, (q)} )f ( o}

where

(54)

II(II) = — f dodm Ko( — R.z+ q ), (55)

and ~o(x) is the modified Bessel function. ss For sinall arguments z && 1 this function can be approximated as follows:

Ko(z) = —(Ie(—) + 0.577276. ..),
which makes it possible to perform integration over z in (54) analytically. This results in
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f d 28 1
dE p~~ (q, z, E) = Co (qo)CO~ (qo) exp — d~lm

27r 2 ~nv2 E' (d

2

x —zln 1+ E~l q —E~ q +z(q.z a

( hv Bq qo)

arctan E~ q —E~ q
q, ~~ (E, (q) —E, (q)}

(57)

For small z, z (( hv q, & (E~ (q) —E~(q)},the rate of attenuation of the ofF-diagonal elements of the density

matrix follows the law p~~e exp( —const x z ), namely,

2

d

~
q

2 1
~ I

1 j
~~ 0

~
jI I

d2 2
dE pzz (q, z, E) =Co ( l)Czo(loz )ezz'op(z ( dmIm ) —' (Ez (q) —Ez(g)) ). (58)

For larger depths z )) h v q, & (Ez e (q) —E~ (q) } the coherence between Bloch states decays exponentially,

d q 2e' 1dE p~~ (q, z, E.) = Co. (qo)Co~ (qo) exp — du Im
27r 2 0~ s iv

x zln
q. —'(E' (q) —E'(q) }

2.71hv
mhv

'p. —;,(&' (~) —&z(~)),. )) (59)

In accordance with Eqs. (58) and (59), the rate of atten-
uation of the off-diagonal elements of the density matrix
depends on how difFerent are the dispersion laws E~(q)
and E~e(q) for difFerent branches j and j ' of the two-
dimensional Bloch wave dispersion surface. If most of
the branches involved in the scattering are nearly Hat,
i.e. , E~ (q) =const, .as is the case for fast protons, s~ the
distance characterizing the rate of attenuation of the off-
diagonal elements of the density matrix is many times
the inelastic mean &ee path. For high-energy electrons,
however, any two functions E~ (q) and E~ (q) (j g j ') dif-
fer considerably, and therefore one may expect that the
effective distance of attenuation of the off-diagonal ele-
ments is comparable with the inelastic mean free path.

In order to investigate more accurately the effect of
damping of coherence of high-energy electrons in inelas-
tic scattering by crystals, we develop a numerical ap-
proach for solving the kinetic equation. As has been no-
ticed by Rez, is the integral term in (47) may be approx-
imated by a summation over a finite number of points
in the Brillouin zone. Further simplification may be in-
troduced if we consider the so-called systematic diffrac-
tion case where the energy of a particular Bloch state
can be expressed as E~(q) = E~(q ) + h q2/2m and
p~(q) = )M~(q ), where the z axis is in the direction of
the systematic row of reciprocal lattice points. In this
case we can integrate Eq. (48) over qz and E, and obtain
a one-dimensional kinetic equation of the form

0—p. (q* z) =-
t9Z

~'(q-) + p. (q*)
p~~ Lq~, z~— P&& yQ~, Z)

nv nv
g 2 1 dQd~lm pz~ (q + Q, z)sr2hv2 -(-)- ~.-,. g~;+(-t-) " *

x exp v, —E, q~ —E~ q~ + exp —~—E, q —E& Q& +
v v

(60)

where

&max
dpi'p" (q* z) = dE "p" (q z E)

0 2' 22 (61)

Representing the integral of inelastic collisions in Eq.
(60) in the form of a finite summation over 100 points
in the Brillouin zone, we arrive at the numerical problem

of solving a set of 200 coupled linear differential equations
for the real part and for the imaginary part of each of the
elements of the density matrix p(q, z). These equations
were integrated numerically by the Runge-Kutta-Merson
method using an Elonex 386SX computer, each run from
z = 0 A to z = 4000 A. taking about 10 h of CPU
time. In the computation we used measured values of
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the electron-electron scattering cross section obtained by
Kamiya et al. , and assumed that cu under the square
root sign in Eq. (60) is equal to the plasmon frequency;
i.e., for silicon h~ =16.9 eV.

