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The dynamical properties of B-Si;N, (C%,) have been investigated within the framework of a simple
phenomenological model, based on a short-range pair potential. In developing the model, we have dis-
cussed some structural peculiarities of the lattice, which argue for the possibility of its pressure-induced
destabilization, caused by interatomic bond tensions arising as a response to external influence. Thus,
the nature of the instability can be attributed to a purely mechanical effect whose description does not
require any ad hoc model parameters. The simulation of the hydrostatically compressed lattice has
demonstrated the vanishing of a low-frequency mode inside the Brillouin zone (k =0,0,0.36) at a pres-
sure of 72 kbar, thus predicting a second-order phase transition to a structure with incommensurate
modulation along the z direction. Since the destabilization of B-Si;N, has never been observed, in con-
trast to the a (C%,)=p (C%,) conversion, this theoretical result has been considered in detail, including
aspects of its reliability and of the possibility of the B-a structural transformation proceeding via an in-

termediate incommensurate phase.

I. INTRODUCTION

Various computational methods originating from
lattice-dynamical theory are presently available, ranging
from the simplest ones, based on two-body interatomic
potentials, to the most elaborate which use ab initio
electronic-structure and energy calculations. Their appli-
cation to materials science and to fundamental solid-state
problems is of special interest when direct experimental
studies of the substance under consideration are not pos-
sible. Silicon nitride, Si;N,, is a particular example of
such a material. Although it is of tremendous engineer-
ing importance, little is known in detail about its dynami-
cal properties. This is primarily due to the unavailability
of Si;N, in the form of single crystals required for mea-
surement. Up to now, the experimental information is
limited by IR and Raman spectra of polycrystalline speci-
mens,"? and by compressibility coefficients, derived from
powder diffraction studies at high pressure.’

Unlike a number of computational works devoted to
the electronic properties of Si;N, (Refs. 4,5), to our
knowledge no lattice-dynamical-model investigations of
this material have been performed, except for a recent
work of Wendel and Goddard® that dealt with a number
of fundamental physical characteristics. Among their re-
sults compared with measured values were compressibili-
ty coefficients and optically (IR- and Raman-) active pho-
non frequencies. The former beautifully reproduced the
experimental magnitudes, whereas the latter provided a
reasonable agreement with observed bands of high-
frequency (stretching) vibrations, and approximately cor-
responded to the lower frequency part of the spectrum.
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The main objective of the present paper is beyond the
scope of problems covered in the above work. We wished
to investigate the mechanical stability of the B-Si;N, lat-
tice at high pressure. Our interest in this topic was
stimulated by some preliminary considerations (see
below), mainly qualitative, predicting a pressure-induced
softening of some low-frequency modes of this lattice,
which eventually could lead to a structural phase transi-
tion. Therefore, we wanted to check this hypothesis nu-
merically. To reveal the physical essence of the matter,
we chose an extreme simplification of the interatomic po-
tential model, thus presenting an approach diametrically
opposed to that of Ref. 6.

The description of the 3-Si;N, structure, given in Sec.
I1, can be regarded as a starting point for our basic con-
cept which is briefly outlined in Sec. III. Details of the
model are considered in Sec. IV, while results and discus-
sion are given in Sec. V. Section VI contains concluding
remarks.

II. STRUCTURE

In contrast to the great variety of silicon oxide and sil-
icon carbide crystalline structures, the Si;N, silicon ni-
tride family consists of two members only, ¢ and S
phases. Both are stable at ambient conditions. The
higher symmetry 3 phase has a hexagonal lattice (space
groups C2%,,N176) with a primitive cell containing two
Si;N, formula units (@ =7.606 A, ¢ =2.909 A). The
lower symmetry a phase is trigonal (C%,, N159) and has a
primitive cell nearly twice as large (a =7.746 A,
¢=5.619 A) with twice as many atoms.> Both structures
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consist of SiN, tetrahedra forming three-dimensional net-
works with each N corner common to three tetrahedra.
As concerns NSi; polyhedra, these have pyramidlike
form in the a phase, whereas the 3 phase can be regarded
as being built of planar N2Si; and nearly planar N1Si,
triangles with each Si corner common to four triangles
which are oriented perpendicular to the direction (001) or
along it (Fig. 1).

