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Phase diagram and thermodynamic properties of solid magnesium
in the quasiharmonic approximation
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Using a family of volume-dependent interatomic pair potentials derived from first principles, we calcu-
late phonon properties and thermodynamic functions in the quasiharmonic approximation for the hcp
and bcc phases of Mg over a wide range of volume and temperature. At atmospheric pressure, the calcu-
lated hcp phonon-dispersion curves and thermodynamic properties agree well with experiment. The
pressure dependence of the Raman-active transverse-optical phonon mode also agrees well with very re-
cent measurements. At high pressure, the temperature dependence of the hcp-bcc phase line is predict-
ed, with values of the transition pressure ranging from 52 GPa at zero temperature to about 28 GPa at
1000 K.

I. INTRODUCTION

Magnesium is unique among the alkaline-earth metals
in that it melts at atmospheric pressure out of the hcp
structure; Be, Ca, and Sr all exhibit temperature-induced
phase transitions from a close-packed structure (hcp for
Be, fcc for Ca and Sr) to bcc prior to melting, while Ba is
already bcc at zero temperature. ' All of the alkali met-
als also melt out of the bcc structure, as do all of the early
transition metals. ' In Mg the bcc phase is found only at
high pressure, with a room-temperature hcp —+bcc transi-
tion observed at about 50 GPa. This phase transition
was actually predicted theoretically ' and the zero-
temperature aspects of the transition have been well stud-
ied by a variety of first-principles methods. In addi-
tion, there has been a semiempirical calculation of the
pressure-temperature phase diagram below 100 GPa
which suggests a vary rapid temperature dependence to
the hcp-bcc phase line. The purpose of this paper is to
similarly extend the first-principles analysis to finite tem-
perature. Specifically, we present here a study of the
thermodynamic properties of hcp and bcc magnesium in
the quasiharmonic phonon approximation and a corre-
sponding calculation of the hcp-bcc phase line to 1000 K.

The zero-temperature energetics of Mg have been suc-
cessfully addressed by both nonperturbative and pertur-
bative total-energy methods based on the local-density-
approximation (LDA) to density-functional theory. The
nonperturbative linear-muffin-tin-orbital ' (LMTO) and
ab initio pseudopotential (AP) methods and the pertur-
bative generalized pseudopotential theory ' (GPT) yield
results for the hcp-bcc transition pressure and volume in
good agreement with each other and with experiment, as
shown in Table I. The LMTO and AP methods employ
full electronic-structure calculations which exploit the
high symmetry of the zero-temperature environment. To
extend such calculations to the phase diagram at finite
temperature would require thousands of Cray hours of

TABLE I. Calculated T =0 properties of Mg compared with
experiment: E„h, cohesive energy; a, hcp lattice constant; c/a
ratio; Bo, bulk modulus; PT and OT/Qo, hcp~bcc transition
pressure and relative atomic volume. Theoretical values do not
include the zero-point vibrational contribution; experimental
values are room-temperature data.

Property Band theory GPT Experiment
LMTO' AP Previous' Present

a (bohr)
c/a
Bo (GPa)
P,
'

(GP.)
QT/Qo

57
0.56

1.62
6.01
1.623

37
60
0.57

50
0.58

1.60
6.12
1.621

32.6
54
0.58

1.51'
6.07'
1.624f

35 4'
50+6g

0.59+0.02g

'Linear-muffin-tin-orbital calculations from Ref. 5.
Ab initio pseudopotential calculations from Ref. 6.
Reciprocal-space calculations in the empty-d-band limit from

Ref. 5; LMTO pressure scale was used to obtain PT.
Real-space calculations in the simple-metal limit via Eq. (1).