Experimental observations of the energy-unfiltered
CBED patterns were made using a Philips CM20 ana-
lytical electron microscope at an accelerating voltage of
80 kV. The silicon single crystal sample was cooled to
100 K in order to reduce thermal disuse scattering. The
intensity distributions were recorded on a photographic
film, and precautions were made to ensure that the op-
tical density of the negative is proportional to the ex-
posure. The (110) systematic row of reciprocal lattice
vectors of the Si single crystal specimen was chosen for
observations, and the relevant CBED disk of the (220)
re8ection is shown in Fig. 2. Observations were made
varying the thickness of the crystal, and for each thick-
ness the distribution of intensity across the (220) disk
was digitized by making use of a charge coupled device
(CCD) camera and a microdensitometer. Both methods
resulted in similar profiles. The thickness of the crystal
was determined &om the positions of the maxima and
minima, and for the case shown in Fig. 2 the thickness
was found to be 2860 + 20 A. .

Three densitometer traces across the (220) CBED disk
corresponding to three diferent thicknesses of the crys-
tal are shown by solid lines in Fig. 3. The profile in Fig.
3(b) corresponds to the CBED pattern of Fig. 2. The
dotted lines in Fig. 3 represent the results of theoreti-
cal simulations of the dark-field rocking curves based on
the classical formulation of dynamical diffraction theory,
where the eKects of inelastic scattering are taken into ac-
count as an effective absorption of electrons. It is seen
that this approach results in highly symmetrical profiles
even for very thick crystals. The dashed curves represent
the dark-Geld intensity profiles evaluated by numerical
integration of the kinetic equation for the density matrix
(60). As is evident from Fig. 3, the kinetic equation ap-
proach provides a better quantitative description of the
experimental data than does the standard dynamical the-
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ory, and in particular, it reproduces correctly the asym-
metry of the profiles which was first noticed by Howie
and by Metherell. The difference between the dashed
and solid curves in Fig. 3 is probably attributable to the
use of the intrabranch scattering approximation in (47)
and neglect of the coupling between difFerent matrix ele-
ments of p in Eq. (42) (i.e. , neglect of interbranch tran-
sitions), the incorporation of which into the numerical
procedure leads to considerable computational diKcul-
ties. However, the agreement between the theory and the
experimental data is encouraging since, for the first time,
it demonstrates the possibility of quantitative simulation
of energy-unfiltered diffraction patterns using the kinetic
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FIG. 2. Energy-unfiltered convergent-beam electron
difFraction pattern of the Si(220) re6ection taken in trans-
mission difFraction geometry. The thickness of the crystal is
2860+20 A. , the absolute temperature is T 100 K, and the
energy is 80 keV.

FIG. 3. Experimentally observed (solid curves) and the-
oretically simulated intensity profiles of the dark-field CBED
pattern of the Si(220) re8ection. Dotted curves calculated us-
ing an 11-beam approximation of dynamical diffraction the-
ory. Dashed curve calculated by numerical solution of the
kinetic equation. Crystal thickness: (a) 2340 + 20 A. , (b)
2860 + 20 A. , and (c) 3420 + 20 A.
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equation for the density matrix. It also confirms the ex-
istence of the damping of coherence of high-energy elec-
trons due to small-angle inelastic scattering as described
analytically by Eqs. (53)—(59), and the efFective distance
characterizing the rate of attenuation of the off-diagonal
elements of the density matrix is found to be compara-
ble with the mean free path for inelastic electron-electron
scat tering.