All atoms in B-Si;N, are located in mirror planes, the
threefold rotation axis passing through each nitrogen N2.
As a specific structural unit of the 3-Si;N, lattice, the se-
quence of SiN, tetrahedra repeated by translation along z
can be considered. The tetrahedra are oriented such that
the longest edges coincide with vector ¢, thus forming a
linear chain of nitrogen atoms. Six equivalent sequences
pass through the primitive cell. Three of these, having
common N2 atoms, compose a trihedral whatnotlike
column in which shelves are planar N2Si; groups. It has
the C;, point symmetry. Thus, through each cell two
such columns pass, being interrelated by diad and hexad
screw axes. In totality, they compose the 3-Si;N, lattice
as a honeycomblike structure with empty tunnels along
those axes (see Fig. 1).

The a structure is more difficult to visualize.>’ Here
we emphasize that all NSi; triangles are warped in this
lattice, and there are two sorts of sequences consisting of
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FIG. 1. Projections of the B-Si;N, structure. The numbering
of atoms corresponds to the contents of the primitive cell shown
at the top.
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nonequivalent tetrahedra which are twisted with respect
to one another by about 60°-70° around z. Accordingly,
the above-mentioned nitrogen chains are buckled, which
doubles the translation vector c¢. The local short-range
atomic structure of a-Si;N, is very much like the B phase
with only slightly broader bond-length and bond-angle
distribution.®

As to the polymorphism, the a==f conversion
(C3,=Cg,) takes place with rising temperature. This
effect was discussed in a number of works (see e.g., Refs.
9 and 10, and references therein), but, to the best of our
knowledge, there have been no studies aimed at under-
standing the transition mechanism on the microscopic
level.

III. CONCEPT AND METHOD

In the language of lattice dynamics, the basic idea!! of
the present model’s approach to the pressure-induced lat-
tice destabilization is that interatomic forces arising in
the crystal as a response to its compression would alter
the atomic force-constant matrix and soften certain vi-
brational modes of the lattice; eventually one of them
could vanish because the lattice would cease to be
mechanically stable.

It has been pointed out in Ref. 11 that the alteration of
atomic force constants would necessarily arise even if the
lattice is considered as a “‘balls and perfect springs” static
system whose potential function is truncated at the
second-order terms (the harmonic approximation). Actu-
ally, let the above-mentioned springs be specified by their
lengths g and by Hooke’s coefficients (stiffnesses) K, and
let the lattice be under external isotropic pressure P.
This means that all springs are stressed and hence, pro-
duce interatomic forces (bond tensions) which we label F.
The physical and methodological self-consistency of the
model implies that the next two conditions are satisfied
(matrix contraction is used in formulas given below):

(i) there is no net force acting on any atom,

B,F=0; (1)

(ii) external pressure P is balanced by internal tensions
F,
B,F=—P (2)
(matrices B, and B, are determined by lattice geometry).
The internal energy variation AV, caused by the

change of lattice geometry, can be written on the basis of
interatomic length changes, so-called g coordinates,

AV=FAq+1AgKAq , (3)
or on the basis of Cartesian atomic displacements x,
AV=1xV, x+ -, (4)

where V., is the atomic force-constant matrix. The Ag
and x quantities are interrelated via the Taylor series,

Ag=B,x+1xB x+ --- . (5)

The substitution of (5) in (3) provides condition (1),
reflecting the vanishing of the linear term in (4), and gives



13 328

the following exact expression for the matrix V,,:
Vx=B,KB,+B, F . (6)

This represents in a general view the well-known result of
the lattice-dynamical theory:'> A short-range potential,
whatever its form, contributes to the V., two com-
ponents, a radial (longitudinal) one which is described by
the first term in the right-hand side of (6), and a tangen-
tial (transverse) one corresponding to the second term.
We wish to emphasize that the pressure dependence of
the V,, value is essential in an internally consistent
mechanical model of a crystal, since a tangential part of
V.., in fact, is formed by forces F depending upon the
external pressure via Eq. (2). Note that this conclusion
was obtained taking no account of the anharmonic part
of the potential function [i.e., higher than second-order
terms in (4)]. Therefore, the pressure-induced behavior of
phonon modes can be analyzed within such a model
without departing from the convenience of the standard
harmonic approximation in the lattice dynamics.