'Reference 14.
Reference 13.
Reference 3.

computer time. The GPT method, on the other hand,
employs expansions of the electron density and total en-
ergy which are not constrained by symmetry and is ideal-
ly suited to address the finite-temperature problem. In
the present work, we utilize a real-space expansion of the
GPT total energy developed to second order in a nonlocal
electron-ion pseudopotential. In this formulation the to-
tal energy can be expressed as a pure volume term plus a
pairwise sum over a two-ion central-force interatomic po-
tential:

E„,(R, Rtt) =NE„„(A)+—g' vq(R;~, Q),12-'
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where Q—:V/X is the atomic volume, R;~. —:lR; —RJ l is
the distance between ions & and j, and the prime on the
summation excludes the i =j term. The functions
E„ i(Q) and u2(r, Q) both depend on the atomic volume
0 but are independent of structure. Consequently, at
constant volume all dependence of the total energy on ion
position R,. is explicit in Eq. (1) and it is straightforward
to calculate quasiharmonic phonons directly from the
pair potential v2 for any crystal structure. The principal
additional approximation contained in Eq. (1), and not in
the LDA electronic-structure methods, is the neglect of
three-ion and higher potentials which are third order and
higher in the electron-ion pseudopotentia1. In Mg this
approximation is well justified by the free-electron nature
of the meta1 and the corresponding weakness of the pseu-
dopotential. This is confirmed in the experimental hcp
phonon spectrum which can be accurately fit by an axial-
ly symmetric force-constant model.

Both the zero-temperature total energy and the pho-
nons can be calculated as a function of volume via Eq. (1)
and thus all thermodynamic functions may be readily
evaluated in the quasiharmonic approximation as a func-
tion of volume and temperature. Anharmonic effects are
expected to be small in Mg and are here neglected. We
have verified that this is a good approximation through
appropriate anharmonic cell-model calculations. The
equilibrium phase diagram in the solid (for conditions of
constant temperature and pressure) is calculated by
finding the structure of lowest Gibbs free energy. The
equation of state, bulk modulus, specific heat, thermal ex-
pansion coeScient, and Gruneisen parameter are calcu-
lated from appropriate thermodynamic derivatives.

In Sec. II, we first discuss the calculation of the re-
quired functionals E„i and u2 entering Eq. (1). Then, in
Sec. III, we consider the application of these quantities to
obtain phonons and the hcp-bcc phase line for Mg. Ad-
ditional thermodynamic properties are considered in Sec.
IV and we conclude in Sec. V.

II. FIRST-PRINCIPLES
INTERATOMIC POTENTIALS

The hcp —+bcc phase transition in Mg is part of a gen-
eral sequence of high-pressure structural phase transi-
tions in the third-period metals (Na, Mg, Al, and Si) that
are driven by the gradual lowering and occupation of 3d
states from above the Fermi level. ' This effect is partic-
ularly subtle in these metals because the d states in ques-
tion are initially free electron in character and only slow-
ly develop a transition-metal-like localized character un-
der ultrahigh compression. In the context of the GPT
method, the zero-temperature energetics of Mg have pre-
viously been treated in both the simple-metal limit
(plane-wave basis) and the empty-d-band liinit (mixed
basis of plane waves and localized d states). The latter
permits an explicit treatment of any transition-metal-like
sp-d hybridization present. In Mg below about 100 GPa
(1 Mbar), however, this eFect is essentially negligible and
so we may work here entirely in the simple-metal limit.

The simple-metal limit of the GPT is a refined first-
principles version of conventional pseudopotential per-
turbation theory. This limit, as well as all others of the
GPT, has been fully developed within the framework of
LDA quantum mechanics' and requires only the atomic
number Z, (=12 for Mg) and valence Z (=2 for Mg) as
input. The total energy may be cast in either a
reciprocal-space representation, as done previously for
Mg, ' or in an equivalent real-space representation, as in
Eq. (1). We have opted here for a real-space description
to permit a parallel study of the actual mechanism of the
hcp-bcc transition via molecular dynamics. " In the
simple-metal limit, the pair potential v2 is in the form of
a screened Coulomb potential given by

(Z'e ) 2
y ( )

sin(qr)
d~ 0

'
q

(2)

where Z is an effective valence and F& is the normalized energy —wave-number characteristic

QF (q, Q)=
4m(Z*e )

with

k+ k 4 2

2'ir F eQ eQ+ q q

&&+qltul&& =
[
—Z/Q+[1 —G(q)][n„,(q)+n.h(q)] J+ &~+qlu, .„ll & .