VI. CONCLUSIONS

In this paper we have formulated a self-consistent ap-
proach to the problem of high-energy electron diffrac-
tion by solids. Equations have been derived which take
into acccount both the elastic scattering of electrons by
the time-averaged distribution of atoms, and the inelas-
tic scattering due to excitations of the vibrational and
electronic subsystems of the crystal. In formulating the
approach, we proved that in the general case of multi-
ple elastic and inelastic scattering there are only two ba-
sic quantities which describe elastic and inelastic inter-
actions. They are respectively the Coulomb interaction
potential averaged over the motion of the crystal par-
ticles, and the mixed dynamic form factor of inelastic
excitations. It was shown that if the energy of the elec-
tron is sufBciently high, no other quantity is required to
evaluate the double differential scattering cross section.
We discussed how these two quantities can be retrieved
&om the experimental measurements, and concentrated
on the analysis of the effects of multiple inelastic scat-
tering of high-energy electrons in crystals. We showed
how our formulation generalizes previous approaches to
the problem, and discussed the conditions of validity of
the approximations in those approaches.

We have studied the effect of multiple small-angle in-
elastic scattering by collective electronic excitations on
the coherence of high-energy electrons propagating in a
single crystal. The distance characterizing the damping
of coherence of the electron wave field was found to be
comparable with the mean &ee path of inelastic electron-
electron scattering. A numerical method of solving the
kinetic equation was developed and reasonable agree-
ment between the theory and experiment was achieved,
demonstrating the possibility of quantitative simulation
of energy-unfiltered electron micrographs of crystalline
materials.
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APPENDIX A

electron from point r' to r provided that initial and final
states of the crystal coincide. This was first considered by
Yoshioka in 1957. In his treatment Yoshioka analyzed
how inelastic excitations affect the amplitude of the elas-
tic wave. He considered the 8H' 'term (in our notation)
as a perturbation and found that, within the approxi-
mation which is quadratic in bH', the eÃect of inelastic
transitions may be accounted for by adding a nonlocal
term to the effective potential in the Schrodinger equa-
tion governing the evolution of the elastic wave propa-
gating through the crystal. In this section we follow the
same idea. However, we use a somewhat more suitable
Green's function technique and consider a more general
case of T g 0. For the case T = 0 our results are equiv-
alent to those by Yoshioka, and in particular, our Eq.
(12) at T = 0 coincides with Eq. (11) &om Ref. 5.

First we represent the Hamiltonian of the system in
the form of a sum

H = H„+H,)+ bH', (Al)

of the crystal Hamiltonian, the Hamiltonian of the fast
electron which includes the averaged interaction potential

H., =-" V~+(H),
2m

(A2)

and the fluctuating part of the interaction bH', the ma-
trix element of which is defined by Eq. (4). It is impor-
tant to emphasize that H ~ has no off-diagonal matrix el-
ements between eigenstates of the crystal. If we neglect
the bH' term, then the time-dependent Green's function
of the system obeys the equation

ih —I'(t, t, ) = (H., + H.,)l'(t, t, ) + h(t —t, ), (A3)
t9t

the solution of which is

Z Z A

I'(t, tp) = ——O(l, —tp) exp ——(H, t+ H„)(t—tp)),

(A4)

describing the independent evolution of the states of both
the electron and the crystal. Extracting from (A4) the
factor which is responsible for the time evolution of the
crystal, exp[ —(i/h}H„(t—to)j, we obtain, for the re-
maining part of the Green's function (A4),

The latter quantity is the Green's function of the high-
energy electron propagating in the averaged potential
field (H'). The Fourier transform of this function,

Go(&) = .E - 1
dtexp i —t Go t

E —H (+i0

Z Z A

Gp(t, tp) = Gp(t tp): O(t tp) exp ——Ht(t —tp)) . ,
h

(A5)

In this appendix we derive Eq. (10) for the Green's
function of the high-energy electron. We are interested
in the evaluation of the amplitude of propagation of the

obeys Eq. (9), i.e. ,

(E —H i)Go(E) = l.
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If we take into account the fluctuating part of the inter-
action bH', then

In what follows we will be interested in the propaga-
tion amplitude averaged over the thermodynamical equi-
librium,

(A8)
G(t, t()) = —) exp( —e /k~T) (n~j (t, tp) ~n). (A12)

Writing

g(t, to) = exp —EI (t t ))oI'(t to)
h,

we obtain from (A8)

(A9)

In order to perform averaging, we obtain an integral form
of Eq. (A10),

t

p(t) = p(t, 0) = Gp(t) + d7 Gp(t —T)bH (T)p(7 ).