Recall now, that in the equation of atomic vibrations,
the tangential part of the V,, value specifies forces which
act perpendicularly to lines connecting the interacting
atoms. The effect of these forces on frequencies depends
upon the sign of the tensions F. More detailed considera-
tion!3 allows one to make the following statements: if a
lattice contains some symmetrical fragments occupying
special positions, for example, straight chains, linear
bridges B- A-B, or planar “starlike” AB, units consisting
of a central atom A and n bonds (rays) A4-B, the
compression of these fragments, i.e., the appearance of
negative bond tensions F, should soften bending vibra-
tions of the above-mentioned chains or of B- 4 -B bridges,
as well as out-of-plane vibrations of the 4B, units. Even-
tually, any of these vibrational modes can vanish and the
corresponding structural fragments can buckle (warp) in
lowering the symmetry of the lattice, i.e., in inducing a
structural phase transition.

To apply the above ideas to the 3-Si;N, lattice, some
correlation between its structure and vibrational spec-
trum is desirable to begin with. First, let us recall that
the experience of the qualitative analysis of vibrations of
ionic-covalent frameworklike lattices'* teaches us that it
is reasonable to specify high-frequency modes of their
spectra as motions of relatively light atoms in local po-
tential wells, produced by more massive nearest neigh-
bors. In particular, the motion of symmetric and an-
tisymmetric vibrations of T-O-T bridges was found to be
quite adequate in describing stretching vibrations in the
spectra of oxide frameworks containing twofold coordi-
nated oxygen atoms. !’

In the case of the silicon nitride framework, it appears
that the NSi; triangles can be chosen for this goal (see
Ref. 16). The primitive cell of B-Si;N, consists of eight
such units. Among those, two are strictly planar (N2Si,),
and the remaining six are nearly planar (the altitude of
the N1Si; pyramid is about 0.04 A only). Thus, in-plane
motions of nitrogen atoms in NSi; triangles, classified as
Si-N stretching vibrations, should complete the highest
frequency region of the spectra, while their out-of-plane
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displacements should be associated with certain vibra-
tions in the low-frequency part.

According to the statements made above, the softening
of the latter vibrations may be expected under hydrostat-
ic compression. In other words, they can be considered
as a source of pressure-induced instability of the B-Si;N,
lattice due to the vanishing of one of them. Whether this
effect can be a trigger for the destructive S==a phase
transition seems to be an intriguing question implying
that the 3 lattice is a prototype for the a structure. In
this connection, the following structural peculiarities of
the a phase are of increasing interest:

(i) The lattice has double ¢ spacing with respect to that
of the 3 phase.

(ii) All NSi; fragments are essentially buckled.

(iii) The sequences of SiN, tetrahedra are crooked.

Consequently, in starting this work, we were spurred
on by the questions:

(i) Whether, among low-frequency vibrational modes of
B-SizN, at the (0,0,7/c) boundary point of the Brillouin
zone, there exists one manifesting the pressure-induced
softening.

(ii) Whether its eigenvector could reflect the local dis-
placement pattern specifying the actual difference be-
tween the high- and the low-symmetry phases of Si;N,.
At the same time we realized that no phonon condensa-
tion by itself could literally be responsible for the f=—a
conversion: a discontinuity of the structural transforma-
tion was evident [see Figs. 3(a)-3(b) in Ref. 3]. The lack
of symmetry correlation between the two phases also
testifies to the first-order character of the transition.

IVv. MODEL

The design of the present dynamical model of B-Si;N,
was based on our previous experience related to the
Si,N,0 lattice.!® Initially, the radial part of the potential
function was described by the internal force field of SiN,
tetrahedra consisting of Si-N bonds and N-N edge
stretching force constants, and the N-Si-N bending ones.
Further, in adapting this model for 3-Si;N, we have re-
duced it to a pairwise force field including additional in-
tertetrahedral Si-Si interactions. The absence of external
pressure corresponds to vanishing interatomic tensions F,
i.e., to the zero tangential part of the V,, matrix. The
force field of the stress-free [3-Si;N, lattice contains six
two-body stiffness parameters K, whose magnitudes are
presented in Table I. They were derived from a fitting
procedure in which the known dynamical properties of
B-Si;N, at ambient pressure were involved.

The external pressure was introduced in our computa-
tional scheme through the tangential part of the atomic
force constants V,,. Strictly speaking, the compression
should alter all quantities in expression (6). In our case,
to keep maximum physical transparency when consider-
ing the lattice under stress, and, correspondingly, in try-
ing to operate with a minimum of variable parameters,
we have concentrated exclusively on internal tensions F.
Actually, on the one hand, the values of K were kept con-
stant “by definition” (perfect springs); on the other hand,
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TABLE 1. Geometric characteristics and forces field parameters of B-Si;N,: interatomic distances

(A), stiffnesses K (mdyn/;\) and tensions F (mdyn).