q
(4)

Here w is an optimized and self-consistently screened
nonlocal pseudopotential with an inner-core component
w„„;n„, is the corresponding screening electron density
obtained to first order in w; nh is a localized
orthogonalization-hole density arising from the exclusion
of the valence electrons from the inner-core region of
each ion such that Z*=Z —Jn,h(r)dr; and G(q) is an
exchange-correlation function which here is taken from
Ichimaru and Utsumi. ' The function F&(q, Q) incorpo-

rates the effects of electron screening on the pair poten-
tial u2 and is normalized such that E~(0,Q) = 1. At small
separation r, the direct Coulomb interaction will dom-
inate in Eq. (2) and one can expect a steeply repul-
sive potential uz(r) [—:u2(r, Q) at fixed Q]. At large r,
the direct Coulomb interaction cancels with the elec-
tron screening field leaving Friedel oscillations [i.e.,
u2(r) ~ sin(2kzr )/r ] arising from the sharp Fermi cutoff'
at k~ in Eq. (3). In practice, these oscillations can cause
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numerical problems in the convergence of real-space
sums, and a compromise must be established between an
acceptable level of convergence and a tractable calcula-
tional scheme. Here we cut off the potential v2(r) at
8.25Rws for each volume Q =4mR ws /3; real-space sums
then include enough neighbors (536 in the bcc structure
and 538 in the hcp structure) that Eq. (1) produces
structural energies and phonon frequencies which are
both smooth functions of volume and agree with their
(highly converged) reciprocal-space counterparts to
within a few percent.

The corresponding volume term in Eq. (1) is given by
an expression of the form

E„,i(Q)=E, —
—,'QB,+,J ((kiw„„ik) —w„„)dk(2' )3 «kr

J F&(q, Q)dq+O(w ) —Eb';„'z

(5)

Here E,g
=

—,
' Ze++ Ze„„ the kinetic and exchange-

correlation energy of the electron gas of density Z/Q;
B, is the corresponding bulk modulus; w„„ is a Fermi-
sea average of m„„; and the remaining second-order
terms involve Fz(q, Q) and orthogonalization-hole con-
tributions. The quantity Eb'„z is the valence binding en-

ergy of the free atom, which may be calculated within the
same LDA framework. ' With the constant E&';'„& includ-
ed, the total energy in Eq. (1) is with respect to separated
atoms, i.e., E„h=E„,/N is —the cohesive energy of the
solid. As shown in Fig. 1, the volume term E„,& is the
major component of the cohesive energy of Mg near equi-
librium, but the rapid increase in E„h at high pressure
actually arises from the repulsive part of the pair poten-

tial. The volume and pair-potential components of Eq.
(1) combine to give an excellent cohesive energy vs
volume curve with an equilibrium volume only slightly
larger than experiment. As Table I demonstrates, the
calculated T =0 cohesive properties of hcp Mg at equilib-
rium based on Eq. (1) agree well both with experi-
ment' ' and with LDA electronic structure calcula-
tions. In this regard, we have minimized the hcp energy
with respect to the c/a axial ratio, finding an equilibrium
value of 1.621. As the pressure is raised, we find that this
value is changed by less than 1% over the volume range
of interest in this paper. We have, therefore, maintained
a constant value of 1.62 throughout all the remaining cal-
culations discussed below.

The T=O structural properties of Mg are similarly
well calculated by the pair potentials v2(r, Q). The ob-
served hcp structure near equilibrium and the observed
bcc structure at high pressure are each correctly predict-
ed to be the lowest-energy phase among all competing
metallic structures. Figure 2 displays our calculated
hcp-fcc and bcc-fcc cohesive energy differences as a func-
tion of volume. These results indicate an hcp~bcc
phase transition near Q/QO=0. 6, where Qo is the ob-
served equilibrium atomic volume. The details of the
transition may be calculated by equating hcp and bcc
enthalpies (E„,+PV, here without zero-point vibrational
contributions). The values of the transition pressure and
volume so obtained are given in. Table I and are seen to
agree well both with previous theoretical results and
with experiment. As expected, we find a very small frac-
tional volume change for this transition, (Qb„—Qh, ~)/
Qh, ~-——0.005 or about —0.5%.