(A13)
ih —q(t, t, ) = [H.) + bH'(t —t, )]q(t, t, ) + b(t —t, ),

(A10)

Because Gp(t —w) = 0 for v & t and p(r) = 0 for w ( 0
we can represent (A13) as follows:

dH'(t) = exp (
—M„t)dtd' exp( ——td„t) (A11)

(t) = G'o(t) +j daGo(t —'e)bH'(e )p(e). '

For convenience we may rewrite (A14) in a symbolic form

is the Heisenberg operator of the fluctuating part of the
interaction. It is interesting to notice that the Heisen-
berg form of (H') does not depend on time, and this
makes it possible to interpret (H') as a static part of the
interaction.

Iterating this equation and conserving only terms
quadratic in bH', we obtain after averaging

(p) = Gp + Gp(hH'GpbH')Gp + Gp(bH'GpbH')Gp(bH'GpbH')Gp +
= Gp + Gp(b'H'GpbH')(j)

or, explicitly,

G(t) = Go(t)+ f f dxadeaGS(t sa){dH (ea)GS(ea ea)dH (ea))G(ea), (A15)

where the sign (. . .) denotes the averaging of an operator over the thermal ensemble,

1
(. ) = —) exp( E /kgT—)(n~ ~n). (A16)

Consider the combination (hH'(7l)bH'(72)). Writing the coordinates xl and x2 in an explicit form, we obtain

(bH'(xl, rl)bH'(x2, w2)) = ~ ) exp( —e~/kaT)(nlbH'(xlt ~l)In')(n'lbH'(x2t~2)ln)
nn'

= —) exp( —1 /t: T)( ~dHa'a( )n~ ){ x~
na'n(x d)H~n) exap(i

" "
(Ta )), ea (A17)

where bH'(x) is the Schrodinger operator of the fluctuating part of the interaction. Comparing (A17) with (6) we see
that

(bH (xl t 71)bH (%2t r2)): Bt (Alt x2t 71 r2) t

where

sa(111,xa, e) = f das s(xl, 111,1s) exP( aaaT).

Therefore, Eq. (A15) takes the form

(A18)

(A19)
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G(r, r', t) = Go(r, r', t) + f dr'o f do'o f d xo f d xoGo(r, xt, t —rt)Go(xr, xt, rr —o'o)

X Bt (xi t x2t 7'i —T2) G(x2, i', T2) ~ (A20)

Performing the Fourier transform

G(r, r', E) = exp i —t G r, r', t (A21)

and noticing that

s(xi, x2, Gd) = —exp(iut) s&(xi, x2, t)2' (A22)

we arrive at

G(r, r', E) = Go(r, r', E) + d xrG(or, x , rE)f de f d xoGo(xr, xo, E— too)oe(x,rx,o e)G( xor', E).

Acting on this equation by the inverse Green's function operator

(A23)

Gp'=
~

E+ V' —(H')
i2m )

we obtain expression (10).

APPENDIX B

In order to derive an equation which governs the evolution of a bilinear combination of wave functions of the
high-energy electron we start from Eq. (A14). It is convenient to rewrite this as follows:

&(r, t~rp, tp) = Gp(r, t~rp, tp) + dr d zGp(r, t~x, 7 )hH'(x, w)p(x, 7 ~rp, tp). (B1)

We define the propagation operator of a bilinear combination of wave functions of the high-energy electron by the
equality

IC(r, t;r', t'~r t ro, oto) o= —) exp( —e„/kxT)(n~j(r, ~r t )tenno)((on~~p(r', t'~r to)~no'))
nn'

(B2)

This definition is analogous to the standard rule of summation over final and averaging over initial states of a target
in evaluating the quantum-mechanical scattering cross section.