Tensions (F)

Atoms involved Distance Stiffness K for P =72 kbar
SiN,-tetrahedron bonds
Si-N2 1.705 4.00 —0.068
Si-N1 1.739 3.50 —0.072
Si-N1 1.752 3.30 —0.065
SiN,-tetrahedron edges
N1-N1,N2 2.78-2.83 0.30 —0.016
NI1-N1 2.909 0.09 —0.0015
Intertetrahedron contacts
Si-Si 2.90-3.05 0.25 0

it was experimentally established® that B-Si;N, did not
undergo a noticeable structural distortion (an internal re-
laxation) at high pressure, which permitted us to keep the
lattice geometry (i.e., matrices B,, B,,, and B,) un-
changed.

Hence, in our calculations, the pressure-induced in-
crease of tensions F was the sole factor destabilizing the
lattice. Their magnitudes, derived from Egs. (4) and (5)
for different P, have been automatically included in the
computational scheme as components of the atomic force
constants V,, in compliance with (6). Thus, no new ad
hoc parameters were introduced in our lattice-dynamical
model of the stressed crystal.

V. RESULTS AND DISCUSSION

In the first step, we dealt with optically active vibra-
tions and compressibility of stress-free B-Si;N,. In this
way, the set of force constants K was evaluated, a model
analysis of IR- and Raman-scattering spectra was per-
formed, the mechanism of compressibility was analyzed,
and the elastic constant matrix was estimated. In the
second step, our attention was focused on the pressure-
induced behavior of low-frequency dispersion curves
along the (00&) direction (the A direction) including the
A (0,0, /c) point.

The symmetry species distribution of zone-center nor-
mal coordinates of B-SizNy is

=4I} (A4,)+3I(4,)+30; (B,)+4; (B,)
+2T (E )+ 5T (Epp)+505 (Ey, )20 (Ey,)

In representations Ag, B,, E,,, and Ezg, atoms may
move in the x-y plane only, whereas in representations
Ay, By, E;,, and E, atomic displacements are restrict-
ed by the z direction. In the IR spectra 6 bands
(24,+4E,,) may be found and 11 bands
(44g+2E,+5E,;) in the Raman spectra. As men-
tioned above, the stretching Si-N modes can be specified
as in-plane vibrations of nitrogen atoms in NSi; planar
triangles. There are two vibrations per triangle. Conse-
quently, the total spectrum should contain 16 stretching
vibrations, distributed as follows:

14,(R)+1E,(R)+2E, (R)+14,(IR)+2E,(IR)
+ 1B, (inactive)+ 1B, (inactive) + E,, (inactive)

Thus, three bands complete the high-frequency region in
the IR spectrum, and four in the Raman scattering. In
both cases, the highest band must originate from the
motions of N2 nitrogens in the x-y plane (1E,, or 1E,),
since Si-N2 bonds are considerably shorter (and thus
more stiff) than the rest (Table I).

All calculated zone-center frequencies are presented in
Table II along with measured ones. There is no drastic
divergence between our model and the experimental data
concerning positions of Raman-active modes except in
the range 700-900 cm ™!, which is essentially empty in
the present calculations (we believe, the observed bands
in that region mean the presence of @-Si;N, in a speci-
men). More dramatic are the discrepancies in the low-
frequency part of the IR spectrum. This could signify a
shortcoming of our model (which certainly was
oversimplified), if the absence of IR bands below 300
cm ™! had been proved in practice. Besides, the known
experimental data did not substantiate this condition (no
measurement below 200 cm ™ 1).

Two principal differences between our theoretical
zone-center spectrum and that in Ref. 6 deserve to be
noted here:

(i) While frequencies of IR-active modes below 600
cm™ L perhaps, are underestimated in our work, it is
highly likely that those in Ref. 6 are essentially overes-
timated.

(ii) In contrast to the result presented in Table II, the
high-frequency part (v> 600 cm~!) of the A, representa-
tion which should contain one Si-N stretching mode, is
empty in Ref. 6. The latter seems to us rather mysteri-
ous, since we have no hint of this effect within our con-
siderations.

The calculated elastic constant magnitudes are (in
GPa) as follows:

¢ =315, ¢, =239, ¢;3=222, ¢33 =332,
c44 =40, and cg =38 .