Qualitatively, the origin of the hcp~bcc transition can
be traced to the behavior of the pair potentials in the vi-
cinity of the near-neighbor shells. Figure 3 shows the
pair potentials for Mg calculated at volumes both near
zero pressure and near the hcp-bcc transition. Near
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FIG. 1. Volume term E„~ and cohesive energy E„h=E„,/N
for hcp Mg (c/a = 1.62) as a function of relative atomic volume,
A/Ao. Here Qo is the observed equilibrium atomic volume
(156.8 a.u.).
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FIG. 2. Zero-temperature hcp-fcc and bcc-fcc cohesive ener-
gy differences as a function of relative atomic volume, 0/Qo,
with the hcp c/a ratio and Ao as in Fig. 1.
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FIG. 3. The pair potential v2 in Mg for two different
volumes: the solid line is at the observed equilibrium volume for
the hcp structure (Qo= 156.8 a.u. ) and is referenced to the verti-
cal axis on the right-hand side; the dashed line is at a volume
84.3 a.u. (where bcc is stable) and is referenced to the vertical
axis on the left-hand side. The triangles (circles) on each curve
are near-neighbor distances in the hcp (bcc) structure at the
same volume.

P =0, the 12 nearest neighbors of the hcp structure lie
very close to the first minimum of the potential, while the
8 nearest neighbors and 6 next-nearest neighbors of the
bcc structure straddle the minimum on either side, so the
bcc energy is clearly higher. (In the hcp structure, the
nearest-neighbor distances are 1.805Rws and 1.814Rws
for c/a = 1.62; in the bcc structure, the nearest-neighbor
distance is 1.759Rws and the next-nearest-neighbor dis-
tance is 2.031Rws. ) As the volume is decreased, the first-
neighbor shells of both structures begin to move up the
steep repulsive portion of the pair potential and the high
number of nearest neighbors for the hcp structure be-
comes increasingly less favorable. Eventually, Mg can
lower its energy by transforming to the less close-packed
bcc structure, allowing some of these neighbors to move
off the steep portion of the potential and back toward the
first minimum, as shown in Fig. 3.

III. PHONONS AND THE hcp-bcc PHASE LINE

In the presence of lattice vibrations at constant
volume, the total potential energy of the crystal within
the quasiharrnonic approximation can be written

U=E,„+—g g (u„' —u~ )g (u' —u J ) .
1

(6)
l~J P, v

Here E, , is the total energy (1) evaluated for the ideal
lattice at equilibrium, u„ is the pth Cartesian component
of the displacement from equilibrium of the ith atom, and
the force-constant matrix is given by

All real-space force constants for the crystal can thus be
expressed in terms of the first and second derivatives of
vz evaluated at near-neighbor distances. These deriva-
tives, in turn, can be taken analytically using Eq. (2) and
evaluated without difficulty as a function of the separa-
tion distance r. It is then straightforward to construct
the dynamical matrix, obtain phonon frequencies, and, if
desired, calculate the phonon density of states for any
given crystal structure. The volume dependence of the
phonon frequencies comes both from the volume depen-
dence of the pair potential Uz and from the volume
dependence of the separations R; ..

We have calculated both hcp and bcc phonons for Mg
in this manner over the volume range 0.4QO Q 1.2QO.
Figure 4 shows the phonon dispersion curves calculated
along the principal symmetry directions in the hcp struc-
ture at atmospheric pressure. Good agreement with the
experimental results of Pynn and Squires is obtained.
The upper panel of Fig. 5 displays the corresponding den-
sity of states computed from these dispersion curves. The
lower panel shows the density of states for both the hcp
and bcc structures at a volume 0.54fLO near the hcp~bcc
phase transition. A downward shift of the bcc vibration-
al spectrum with respect to the hcp spectrum is evident
in this latter result. In this regard, the bcc phonon spec-
trum displays the familiar soft T, [110]modes which are
characteristic of the other bcc alkali and alkaline-earth
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FIG. 4. Phonon dispersion curves along the principal sym-
rnetry directions of the hcp structure of Mg at atmospheric
pressure. The lines are the results of the present calculations
(c/a = 1.62); the symbols are the experimental data of Ref. 9.
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FIG. 6. Transverse-optic (TO) Raman frequency in hcp Mg
as a function of pressure. The solid line is the present calcula-
tion (c/a =1.62) and the points are the experimental data of
Ref. 16.