We may rewrite (B2) in a symbolic form as

K = (jtj),

and expand p in a power series in bH',

Go + GobH'Go + GobH'GobH Go +
ie proceed now to a step-by-step averaging of the product p~p, i.e.,

jap = (Got+ GpthH tGpt + Gtpb'H tGtohH tGpt + . ){Go+ Go~H Go+ Go~H Go~H Go + ). (B3)

Our basic idea is to collect the terms in (B3) which are quadratic in b'H' and which describe successive ' inelastic
interactions. In order to simplify the derivation, in what follows we will distinguish between bH and bH, although,
of course, the interaction is Hermitian and these two terms coincide.

We first perform averaging of (B3), neglecting the coupling between the terms bH t and bH' belonging to pt and
j, respectively. This results in

K = (ptj) = GtG+ (B4)
eeo /

What we have to do next is to join up the terms hH t and bH' belonging to the first and to the second series in (B3),
respectively. The first term arising from this coupling is



13 426 S. L. DUDAREV, L.-M. PENG, AND M. J. WHELAN

Gpt(bH tGptGpbH')Gp.

Carrying on averaging, we arrive at

K = (jtj) = G G + Gt ( bH t (Gt + Gt (bH 'G bH )G + Gp(bH t G()bH t) G() (bH 'Gp&8 t) G() +

x(Go+ Go(bH'GobH')Go+ Go(bH'GobH )Go(68'GobH )Go+ . .)bH )Go,

where the underlined terms coincide with Gt and G from (A15), respectively. This gives rise to an additional
contribution to (B4), namely,

K = (ptq) = GtG+ G, (bH tGtGbH')G, + . .
A

The next step is to join up two or more pairs of operators bH t and bH' belonging to expansions of jt and p from

(B3). We obtain

K = (jtp) = GtG+ Gp(SH tGtGhH')Go + Gp(bH tGt(hH tGtGSH')GhH')Gp + . (B6)

At this stage, there are as yet some more terms to be taken into account. Indeed, in choosing pairs of operators bH
and 88' in (B4)—(B6), we started from the outer terms of (B3). However, we can, for example, join up the third

term bH t from the left-hand side, and the first term bH from the right-hand side, and this results in the following
contribution to (B6):

Gt(bH tGtbH t)Gt(hH tGtGbH')G .
A I

Another similar term arises if we join up the erst operator bH t &om the right-hand side and the third operator bH
&om the left-hand side. This gives

Gp(bH tGtGhH')Gp(bH'GpbH')Gp.

Carrying on, we obtain

K (~t~) GtG+ (Gtp + Gi~(bH'tGtobH't)Gp + Gp(hH'tGpbH't)Gp(bH'tGpbH't)Gp +.. .)

x((bH t GtGbH') + (bH t Gt(SH tGtGbH')GhH') + .

x(Go+ Go(bH'GobH )Go+ Go(bH GobH')Go(bH GobH )Go+. )

= GtG+ Gt((hH tGtGbH') + (bH tGt(hH tGtGbH')GbH') + . .)G

= GtG + Gt (bH t KbH') G (B7)

where we have underlined the expansions of the Green's functions Gt and G. Within the &amework of the diagram
technique, Eq. (B7) corresponds to the ladder approximation, s ' 2' ' s'4i and, in particular, it coincides with Eq.
(4.36) from Ref. 31. The symbolic equation (B7) may be rewritten in an explicit form as follows:

K(r, t;r', t'~r t (ot()= r(rr, t~Grp, tp) ( Gt ~r(rt()+rfrdrfdr' jd'zd G(rz, t~ , ) xr(r'G, t
~

', 'x)r

x —) exp( —e„/kzT) ( /

'( nrdH)/n') x(( /

'n(xd'H, r')
/

')) Kn(x, r", x', r'/r to., rpo, tp).Z

Noticing that

) exp( —e„/kzT) (n/dH'(x, r ) /n') (( /dH'(x', nr') /n')) =
rrr (x', x, r' —r ),

n, n'

we obtain

K(r, t; r', t'Irp, to, rp, to) = G(r, t pro, tp) G'(r', t'IrI), tp)

+ d~ d7' d xd x'Gr tx 7. G* r' t'x' 7' sq x' x 7' —~

x K(x., ~; x', ~'harp, tp, rp, t()).