These lead to the compressibility coefficients (10713
Pa~l),

K,=12.9, K,=12.9, and K,=38.7,

while the measured ones are 12.9, 12.6, and 39.0, respec-
tively.> Our analysis of these values confirms a point of
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TABLE II. Experimental and calculated frequencies of long-wave vibrational modes of B-Si;N,

(cm™h.
Raman active IR active Optically inactive
Expt.? Calculated Expt.? Calculated Calculated
Ag Elg Ezg Au Elu Bg Bu E2u
85
144 137 130
186 185 170 196
210 269 250
229 280 274 268
380
447 419
451 510 490
619 613 580 600
732
865
928 958 910 950
939 981 975
985 982 982 981 974
1047 1050 1040 1049

2Data taken from Ref. 1.

view® that the high hardness of the silicon nitride lattice
must be mainly attributed to a steric factor. The mutual
arrangement of the SiN, tetrahedra is such that their
cooperative reorientation is not possible under lattice
compression which, necessarily, would lead to a distor-
tion of tetrahedra, thus giving rise to great restoring
forces. This explains the huge difference between the
compressibility of B-Si;N, and that of a-quartz, 39 and
274 (1013 Pa™ 1), respectively. Although SiO, tetrahedra
are essentially harder than the SiN, one, their internal
potential is practically not involved in the mechanism of
compression of a-quartz, which is mainly determined by
tetrahedron rotations, and, hence, by weak inter-
tetrahedral forces,!” unlike the case of Si;N,.

Before considering phonon branches along the A direc-
tion, note that the corresponding point symmetry of vi-
brational space inside the Brillouin zone (BZ) is C¢, and
the mode distribution

A=7 DA +7 DA, +7 PA;+7 P4,

(dimensionalities of symmetry species are shown in
brackets) with the following I'=A compatibility rela-
tions:

Ag+Au=A1 , Bg+Bu=A2, E1g+E1u=’A3,
and
Ey+E,, —A,.

Upon reaching the A4(0,0,7/c) point, all dispersion
curves must merge in pairs in doubling their dimensional-
ities:

(1)A1+(1)A2=(2)A1 , (2)A3+(2)A4=,(4)A2 ,
thus demonstrating time inversion symmetry. So, the A

point contains one two-dimensional and one four-
dimensional irreducible representation:

A4=724,+7®4, .

We shall restrict our current interest to the low-
frequency part of the spectrum in paying major attention
to modes originating from the out-of-plane motions of ni-
trogen atoms in silicon-nitrogen triangles.

Corresponding long-wave vibrations of N2 nitrogens
belong to 4, and B, species (z displacements), and have
theoretical frequencies 250 and 185 cm ™! (for stress-free
crystal), respectively. Six modes in question relating to
N1 nitrogens (x-y displacements) belong to 4,, B,, E,,,
and E,, representations (280, 170, 274, and 85 cm™ ).
Consequently, vibrations from A; and A, dispersion
curves (except the I" point) include atomic motions which
simultaneously warp all the triangles, whereas those from
A; and A, curves must keep the N2Si; ones planar. Thus,
the former should be of primary interest to us.

The low-frequency curves of representations A; and A,
are presented in Fig. 2. When the isotropic compression
of the lattice was introduced in our model, all frequencies
in this region dropped, but those corresponding to the
out-of-plane vibrations of NSi; triangles were affected
considerably. Eventually, the A} curve coming from the
lowest long-wave B, mode touched the abscissa axis at
the point (0,0,0.36)27/c (see Fig. 2) for P,=72 kbar
(corresponding magnitudes of tensions F are given Table
I), that corresponds to a phase transition to an incom-
mensurate (IC) structure. No other vanishing mode for
this pressure was found.

Obviously, the main point of the discussion must con-
cern the reliability and physical meaning of this result.
Consequently, three points should be considered:

(i) The mechanism of the lattice destabilization.

(ii) The reliability of the above P, magnitude estimate.

(iii) The possibility to relate the predicted IC instability
to the = a transformation of Si;N,.