FIG. 5. (a) Calculated phonon density of states for the hcp
structure of Mg at atmospheric pressure. (b) Phonon density of
states for the hcp (solid line) and bcc (dashed line) structures at
0/QO=O. 54, where the bcc structure is stable (at T =0).

metals and corresponds to a small C' shear elastic con-
stant. It is interesting to note that C' decreases in magni-
tude as the volume is increased and passes through zero
at about 0/QO=0. 93 or a pressure of about 4 GPa at
T =0. Thus, the bcc structure is predicted to be unstable
at larger volumes and lower pressures, consistent with the
absence of even a metastable bcc phase at atmospheric
pressure.

Very recently, it has also become possible to obtain
quantitative experimental information on phonons at
high pressure in metals with two or more atoms per unit
cell (e.g. , hcp) via Raman spectroscopy in the diamond-
anvil cell. ' After our calculations were completed, we
were pleased to learn that Olijnyk had made the first
measurements of the transverse-optic (TO) Raman fre-
quency in hcp Mg to 50 GPa. ' In Fig. 6, we compare our
predicted (q=0) TO frequency as a function of pressure
with his data. The agreement is clearly very good and
provides direct evidence that our calculated phonons
indeed remain accurate at high pressure.

From a knowledge of the quasiharmonic phonon fre-
quencies vi(q) as a function of volume for a given struc-
ture, one can then compute thermodynamic quantities as
a function of volume and temperature. In particular, the
Helmholtz free energy is

tors q and branches A, in the first Brillouin zone of the lat-
tice. The pressure P is calculated as the negative volume
derivative of F at fixed T, P= —(BF/BV)T, and the en-

tropy S as the negative temperature derivative of F at
fixed V, S= (BF/BT)r—. Under conditions of constant
temperature and pressure, the thermodynamically stable
phase is that with the lowest Gibbs free energy,
G =F+PV. Figure 7 shows the solid portion of the mag-
nesium phase diagram to 1000 K which we have calculat-
ed by equating Gibbs energies of the hcp and bcc phases.
At T=O we obtain a transition pressure PT of 52 GPa,

1000—
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E
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bcc

F ( V, T) =E„,+kii T g ln I 2 sinh [h vi ( q ) /( 2k~ T ) ]J,
q, A,

(10)

o
0 20 40 60

Pressure (G Pa)
80

where both E, , and v&(q) are implicit functions of
volume and where the sum is over all phonon wave vec-

FIG. 7. Solid portion of the Mg phase diagram showing the
present theoretical result for the hcp-bcc phase boundary.
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which is about 2 GPa less than we found in the absence
of zero-point vibrational contributions (Table I). At 300
K the theoretically determined transition pressure is 48
GPa, in good agreement with the experimental value of
50+6 GPa. The negative slope of the hcp-bcc phase line
makes possible a temperature-induced phase transition to
bcc at constant pressure, with the transition temperature
decreasing as the pressure is increased. It has been tradi-
tionally argued' that the lower phonon frequencies in
the bcc structure produce an entropy excess which drives
a phase transition to bcc at higher temperatures. This
traditional argument appears to be correct in Mg at
elevated pressures.