(B9)

(B10)
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According to the definition of the operator K(x, 7", x', w' ~rp, tp, rp, tp), an integral of this function multiplied by a source
function I(rp, tp,. rp, tp) results in a bilinear combination of wave functions of the high-energy electrons at (x, w; x', ~'),
namely,

p(x, r;x', r') = f dto f dtof'd ro f d roK(x, r;x', r'~~ro, to;ro, to)I(ro, to;ro, to).

Performing the convolution (Bll), we obtain from (B10)

(B11)

p(r, t;r', t )='p (ro, t;r', t') + f dr f dr' d xd xG(rt~x~,, r) t'(r', t' ~~x', r') t(ox', x,

'r— )rp( ,x-,r'xr').

(B12)

The Fourier transform of (B12),

p(r, E; r', E') = dt dt exp i t —i —t p(r,—t; r, t ),/ (813)

obeys the equation

p(r, E; r', E') = pp(r, E; r', E')

+ d~' d xd x'G r, t x, E G* r', t' x', E' d~ 8 x', x, co p x, E+ h~;x', E'+ hu . B14

Assuming conditions of permanent illumination of the
system by an external source of electrons, and introduc-
ing the definition

i~

2
2 m 1

d B— exp(ik~x —r~) exp( —iq~ . R)

p(r, r', E) = p(r, E; r', E),
2mh

(B15)
zm

exp( —iqg . xg)
h Qk2 —q2~

where 7 is the time of observation, we arrive at Eq. (11).
The latter definition is in accordance with Eq. (1).

x exp[i k2 —q2~ (z —()]. (C4)

APPENDIX C

As follows &om (14), in order to evaluate the scatter-
ing cross section, one needs first to calculate the Fourier
transform of the Green's function (18),

d B G(R, z, x, E) exp( —iq~ R) = G(q~, z, x, E).~

~
~

Noticing that k „=q~ and k, = gk2 —qz ——k cos 0,
we obtain

d 8 G(R, z, x, E) exp( —iq~ . R)2
7 7 1

zm

h k2 —q2
exp( —iqJ ' XJ ) exp ik(z —() cos 0

(Cl)
+ d R G, (R, z, x, E) exp( —iq~ . R). (C5)

To perform this, we first notice that for arbitrary r and
x the Green's function obeys the reciprocity relation

G(r, x, E) = G(x, r, E). (C2)

Considering the second argument of the Green's function
as a coordinate of a source of the electrons, and the first
argument as a coordinate of point of observation, and
assuming x to be inside, and r outside the medium, we
write

m 1
G(r, x, E) = —

2 exp(ik ~x —r~) + G, (x, r, E),

Considering the right-hand side of Eq. (C5) as a func-
tion of x, we can say that the second term represents
the waves scattered by the medium provided that the
incident wave has the form

zm4;„,(x) = —
2 exp( —ik x) exp(ikzcos0).

5 kcos0
(C6)

By definition the solution of quantum-mechanical prob-
lem of scattering which corresponds to the incident wave
of the form (C6) is

where G, (x, r, E) represents waves scattered by the
medium. Let us first consider the geometry where (r)
z ) (x), = (. In this case

zm
exp(ikz cos 0)@ k(x),

h kcos0
and this quantity actually equals the right-hand side of
(C1),
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d 8 G(R, z, x, E) exp( —iq~ R)
arrive at a general result

d R G(R, z, x, E) exp( —iq~ R)

zm
exp(ikz cos 8) xjf x, (x). (C7)

h kcoso

Repeating our arguments in the case where z & (, we

'cm
exp(ikz cos 8)@ k(x), (C8)

h ki cos 0[

which is the result stated in (18).
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