They can be answered as follows:

(i) Within the framework of the present approach,!’!?
the mechanism of lattice destabilization is dictated just
by the laws of mechanics, and originates from interatom-
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FIG. 2. The A, (broken curves) and A, (solid curves) disper-
sion branches for different pressure P(v <500 cm™!).

ic repulsive forces arising as a response to lattice
compression. In our model, these forces are interpreted
as bond (perfect spring) tensions. The physical meaning-
fulness of these values seems to be evident. However,
during compression of real crystal, the bond-tension
effect destabilizing the lattice must be necessarily accom-
panied by the bond-stiffness increase (arising as a result of
interatomic separation decrease), which would augment
the mode frequencies, thus stabilizing the structure.
Whether or not the stability limit of the lattice can be
reached eventually depends upon which of the above fac-
tors predominates. Taking into account the exceptional
hardness of the crystal under consideration and a very
small pressure dependence of the interatomic separation
in its lattice® (this was confirmed by our additional calcu-
lations using the scheme proposed in Ref. 18), we venture
the opinion that the predicted effect of the pressure-
induced destabilization of the 3-Si;N,, by itself, seems to
be credible.

(ii) Within our model, the P, magnitude depends upon
the position of the lowest A} dispersion branch which
currently cannot be experimentally checked. In this con-
nection, certain misgivings can be caused by the above-
mentioned discrepancy between calculated and measured
frequencies of polar modes. If the region below 380 cm ™!
is empty in the IR spectrum, our force field model must
be modified to move some modes upward. In turn, this
could provide an augmentation of the A} branch. In the
light of such a possibility, the P, magnitude, derived from
present calculations, may be expected to be underestimat-
ed.

(iii) According to above results, the 3-Si;N, lattice can
be destabilized by hydrostatic compression via the van-
ishing of a soft mode belonging to the A} dispersion
branch at point k. =(0,0,0.36)27/c. A condensation of
this mode would lead to an IC modulation of the lattice
and to the lowering of its point symmetry to the Cj class.
As a rule, IC phases are not stable and, owing to the vari-
ation of thermodynamic conditions, evolve to in-lock nor-
mal structures. To visualize displacement patterns corre-
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FIG. 3. Frequencies and eigenvectors of A} modes corre-
sponding to different wave vectors k for a pressure of 72 kbar.

sponding to different modes from the A} branch, we
present in Fig. 3 three eigenvectors, calculated at points
I',(0,0,1/3)27/c, and A for pressure P,. The second of
them, being obtained in the vicinity of k., can be regard-
ed as the shape of the vanishing mode. The lattice distor-
tion originating from its condensation would contain, in
principle, some features intrinsic to the a-Si;N, lattice;
all NSi; triangles begin to buckle, and the SiN, tetrahed-
ron sequences have a tendency to crook. However,
within any phenomenological model, it is dangerous to
extrapolate a further development of this distortion, since
the interatomic potential of the lattice is expected to be
strongly affected by the redistribution of the nitrogen
lone-pair electron density that would arise when NSij
groups assume pyramidlike configurations. In particular,
this should prevent a diminution of the N2-N2 separa-
tion, ordered by the mode condensation, and, perhaps,
could be responsible for the breaking of Si-N bonds.
Note that both these effects are necessary for the f=—a
phase transformation to occur. In our opinion, the above
considerations make it possible to hypothesize that the a
phase can be obtained from the  phase via an intermedi-
ate IC state:

B(Cep)=—1IC(C3)=—a(C,) .

VI. CONCLUSION

The present lattice-dynamical model of B-Si;N, realist-
ically describes its elastic and long-wave vibrational prop-
erties at ambient conditions and provides some physical
insight into their origins. In simulating the lattice under
hydrostatic compression, this model predicts the
pressure-induced vanishing of a mode within the BZ, that
corresponds to a second-order phase transition in an IC
structure belonging to the C; crystallographic class. It is
significant that no fitting was used to obtain this result.
Moreover, it can be said that the appearance of a desta-
bilizing agent in a stressed crystal, i.e., of interatomic
bond tensions, is a model-independent mechanical prop-
erty of the lattice.

The model cannot tell us how the predicted IC struc-
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ture of Si;N, will develop at further compression, but the
analysis of the above results does not contradict a hy-
pothesis that the in-lock point of its evolution can corre-
spond to the a phase.

We hope that the present work can stimulate new in-
vestigations of this material; in particular, detailed exper-
imental studies of its properties near the a==f3 conver-
sion temperature, and structural measurements at high
pressures.

Besides, it is well known that, very frequently, a
predisposition of a lattice to instability is dictated just by
structural factors because a series of isostructural crystals
can possess a tendency to undergo similar phase transi-
tions. In this spirit, adopted throughout this paper, -
Si;N, should correspond to such a case. In this connec-
tion we want to recall that this material belongs to the
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family of phenacitelike structures, some of which can
provide possibilities for single-crystal experiments.
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