Gibbs' phase rule for a one-component system states
that two phases can coexist along a curve in the P-T
plane, where the Clausius-Clapeyron equation,

dPT gS Sbcc Sh p

d T 5V Vbcc Vhcp

specifies the slope of the coexistence curve. For a
pressure-induced hcp~bcc phase transition, 6V (0.
Therefore, the negative slope of the calculated phase
boundary implies that AS )0, i.e., that the entropy of the
bcc phase is higher than that of the hcp phase, in accord
with the aforementioned soft bcc phonon arguments and
as has been verified by direct calculation of the hcp and
bcc entropies. At T=O the entropies of both phases
must vanish by the third law of thermodynamics since
both phases are perfectly ordered. This is ensured by Eq.
(10) and the phase line is thus perpendicular to the pres-
sure axis at their intersection. (Note that classically the
entropy difference at T =0 can be nonzero and the phase
boundary need not approach the pressure axis at a right
angle: quantum effects force this requirement. )

To verify the adequacy of our quasiharmonic calcula-
tion of the hcp-bcc phase line, we have computed anhar-
monic free-energy corrections to Eq. (10) for both phases
using a standard ce11 model' and repeated the entire cal-
culation. We indeed find the net impact of anharmonic
effects on the phase line to be very small at all tempera-
tures, with the transition pressure lowered by only about
0.1 GPa at 1000 K.

temperature dependent, ' and this is generally confirmed
in our calculations. Our computed T=O value of BT for
the hcp crystal at atmospheric pressure is 31.7 GPa,
which is about 1 GPa lower than we obtained in the ab-
sence of zero-point vibrational contributions (Table I).
The room-temperature experimental value is 35.4 GPa. '

Figure 8 compares our calculated thermal expansion
coefficient I3=BT '(dP/dT)z as a function of tempera-
ture for hcp Mg at atmospheric pressure with the experi-
mental data of Refs. 20 and 21. For theories in which the
electronic Gruneisen parameter is independent of temper-
ature, the electronic component of P is linear in T at low
temperatures and we have used the value of the linear
coefficient quoted in Ref. 20 (3.3+0.2X10 K ). For
comparison, the lattice component is of order 10 K
so that on the scale of Fig. 8, subtracting the electronic
component from the experimental data produces a barely
perceptible change. The calculated thermal expansion
coefficient agrees well with experiment at low tempera-
ture but begins to deviate above the Debye temperature
(300 K) and at high temperature (900 K) overestimates
experiment by almost a factor of 2. We have investigated
this discrepancy and found its origin to be basically two-
fold. First, neglected anharmonic effects do lower the
calculated P above the Debye temperature by a
significant amount. However, based on our cell-model
calculations only about a third of the discrepancy at high
temperature can be accounted for in this manner. A
second larger effect is the extreme sensitivity of P to our
calculated equation of state. As can be seen from Table I,
we overestimate the zero-pressure volume of Mg in the
present work by a small amount (2.7%), so that in Fig. 8
we are calculating P at volumes which are slightly larger
than experiment. In this regard, our equation of state is
approximately corrected by subtracting from it a small
constant pressure (1.8 GPa) at all volumes. We find that
the corrected equation-of-state plus cell-model anhar-
monic contributions combine to yield an accurate calcu-
lated value of P all the way up to about 800 K, as is also
shown in Fig. 8.

20

IV. THERMODYNAMIC PROPERTIES

The remaining measurable thermodynamic quantities
can be expressed in terms of appropriate volume and tem-
perature derivatives. In calculating such quantities and
comparing the results to experiment, it is important to re-
call that we have treated the metal as if the electrons are
always in their ground state (i.e., at T=O), so that the
electronic contribution to any quantity expressible as a
temperature derivative is identically zero in the present
theoretical framework. Thus, in comparing such quanti-
ties as the specific heat and thermal expansion coefficient
with experiment, we must first subtract the electronic
component from the experimental results.

Experimentally, the isothermal bulk modulus
BT= V(d F/dV ) T for Mg is observed to be only weakly

10
C0

0 200 400 600 800
T (K)

FICx. 8. Thermal expansion coefftcient P of hcp Mg at atmos-
pheric pressure. The solid line is the present quasiharmonic cal-
culation (c/a =1.62); the symbols are experimental data from
Ref. 19 (T & 300 K) and Ref. 20 (T & 300 K). The dashed line
includes anharmonic and equation-of-state corrections to the
quasiharmonic result, as discussed in the text.
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We calculate the specific heat at constant volume, c~,
directly from the quasiharmonic phonon spectrum. The
specific heat at constant pressure, c~, is obtained by add-
ing the dilatation terin TQBTp to ci,. For reference, the
dilatation term is only about 2% of ci, at 300 K, but rises
monotonically to about 25%%uo of ci at 800 K. The elec-
tronic component of the specific heat is here approximat-
ed as linear for all temperatures and is subtracted from
the experimental data, using a coeKcient y, = 1.579
X10 k~ K ' per atom from Ref. 22. Figure 9 displays
our calculated c~ as a function of temperature for hcp
Mg at atmospheric pressure. The agreement with experi-
ment ' is generally good, with a small overestimate in
the theoretical result at high temperature due mostly to
our overestimate of p, as discussed above. At low tem-
peratures, the effective Debye temperature O(T) defined
by

3

2 ' 2

x, 2 0

1 ~ SE

1 ~ 6
C

1 ~ 4

3. 2
C9

$.0

~ 5 ~ 6 ~ 8
I ~ I ~ I . t

~ 9 1 ~ 0 1 ~ 1 1 ~ 2

Relative atomic volume 0/Qo

T x e
ci,=9k' dx

(e —1)
(12)

is perhaps a more illuminating quantity to plot. The inset
of Fig. 9 shows 0( T) along with the experimental data of
Ref. 22.

The isothermal bulk modulus, thermal expansion
coefficient, and specific heat at constant volume are con-
nected by the Griineisen relation

FIG. 10. Calculated high-temperature Gruneisen parameter
y for hcp Mg (c/a =1.62) as a function of relative atomic
volume, Q/Qo. As in Figs. 1 and 2, 00 is the observed equilibri-
um atomic volume.

the experimental value of 1.6. The calculated volume
dependence of y is displayed in Fig. 10.

VpBT

Ncy

QpBT

cv
(13) V. CONCLUSIONS

which defines the Griineisen parameter y. As expected,
our calculated values of y are only weakly temperature
dependent, with the high-temperature limit rapidly ap-
proached above the Debye temperature. At atmospheric
pressure we obtain y =1.7 for hcp Mg as compared with
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FIG. 9. Specific heat at constant pressure c~ for hcp Mg at
atmospheric pressure. The solid line is the present calculation
(c/a =1.62); the hexagons and squares are experimental data
from Refs. 21 and 22, respectively. Inset: low-T behavior of the
effective Debye temperature (see text) with the notation the
same.

The structural, vibrational, and thermodynamic prop-
erties of Mg are all well described by the present first-
principles interatomic potentials derived from the
simple-metal limit of generalized pseudopotential theory.
The calculated T =0 properties, including the transition
pressure and volume of the hcp —+bcc phase transition,
agree with both experiment and full LDA electronic
structure calculations. We have studied here the temper-
ature dependence of the hcp-bcc phase line and the ther-
modynamic properties of hcp Mg to 1000 K in the
quasiharmonic approximation. The hcp~bcc transition
pressure is predicted to rapidly decrease with increasing
temperature, in qualitative agreement with the earlier
semiempirical calculation of Pelissier. In closely related
work, the same interatomic potentials have been used to
simulate the hcp —+bcc transition in Mg using molecular-
dynamics techniques. " With regard to the vibrational
and thermodynamic properties of hcp Mg, we have ob-
tained good quantitative agreement with experiment for
all quantities except the thermal expansion coeflicient p
above the Debye temperature. Deviations with experi-
ment for p at high temperatures appear to be due to a
combination of neglected anharmonic effects and extreme
sensitivity to small errors in the equation of state.

The high-temperature (T & 1000 K) portion of the Mg
phase diagram, including the melting curve, is under
current investigation. A preliminary calculation suggests
that the hcp-bcc phase line should end in a triple point on
the melting curve in the vicinity of 6 GPa and 1250 K. If
this is indeed the case, it may be possible in the future to
experimentally access. the entire temperature-induced se-
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quence hcp~bcc~liquid in measurements at modest
pressure.
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